Separating Variables in Bivariate Polynomial Ideals: the Local Case

Manfred Buchacher ${ }^{1}$

${ }^{1}$ RICAM, Austrian Academy of Sciences, Linz, Austria
We report on work in progress on the problem of finding all elements of $\mathbb{K}(x)+\mathbb{K}(y)$ that are of the form $q p$ for a given irreducible polynomial $p \in \mathbb{K}[x, y]$ and some non-zero rational function $q \in \mathbb{K}(x, y)$ whose denominator is not divisible by p.

Let p be an irreducible polynomial of $\mathbb{K}[x, y]$ that is not an element of $\mathbb{K}[x] \cup \mathbb{K}[y]$. We define the local ring of $\mathbb{K}[x, y]$ at p by

$$
\mathbb{K}[x, y]_{p}:=\{r \in \mathbb{K}(x, y): p \nmid \operatorname{denom}(r)\} .
$$

and denote by $\langle p\rangle$ the set of multiples of p in $\mathbb{K}[x, y]_{p}$. The set of separated multiples of p is

$$
\langle p\rangle \cap(\mathbb{K}(x)+\mathbb{K}(y))
$$

and can be described by

$$
\mathrm{F}(p):=\{(f, g) \in \mathbb{K}(x) \times \mathbb{K}(y): f-g \in\langle p\rangle\}
$$

The latter is a field with respect to component-wise addition and multiplication and referred to as the field of separated multiples of p. By Lüroth's theorem there is a pair $(f, g) \in$ $\mathbb{K}(x) \times \mathbb{K}(y)$ of rational functions such that

$$
\mathrm{F}(p)=\mathbb{K}((f, g))
$$

If there are $f \in \mathbb{K}(x)$ and $g \in \mathbb{K}(y)$ such that $q p=f-g$ for some $q \in \mathbb{K}(x, y) \backslash\{0\}$, then it is enough to know the singularities of f and g and their multiplicities to find them. The latter essentially means to know the denominators of f, g and q and the degrees of their numerators. The unknown f, g and q can then be determined by making an ansatz for their numerators, clearing denominators in $q p=f-g$, comparing coefficients and solving a system of linear equations for them. We present a heuristic to determine the singularities of f and g and their multiplicities by inspecting the leading parts of p with respect to different gradings. Based on previous work [1] we also explain why we belief that our reasoning gives rise to an algorithm that solves the problem of determining a $(f, g) \in \mathbb{K}(x) \times \mathbb{K}(y)$ that generates $\mathrm{F}(p)$.

Keywords

Commutative algebra, elimination theory, separation of variables

References

[1] Manfred Buchacher, Manuel Kauers, Gleb Pogudin, Separating variables in bivariate polynomial ideals. Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, 54-61, 2020.
[2] Olivier Bernardi, Mireille Bousquet-Mélou, Kilian Raschel, Counting quadrant walks via Tutte's invariant method. Discrete Mathematics \& Theoretical Computer Science, 2020.

