Applications of Computer Algebra – ACA 2023 Warsaw, Poland, | July 17-21, 2023 Session "D-Finite Functions and Beyond: Algorithms, Combinatorics, and Arithmetic"

Separating Variables in Bivariate Polynomial Ideals: the Local Case

Manfred Buchacher¹

[manfredi.buchacher@gmail.com]

¹ RICAM, Austrian Academy of Sciences, Linz, Austria

We report on work in progress on the problem of finding all elements of $\mathbb{K}(x) + \mathbb{K}(y)$ that are of the form qp for a given irreducible polynomial $p \in \mathbb{K}[x, y]$ and some non-zero rational function $q \in \mathbb{K}(x, y)$ whose denominator is not divisible by p.

Let p be an irreducible polynomial of $\mathbb{K}[x, y]$ that is not an element of $\mathbb{K}[x] \cup \mathbb{K}[y]$. We define the *local ring* of $\mathbb{K}[x, y]$ at p by

$$\mathbb{K}[x,y]_p := \{r \in \mathbb{K}(x,y) : p \nmid \operatorname{denom}(r)\}.$$

and denote by $\langle p \rangle$ the set of multiples of p in $\mathbb{K}[x, y]_p$. The set of separated multiples of p is

$$\langle p \rangle \cap (\mathbb{K}(x) + \mathbb{K}(y))$$

and can be described by

$$\mathbf{F}(p) := \{ (f,g) \in \mathbb{K}(x) \times \mathbb{K}(y) : f - g \in \langle p \rangle \}.$$

The latter is a field with respect to component-wise addition and multiplication and referred to as the *field of separated multiples* of p. By Lüroth's theorem there is a pair $(f,g) \in \mathbb{K}(x) \times \mathbb{K}(y)$ of rational functions such that

$$\mathbf{F}(p) = \mathbb{K}((f,g)).$$

If there are $f \in \mathbb{K}(x)$ and $g \in \mathbb{K}(y)$ such that qp = f - g for some $q \in \mathbb{K}(x, y) \setminus \{0\}$, then it is enough to know the singularities of f and g and their multiplicities to find them. The latter essentially means to know the denominators of f, g and q and the degrees of their numerators. The unknown f, g and q can then be determined by making an ansatz for their numerators, clearing denominators in qp = f - g, comparing coefficients and solving a system of linear equations for them. We present a heuristic to determine the singularities of f and g and their multiplicities by inspecting the leading parts of p with respect to different gradings. Based on previous work [1] we also explain why we belief that our reasoning gives rise to an algorithm that solves the problem of determining a $(f, g) \in \mathbb{K}(x) \times \mathbb{K}(y)$ that generates F(p).

Keywords

Commutative algebra, elimination theory, separation of variables

References

[1] MANFRED BUCHACHER, MANUEL KAUERS, GLEB POGUDIN, *Separating variables in bivariate polynomial ideals*. Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, 54–61, 2020.

[2] OLIVIER BERNARDI, MIREILLE BOUSQUET-MÉLOU, KILIAN RASCHEL, *Counting quadrant walks via Tutte's invariant method*. Discrete Mathematics & Theoretical Computer Science, 2020.