Two applications of the telescoping method

Qing-Hu Hou ${ }^{1}$, Guo-Jie Li 2, Na Li ${ }^{1}$, Ke Liu ${ }^{3}$
[qh_hou@tju.edu.cn]

${ }^{1}$ School of Mathematics, Tianjin University, Tianjin, China
${ }^{2}$ School of Science, Hainan University, Hainan, China
${ }^{3}$ College of Science, Chongqing University of Technology, Chongqing, China
In this talk, we will give two applications of telescoping method.
The first one focuses on series involving π. In [5], Sun derived several identities involving π by telescoping method. For example, from Bauer's series [1]

$$
\sum_{k=0}^{\infty}(4 k+1) \frac{\binom{2 k}{k}^{3}}{(-64)^{k}}=\frac{2}{\pi}
$$

and the telescoping sum

$$
\sum_{k=0}^{n} \frac{\left(16 k^{3}-4 k^{2}-2 k+1\right)\binom{2 k}{k}^{2}}{(2 k-1)^{2}(-64)^{k}}=\frac{8(2 n+1)}{(-64)^{n}}\binom{2 n}{n}^{3}
$$

he deduced

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{k(4 k-1)\binom{2 k}{k}^{3}}{(2 k-1)^{2}(-64)^{k}}=-\frac{1}{\pi} \tag{1}
\end{equation*}
$$

We aim to give a systematic method to construct series like (\mathbb{I}). This motivates us to consider the following problem: Given a hypergeometric term t_{k}, for which rational functions $r(k)$ is the product $r(k) t_{k}$ Gosper summable?

By aid of Gosper's algorithm, we give candidates for the denominator of $r(k)$. Then by polynomial reduction [2,4], we derive an upper bound and a lower bound on the degree of the numerator of $r(k)$. Based on these results, we are able to construct several new series involving π.

Wang and Zhong [6] further extended the method of polynomial reduction to P-recursive sequences. We also give a brief introduction on their results.

The second one focuses on the congruences of partial sums of P-recursive sequences [3]. For example, we have

$$
\frac{2}{n} \sum_{k=1}^{n}(2 k+1) M_{k}^{2} \in \mathbb{Z}
$$

where

$$
M_{k}=\sum_{l=0}^{k}\binom{k}{2 l} \frac{\binom{2 l}{l}}{l+1}
$$

is the k-th Motzkin number.
Let $\left\{a_{k}^{(i)}\right\}_{k \geq 0},(1 \leq i \leq m)$ be P-recursive sequences of order d_{i}, respectively. We aim to find non-trivial polynomials $X(k)$ and $A_{i_{1}, \ldots, i_{m}}(k)$ such that

$$
X(k) a_{k}^{(1)} \cdots a_{k}^{(m)}=\Delta\left(\sum_{\left(i_{1}, \ldots, i_{m}\right) \in S} A_{i_{1}, \ldots, i_{m}}(k) a_{k-i_{1}}^{(1)} \cdots a_{k-i_{m}}^{(m)}\right)
$$

Summing over k from 0 to $n-1$ and considering the congruences of boundary values, we will derive the congruence of

$$
\sum_{k=0}^{n-1} X(k) a_{k}^{(1)} \cdots a_{k}^{(m)}
$$

Keywords

telescoping, Gosper's algorithm, congruence

References

[1] G. Bauer, Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J. Reine Angew. Math. 56, 101-121 (1859).
[2] S. Chen; H. Huang; M. Kauers; Z. Li, A modified Abramov-Petkovšek reduction and creative telescoping for hypergeometric terms. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, 117-124. ACM, Bath, 2015.
[3] Q.-H. Hou; K. Liu, Congruences and telescopings of P-recursive sequences, J. Difference Equ. Appl. 27(5), 686-697 (2021).
[4] Q.-H. Hou; Y.-P. Mu; D. Zeilberger, Polynomial reduction and supercongruences. J. Symbolic Comput. 103, 127-140 (2021).
[5] Z.-W. Sun, New series for powers of π and related congruences, Electron. Res. Arch. 28(3), 1273-1342 (2020).
[6] R.-H. WANG; M.X.X. ZHONG, Polynomial reduction for holonomic sequences and applications in π-series and congruences, arXiv: 2205.11129.

