Reduction Based Creative Telescoping for Summation of D-finite Functions The Lagrange Identity Approach

Hadrien Brochet, Bruno Salvy

Applications of Computer Algebra

19 July 2023

The problem of symbolic summation

Let $F_n(x) = (-1)^n n^2 J_{2n}(x)$ and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

Given mixed-differential equations satisfied by $F_n(x)$:

$$\begin{aligned} -2x(2n+1)(n+1)^2\partial_x(F_n) + n^2x^2F_{n+1} + (n+1)^2(8n^2 - x^2 + 4n)F_n &= 0\\ n^2(n+1)(2n+1)x^2F_{n+2} + (\dots)F_{n+1} + x^2(n+1)(2n+3)(n+2)^2F_n &= 0, \end{aligned}$$

compute the minimal linear differential equation satisfied by S: $x^2 \partial_x^2(S) - 2x \partial_x(S) + (x^2 + 2)S = 0.$

The problem of symbolic summation

Let $F_n(x) = (-1)^n n^2 J_{2n}(x)$ and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

Given mixed-differential equations satisfied by $F_n(x)$:

$$\begin{aligned} &-2x(2n+1)(n+1)^2\partial_x(F_n)+n^2x^2F_{n+1}+(n+1)^2(8n^2-x^2+4n)F_n=0\\ &n^2(n+1)(2n+1)x^2F_{n+2}+(\ldots)F_{n+1}+x^2(n+1)(2n+3)(n+2)^2F_n=0, \end{aligned}$$

compute the minimal linear differential equation satisfied by S: $x^2\partial_x^2(S)-2x\partial_x(S)+(x^2+2)S=0.$

Applications:

- Computation of closed forms
- Verification of identities
- Efficient numerical approximation of sums

Examples of identity verifications

An identity between binomials

$$\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} \sum_{j=0}^{k} \binom{k}{j}^{3}$$
(Strehl, 1994)
$$(n+2)^{3}a(n+2) - (2n+3)(17n^{2}+51n+39)a(n+1) + (n+1)^{3}a(n) = 0$$

• Legendre's generating series

$$\sum_{n=0}^{+\infty} P_n(x) z^n = (1 - 2xz + z^2)^{-1/2}$$
$$(2xz - z^2 - 1)\partial_z(y) + (x - z)y = 0$$

• An Identity between special functions (here Bessel functions)

$$J_{0}(z\sqrt{1-u^{2}}) = \sum_{n=0}^{\infty} \frac{(4n+1)(2n)!j_{2n}(z)P_{2n}(u)}{2^{2n}(n!)^{2}} \text{ (Abramowitz/Stegun)}$$
$$\frac{z\partial_{z}^{2}(y) + \partial_{z}(y) + z(1-u)y = 0}{(-u^{2}+1)\partial_{u}(y) + zu\partial_{z}(y) = 0}$$

Creative Telescoping for summation¹

 $F_n(x)$ D-finite to be summed

Goal : find r, $\lambda_i \in \mathbb{Q}(x)$ independent of n, and a function G such that

$$\underbrace{(\lambda_r(x)\partial_x^r + \dots + \lambda_1(x)\partial_x + \lambda_0)}_{\text{telescoper}}F_n(x) = \underbrace{G(n+1,x) - G(n,x)}_{\text{G called certificate}}.$$

¹Zeilberger, Takayama, Chyzak, Koutschan, Chen ...

Creative Telescoping for summation¹

 $F_n(x)$ D-finite to be summed

Goal : find $r, \lambda_i \in \mathbb{Q}(x)$ independent of n, and a function G such that

$$\underbrace{(\lambda_r(x)\partial_x^r + \dots + \lambda_1(x)\partial_x + \lambda_0)}_{\text{telescoper}} F_n(x) = \underbrace{G(n+1,x) - G(n,x)}_{\text{G called certificate}}.$$

After summation w.r.t *n* we get:

$$(\lambda_r(x)\partial_x^r + \dots + \lambda_1(x)\partial_x + \lambda_0)\sum_{n=0}^N F_n(x) = \underbrace{G(N+1,x) - G(0,x)}_{\text{often equals } 0}.$$

 \rightsquigarrow Generalises to sums with more parameters and any Ore operator.

¹Zeilberger, Takayama, Chyzak, Koutschan, Chen ...

Recall
$$F_n(x) = (-1)^n n^2 J_{2n}(x)$$
 and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

 \forall Fix an order *r* and use an Ansatz:

$$\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}(F_{n}) = \Delta_{n} \left(\sum_{i,j} a_{i,j}(n,x) \partial_{x}^{i}(F_{n+j}) \right)$$

where $\Delta_n(f) = f(n+1) - f(n)$.

