
Reduction Based Creative Telescoping

for Summation of D-finite Functions
The Lagrange Identity Approach

Hadrien Brochet, Bruno Salvy

Applications of Computer Algebra

19 July 2023

1 / 27



The problem of symbolic summation

Let Fn(x) = (−1)nn2J2n(x) and S(x) = ∑∞
n=1 Fn(x).

Given mixed-differential equations satisfied by Fn(x):

−2x(2n+ 1)(n+ 1)2∂x (Fn) + n2x2Fn+1 + (n+ 1)2(8n2 − x2 + 4n)Fn = 0

n2(n+ 1)(2n+ 1)x2Fn+2 + (...)Fn+1 + x2(n+ 1)(2n+ 3)(n+ 2)2Fn = 0,

compute the minimal linear differential equation satisfied by S :

x2∂2x (S)− 2x∂x (S) + (x2 + 2)S = 0.

Applications:

• Computation of closed forms

• Verification of identities

• Efficient numerical approximation of sums
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Examples of identity verifications

• An identity between binomials

n
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(Strehl, 1994)

(n+ 2)3a(n+ 2)− (2n+ 3)(17n2 + 51n+ 39)a(n+ 1) + (n+ 1)3a(n) = 0

• Legendre’s generating series

+∞

∑
n=0

Pn(x)z
n = (1− 2xz + z2)−1/2

(2xz − z2 − 1)∂z (y) + (x − z)y = 0

• An Identity between special functions (here Bessel functions)

J0(z
√

1− u2) =
∞

∑
n=0

(4n+ 1)(2n)!j2n(z)P2n(u)

22n(n!)2
(Abramowitz/Stegun)

z∂2z (y) + ∂z (y) + z(1− u)y = 0

(−u2 + 1)∂u(y) + zu∂z (y) = 0
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Creative Telescoping for summation1

Fn(x) D-finite to be summed

Goal : find r , λi ∈ Q(x) independent of n, and a function G such that

(λr (x)∂
r
x + · · ·+ λ1(x)∂x + λ0)︸ ︷︷ ︸

telescoper

Fn(x) = G (n+ 1, x)− G (n, x)︸ ︷︷ ︸
G called certificate

.

After summation w.r.t n we get:

(λr (x)∂
r
x + · · ·+ λ1(x)∂x + λ0)

N

∑
n=0

Fn(x) = G (N + 1, x)− G (0, x)︸ ︷︷ ︸
often equals 0

.

⇝ Generalises to sums with more parameters and any Ore operator.

1Zeilberger, Takayama, Chyzak, Koutschan, Chen ...
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Algo1: Chyzak’s algorithm (2000)

Recall Fn(x) = (−1)nn2J2n(x) and S(x) = ∑∞
n=1 Fn(x).

Fix an order r and use an Ansatz:

r

∑
i=0

λi (x)∂
r
x (Fn) = ∆n

(
∑
i ,j

ai ,j (n, x)∂
i
x (Fn+j )

)

where ∆n(f ) = f (n+ 1)− f (n).

Recall:

−2x(2n+ 1)(n+ 1)2∂x (Fn) + n2x2Fn+1 + (n+ 1)2(8n2 − x2 + 4n)Fn = 0

n2(n+ 1)(2n+ 1)x2Fn+2 + (...)Fn+1 + x2(n+ 1)(2n+ 3)(n+ 2)2Fn = 0,
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r
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i=0

(...)λi (x)
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Fn(x)+

(
r

∑
i=0

(...)λi (x)

)
Fn+1(x) = ∆n (a0(n, x)Fn(x) + a1(n, x)Fn+1(x))

where ∆n(f ) = f (n+ 1)− f (n).