Recall
$$F_n(x) = (-1)^n n^2 J_{2n}(x)$$
 and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

 $\stackrel{}{\forall}$ Fix an order *r* and use an Ansatz:

$$\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}(F_{n}) = \Delta_{n} \left(\sum_{i,j} a_{i,j}(n, x) \partial_{x}^{i}(F_{n+j}) \right)$$

where $\Delta_n(f) = f(n+1) - f(n)$. Recall:

$$\begin{aligned} -2x(2n+1)(n+1)^2\partial_x(F_n) + n^2x^2F_{n+1} + (n+1)^2(8n^2 - x^2 + 4n)F_n &= 0\\ n^2(n+1)(2n+1)x^2F_{n+2} + (\dots)F_{n+1} + x^2(n+1)(2n+3)(n+2)^2F_n &= 0, \end{aligned}$$

Recall
$$F_n(x) = (-1)^n n^2 J_{2n}(x)$$
 and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

 \forall Fix an order *r* and use an Ansatz:

$$\sum_{i=0}^{r} \lambda_i(x) \partial_x^r(F_n) = \Delta_n \left(a_0(n,x) F_n(x) + a_1(n,x) F_{n+1}(x) \right)$$

where $\Delta_n(f) = f(n+1) - f(n)$. Recall:

r

$$\begin{aligned} -2x(2n+1)(n+1)^2\partial_x(F_n) + n^2x^2F_{n+1} + (n+1)^2(8n^2 - x^2 + 4n)F_n &= 0\\ n^2(n+1)(2n+1)x^2F_{n+2} + (\dots)F_{n+1} + x^2(n+1)(2n+3)(n+2)^2F_n &= 0, \end{aligned}$$

Recall
$$F_n(x) = (-1)^n n^2 J_{2n}(x)$$
 and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

 \forall Fix an order *r* and use an Ansatz:

$$\left(\sum_{i=0}^{r}(...)\lambda_{i}(x)\right)F_{n}(x) + \left(\sum_{i=0}^{r}(...)\lambda_{i}(x)\right)F_{n+1}(x) = \Delta_{n}\left(a_{0}(n,x)F_{n}(x) + a_{1}(n,x)F_{n+1}(x)\right)$$

where $\Delta_n(f) = f(n+1) - f(n)$. Recall:

$$\begin{aligned} -2x(2n+1)(n+1)^2\partial_x(F_n) + n^2x^2F_{n+1} + (n+1)^2(8n^2 - x^2 + 4n)F_n &= 0\\ n^2(n+1)(2n+1)x^2F_{n+2} + (\dots)F_{n+1} + x^2(n+1)(2n+3)(n+2)^2F_n &= 0, \end{aligned}$$

Recall $F_n(x) = (-1)^n n^2 J_{2n}(x)$ and $S(x) = \sum_{n=1}^{\infty} F_n(x)$.

 \forall Fix an order *r* and use an Ansatz:

$$\left(\sum_{i=0}^{r} (...)\lambda_{i}(x)\right)F_{n}(x) + \left(\sum_{i=0}^{r} (...)\lambda_{i}(x)\right)F_{n+1}(x) = \Delta_{n}\left(a_{0}(n,x)F_{n}(x) + a_{1}(n,x)F_{n+1}(x)\right)$$

where
$$\Delta_n(f) = f(n+1) - f(n)$$
.

All computations done we get a system of recurrences with parametric rhs:

$$(...)a_{1}(n+1,x) - a_{0}(n,x) = \sum_{i=0}^{r} (...)\lambda_{i}(x)$$
$$a_{0}(n+1,x) + (...)a_{1}(n+1,x) - a_{1}(n,x) = \sum_{i=0}^{r} (...)\lambda_{i}(x)$$

To conclude uncouple it and find rational solutions.

Algo2: Koutschan's fast heuristic (2010)

 $rac{\partial \phi}{\partial t}$ Guess the denominators Q_i in the Ansatz and avoid uncoupling

$$\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}(F_{n}) = \Delta_{n} \left(\sum_{i=0}^{N} \frac{a_{0,i}(x)n^{i}}{Q_{0}(n,x)} F_{n}(x) + \frac{a_{1,i}(x)n^{i}}{Q_{1}(n,x)} F_{n+1}(x) \right)$$

where $a_{0,i}(x)$ and $a_{1,i}(x)$ are polynomials

- May not always return the minimal order equations
- A lot faster than Chyzak's algorithm

Algo3: Reduction based Creative Telescoping¹

 $\stackrel{\text{\tiny V}}{\Upsilon}$ Decompose derivatives $\partial_x^i(F_n(x))$ modulo the image of Δ_n :

•
$$F_n(x) = F_n(x)$$

•
$$\partial_x(F_n(x)) = \frac{2(2n^2+1)}{3x}F_n(x) + \Delta_n(G_1)$$

•
$$\partial_x^2(F_n(x)) = \frac{8n^2 - 3x^2 - 2}{3x^2}F_n(x) + \Delta_n(G_2)$$

And find a $\mathbb{Q}(x)$ -linear combination eliminating the term in $F_n(x)$:

$$x^{2}\partial_{x}^{2}(F_{n}(x)) - 2x\partial_{x}(F_{n}(x)) + (x^{2}+2)F_{n}(x) = \Delta_{n}(x^{2}G_{2} - 2xG_{1})$$

which after summation gives

$$x^{2}\partial_{x}^{2}(S) - 2x\partial_{x}(S) + (x^{2}+2)S = 0$$

¹ For D-finite integrals: Bostan-Chyzak-Lairez-Salvy, van der Hoeven, Chen-Du-Kauers For sums: (D-finite) van der Hoeven, (P-finite) Chen-Du-Kauers

Algo 3: Pseudocode

 $earrow Decompose derivatives <math>\partial_x^i(F_n(x))$ modulo the image of Δ_n

Require: a D-finite function $F_n(x)$ **Ensure:** a telescoper L and its associated certificate G

- 1: for i = 0, 1, 2, ... do
- 2: Decompose $\partial_x^i(F) = R_iF + \Delta_n(G_i)$ with R_i "minimal"
- 3: **if** there is a $\mathbb{Q}(x)$ -linear combination $\sum_{j \leq i} a_j R_j = 0$ then
- 4: **return** $\sum_{j \leq i} a_j \partial^j$, $\sum_{j \leq i} a_j G_j$
- 5: end if
- 6: end for

The algorithm generalizes to functions F with more parameters

Reduction of derivatives modulo $Im(\Delta_n)$

Recall the equations:

$$\begin{aligned} -2x(2n+1)(n+1)^2\partial_x(F_n) + n^2x^2F_{n+1} + (n+1)^2(8n^2 - x^2 + 4n)F_n &= 0\\ n^2(n+1)(2n+1)x^2F_{n+2} + (\dots)F_{n+1} + x^2(n+1)(2n+3)(n+2)^2F_n &= 0 \end{aligned}$$

Using these equations it is possible to decompose $\partial_x(F_n)$ as follow:

$$\begin{aligned} \partial_x(F_n) &= \frac{n^2 x}{2(2n+1)(n+1)^2} F_{n+1} + \frac{8n^2 - x^2 + 4n}{2x(2n+1)} F_n \\ &= \left(\frac{(n-1)^2 x}{2n^2(2n-1)} + \frac{8n^2 - x^2 + 4n}{2x(2n+1)}\right) F_n \\ &+ \Delta_n \left(\frac{(n-1)^2 x}{2n^2(2n-1)} F_n\right) \end{aligned}$$

It is possible to further reduce the coefficient in front of F_n modulo $Im(\Delta_n)$.

$$L(f) = \sum_{i=0}^{r} a^{i} S_{n}^{i}(f) \quad \longleftrightarrow \quad L^{*}(f) = \sum_{i=0}^{r} a_{i}(n-i) S_{n}^{-i}(f)$$

Lagrange's identity (Barrett, Dristy 1960)

Let u(n), v(n) be two sequences and $L \in \mathbb{Q}(n, x) \langle S_n \rangle$ then

$$uL(v) - L^*(u)v = \Delta_n(P_L(u, v))$$

where P_L is linear in u and v.

$$L(f) = \sum_{i=0}^{r} a^{i} S_{n}^{i}(f) \quad \longleftrightarrow \quad L^{*}(f) = \sum_{i=0}^{r} a_{i}(n-i) S_{n}^{-i}(f)$$

Lagrange's identity (Barrett, Dristy 1960)

Let u(n), v(n) be two sequences and $L \in \mathbb{Q}(n, x) \langle S_n \rangle$ then

$$uL(v) - L^*(u)v = \Delta_n(P_L(u, v))$$

where P_L is linear in u and v.

Take v = F, $u \in \mathbb{Q}(n, x)$, and L minimal annihilating F, this identity gives

$$L^*(u)F = \Delta_n(-P_L(u,F))$$

Computing modulo $Im(\Delta_n) \Leftrightarrow$ computing modulo $Im(L^*)$ For all $R \in \mathbb{Q}(n, x)$

 $RF \in Im(\Delta_n)$ if and only if $R \in L^*(\mathbb{Q}(n, x))$

Reduction by a difference operator

$$L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$$

We want to define a Q(x)-linear map [.]: $Q(n, x) \to Q(n, x)$ such that for all $R \in Q(n, x)$

- $[R] R \in L^*(\mathbb{Q}(n, x))$
- $[L^*(R)] = 0$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$