All computations done we get a system of recurrences with parametric rhs:

(...)a1(n+ 1, x)− a0(n, x) =
r

∑
i=0

(...)λi (x)

a0(n+ 1, x) + (...)a1(n+ 1, x)− a1(n, x) =
r

∑
i=0

(...)λi (x)

To conclude uncouple it and find rational solutions.
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Algo2: Koutschan’s fast heuristic (2010)

Guess the denominators Qi in the Ansatz and avoid uncoupling

r

∑
i=0

λi (x)∂
r
x (Fn) = ∆n

(
N

∑
i=0

a0,i (x)n
i

Q0(n, x)
Fn(x) +

a1,i (x)n
i

Q1(n, x)
Fn+1(x)

)

where a0,i (x) and a1,i (x) are polynomials

• May not always return the minimal order equations

• A lot faster than Chyzak’s algorithm
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Algo3: Reduction based Creative Telescoping1

Decompose derivatives ∂ix (Fn(x)) modulo the image of ∆n:

• Fn(x) = Fn(x)

• ∂x (Fn(x)) =
2(2n2+1)

3x Fn(x) + ∆n(G1)

• ∂2x (Fn(x)) =
8n2−3x2−2

3x2
Fn(x) + ∆n(G2)

And find a Q(x)-linear combination eliminating the term in Fn(x):

x2∂2x (Fn(x))− 2x∂x (Fn(x)) + (x2 + 2)Fn(x) = ∆n(x
2G2 − 2xG1)

which after summation gives

x2∂2x (S)− 2x∂x (S) + (x2 + 2)S = 0

1
For D-finite integrals: Bostan-Chyzak-Lairez-Salvy, van der Hoeven, Chen-Du-Kauers

For sums: (D-finite) van der Hoeven, (P-finite) Chen-Du-Kauers
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Algo 3: Pseudocode

Decompose derivatives ∂ix (Fn(x)) modulo the image of ∆n

Require: a D-finite function Fn(x)
Ensure: a telescoper L and its associated certificate G
1: for i = 0, 1, 2, ... do
2: Decompose ∂ix (F ) = RiF + ∆n(Gi ) with Ri ”minimal”
3: if there is a Q(x)-linear combination ∑j≤i ajRj = 0 then

4: return ∑j≤i aj∂
j ,∑j≤i ajGj

5: end if
6: end for

The algorithm generalizes to functions F with more parameters
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Reduction of derivatives modulo Im(∆n)
Recall the equations:

−2x(2n+ 1)(n+ 1)2∂x (Fn) + n2x2Fn+1 + (n+ 1)2(8n2 − x2 + 4n)Fn = 0

n2(n+ 1)(2n+ 1)x2Fn+2 + (...)Fn+1 + x2(n+ 1)(2n+ 3)(n+ 2)2Fn = 0

Using these equations it is possible to decompose ∂x (Fn) as follow:

∂x (Fn) =
n2x

2(2n+ 1)(n+ 1)2
Fn+1 +

8n2 − x2 + 4n

2x(2n+ 1)
Fn

=

(
(n− 1)2x

2n2(2n− 1)
+

8n2 − x2 + 4n

2x(2n+ 1)

)
Fn

+ ∆n

(
(n− 1)2x

2n2(2n− 1)
Fn

)

It is possible to further reduce the coefficient in front of Fn modulo Im(∆n).
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Lagrange’s identity
L(f ) = ∑r

i=0 a
iS i

n(f ) ←→ L∗(f ) =
r

∑
i=0

ai (n− i)S−in (f )

Lagrange’s identity (Barrett, Dristy 1960)

Let u(n), v(n) be two sequences and L ∈ Q(n, x)⟨Sn⟩ then

uL(v)− L∗(u)v = ∆n(PL(u, v))

where PL is linear in u and v .

Take v = F , u ∈ Q(n, x), and L minimal annihilating F , this identity gives

L∗(u)F = ∆n(−PL(u,F ))

Computing modulo Im(∆n)⇔ computing modulo Im(L∗)

For all R ∈ Q(n, x)

RF ∈ Im(∆n) if and only if R ∈ L∗(Q(n, x))
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Reduction by a difference operator

L∗ =
r

∑
i=0

pi (n, x)S
−i
n

We want to define a Q(x)-linear map [.]: Q(n, x)→ Q(n, x) such that
for all R ∈ Q(n, x)

• [R ]− R ∈ L∗(Q(n, x))

• [L∗(R)] = 0
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Reduction of poles

Assume L∗ = ∑r
i=0 pi (n, x)S

−i
n has order r = 2 and R ∈ Q(n, x) has all its

poles in C as a r.f. in n.