 \checkmark Concentrate the poles in the yellow area

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$ + : poles of $L^*(1/(n - (1/2 + i3/2)))$ Reduction step:

$$R \leftarrow R - L^* \left(\frac{(\ldots)}{(n - (1/2 + i3/2)^{\Box}} \right)$$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$ + : poles of $L^*(1/(n - (-1/2 + i3/2)))$ Reduction step:

$$R \leftarrow R - L^* \left(\frac{(\ldots)}{(n - (-1/2 + i3/2)^{\Box}} \right)$$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$ + : poles of $L^*(1/(n - (-3/2 - i4/3)))$ \bigcirc : not a pole of $L^*(1/(n - (-3/2 - i4/3)))$ because 1/(n - (-1/2 + i3/2)) is a singularity of p_0

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$ + : poles of $L^*(1/(n - (-3/2 - i4/3)^2))$ Reduction step:

$$R \leftarrow R - L^* \left(\frac{(\ldots)}{(n - (-2/2 + i4/3)^{\Box + 1}} \right)$$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$ + : poles of $L^*(1/(n - (-1/2 - i4/3)))$ Reduction step:

$$R \leftarrow R - L^* \left(\frac{(\ldots)}{(n - (-1/2 - i4/3)^{\Box}} \right)$$

Assume $L^* = \sum_{i=0}^r p_i(n, x) S_n^{-i}$ has order r = 2 and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $Im(L^*)$ + : poles of $L^*(1/(n - (-1/2 - i4/3)))$

▲ Is it enough ? No !

Strong reduction of poles

Let $[.]_{W}$ be the reduction procedure described previously

x : poles of $L^*(1/(n-\alpha))$, α root of $p_0(n)$ or $p_r(n-r)$ of order n_{α} \bigcirc : not a pole because of a cancelation

$$E = \operatorname{Vect}_{\mathbb{Q}(x)} \{ [L^*(1/(n-\alpha)^i)]_w \mid \alpha, i \leq n_\alpha \}$$

Stong reduction: reduce $[R]_w$ modulo E

Reduction of polynomials

Similar (skipped)

Timing 1: (mostly) special functions

	HF-CT	HF-FCT	redctsum
21 easy examples	10.0s	9.2s	2.4s
eq. (1)	99s	50s	1.2s
eq. (2)	2138s	44s	13.8s
eq. (3)	63s	1.6s	39s
eq. (4)	4.5s	1.4s	61s
eq. (5)	>1h	3.2s(*)	>1h
eq. (6)	>1h	108s(*)	>1h
eq. (7)	>1h	>1h	1.2s

$$\sum_{j} \binom{m+x}{m-i+j} c_{n,j} \quad \text{where } c_{n,j} \text{ satisfies recurrences of order 2}$$
(1)
$$\sum_{n} C_{n}^{(k)}(x) C_{n}^{(k)}(y) \frac{u^{n}}{n!}$$
(2)

$$\sum_{n} J_n(x) C_n^k(y) \frac{u^n}{n!} \tag{3}$$

$$\sum_{n} \frac{(4n+1)(2n)!\sqrt{2\pi}}{n!^{2}2^{2n}\sqrt{x}} J_{2n+1/2}(x) P_{2n}(u)$$
(4)

Timing 1: (mostly) special functions

	HF-CT	HF-FCT	redctsum
easy examples	10.0s	9.2s	2.4s
eq. (1)	99s	50s	1.2s
eq. (2)	2138s	44s	13.8s
eq. (3)	63s	1.6s	39s
eq. (4)	4.5s	1.4s	61s
eq. (5)	>1h	3.2s(*)	>1h
eq. (6)	>1h	108s(*)	>1h
eq. (7)	>1h	> 1h	1.2s

$$\sum_{n} P_{n}(x)P_{n}(y)P_{n}(z)$$
(5)
$$\sum_{k} \frac{(a+b+1)_{k}}{(a+1)_{k}(b+1)_{k}} J_{k}^{(a,b)}(x)J_{k}^{(a,b)}(y)$$
(6)
$$\sum_{y} \frac{4x+2}{(45x+5y+10z+47)(45x+5y+10z+2)(63x-5y+2z+58)(63x-5y+2z-5)}$$

Timing 2: Gillis-Reznick-Zeilberger sequence

$$S_{r} = \sum_{k=0}^{n} \frac{(-1)^{k} (rn - (r-1)k)! (r!)^{k}}{(n-k)!^{r} k!}$$

Telescoper of order r and degree r(r-1)/2

	HF-CT	HF-FCT	redctsum
S_6	11s	64s	0.4s
S ₇	32s	331s	0.9s
<i>S</i> ₈	106s	1044s	2s
S_9	325s	3341s	5s
S ₁₀	1035s	>1h	8s

Links

arxiv link: https://arxiv.org/abs/2307.07216 github link: https://github.com/HBrochet/CreativeTelescoping