1

xx

x x

x : poles of R to be reduced by Im(L∗)

Concentrate the poles in the yellow area
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Reduction of poles

Assume L∗ = ∑r
i=0 pi (n, x)S

−i
n has order r = 2 and R ∈ Q(n, x) has all its

poles in C as a r.f. in n.

1

xx

x x+ +

x : poles of R to be reduced by Im(L∗)
+ : poles of L∗(1/(n− (−3/2− i4/3))
○ : not a pole of L∗(1/(n− (−3/2− i4/3)) because
1/(n− (−1/2+ i3/2) is a singularity of p0
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Reduction of poles

Assume L∗ = ∑r
i=0 pi (n, x)S

−i
n has order r = 2 and R ∈ Q(n, x) has all its

poles in C as a r.f. in n.

1

xx

xx

x : poles of R to be reduced by Im(L∗)
+ : poles of L∗(1/(n− (−1/2− i4/3))

△? Is it enough ? No !
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Strong reduction of poles

Let [.]w be the reduction procedure described previously

1

xx

x x

x x

x : poles of L∗(1/(n− α)), α root of p0(n) or pr (n− r) of order nα

○: not a pole because of a cancelation

E = VectQ(x){[L∗(1/(n− α)i )]w | α, i ≤ nα}

Stong reduction: reduce [R ]w modulo E
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Reduction of polynomials

Similar (skipped)
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Timing 1: (mostly) special functions
HF-CT HF-FCT redctsum

21 easy examples 10.0s 9.2s 2.4s
eq. (1) 99s 50s 1.2s
eq. (2) 2138s 44s 13.8s
eq. (3) 63s 1.6s 39s
eq. (4) 4.5s 1.4s 61s
eq. (5) >1h 3.2s(∗) >1h
eq. (6) >1h 108s(∗) >1h
eq. (7) >1h > 1h 1.2s

∑
j

(
m+ x

m− i + j

)
cn,j where cn,j satisfies recurrences of order 2 (1)

∑
n

C
(k)
n (x)C

(k)
n (y )

un

n!
(2)

∑
n

Jn(x)C
k
n (y )

un

n!
(3)

∑
n

(4n+ 1)(2n)!
√
2π

n!222n
√
x

J2n+1/2(x)P2n(u) (4)
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Timing 1: (mostly) special functions

HF-CT HF-FCT redctsum
easy examples 10.0s 9.2s 2.4s
eq. (1) 99s 50s 1.2s
eq. (2) 2138s 44s 13.8s
eq. (3) 63s 1.6s 39s
eq. (4) 4.5s 1.4s 61s
eq. (5) >1h 3.2s(∗) >1h
eq. (6) >1h 108s(∗) >1h
eq. (7) >1h > 1h 1.2s

∑
n

Pn(x)Pn(y )Pn(z) (5)

∑
k

(a+ b+ 1)k
(a+ 1)k (b+ 1)k

J
(a,b)
k (x)J

(a,b)
k (y ) (6)

∑
y

4x + 2

(45x + 5y + 10z + 47)(45x + 5y + 10z + 2)(63x − 5y + 2z + 58)(63x − 5y + 2z − 5)

(7)
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Timing 2: Gillis-Reznick-Zeilberger sequence

Sr =
n

∑
k=0

(−1)k (rn− (r − 1)k)!(r !)k

(n− k)!rk !

Telescoper of order r and degree r(r − 1)/2

HF-CT HF-FCT redctsum
S6 11s 64s 0.4s
S7 32s 331s 0.9s
S8 106s 1044s 2s
S9 325s 3341s 5s
S10 1035s >1h 8s
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Links

arxiv link: https://arxiv.org/abs/2307.07216
github link: https://github.com/HBrochet/CreativeTelescoping
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