Reduction Based Creative Telescoping for Summation of D-finite Functions
 The Lagrange Identity Approach

Hadrien Brochet, Bruno Salvy

Applications of Computer Algebra
19 July 2023
inría

The problem of symbolic summation

Let $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.
Given mixed-differential equations satisfied by $F_{n}(x)$:

$$
\begin{aligned}
& -2 x(2 n+1)(n+1)^{2} \partial_{x}\left(F_{n}\right)+n^{2} x^{2} F_{n+1}+(n+1)^{2}\left(8 n^{2}-x^{2}+4 n\right) F_{n}=0 \\
& n^{2}(n+1)(2 n+1) x^{2} F_{n+2}+(\ldots) F_{n+1}+x^{2}(n+1)(2 n+3)(n+2)^{2} F_{n}=0,
\end{aligned}
$$

compute the minimal linear differential equation satisfied by S :

$$
x^{2} \partial_{x}^{2}(S)-2 x \partial_{x}(S)+\left(x^{2}+2\right) S=0 .
$$

The problem of symbolic summation

Let $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.
Given mixed-differential equations satisfied by $F_{n}(x)$:

$$
\begin{aligned}
& -2 x(2 n+1)(n+1)^{2} \partial_{x}\left(F_{n}\right)+n^{2} x^{2} F_{n+1}+(n+1)^{2}\left(8 n^{2}-x^{2}+4 n\right) F_{n}=0 \\
& n^{2}(n+1)(2 n+1) x^{2} F_{n+2}+(\ldots) F_{n+1}+x^{2}(n+1)(2 n+3)(n+2)^{2} F_{n}=0,
\end{aligned}
$$

compute the minimal linear differential equation satisfied by S :

$$
x^{2} \partial_{x}^{2}(S)-2 x \partial_{x}(S)+\left(x^{2}+2\right) S=0 .
$$

Applications:

- Computation of closed forms
- Verification of identities
- Efficient numerical approximation of sums

Examples of identity verifications

- An identity between binomials

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}(\text { Strehl, 1994 }) \\
(n+2)^{3} a(n+2)-(2 n+3)\left(17 n^{2}+51 n+39\right) a(n+1)+(n+1)^{3} a(n)=0
\end{gathered}
$$

- Legendre's generating series

$$
\begin{gathered}
\sum_{n=0}^{+\infty} P_{n}(x) z^{n}=\left(1-2 x z+z^{2}\right)^{-1 / 2} \\
\left(2 x z-z^{2}-1\right) \partial_{z}(y)+(x-z) y=0
\end{gathered}
$$

- An Identity between special functions (here Bessel functions)

$$
\begin{gathered}
J_{0}\left(z \sqrt{1-u^{2}}\right)=\sum_{n=0}^{\infty} \frac{(4 n+1)(2 n)!j_{2 n}(z) P_{2 n}(u)}{2^{2 n}(n!)^{2}} \text { (Abramowitz/Stegun) } \\
z \partial_{z}^{2}(y)+\partial_{z}(y)+z(1-u) y=0 \\
\left(-u^{2}+1\right) \partial_{u}(y)+z u \partial_{z}(y)=0
\end{gathered}
$$

Creative Telescoping for summation ${ }^{1}$

$F_{n}(x)$ D-finite to be summed

Goal : find $r, \lambda_{i} \in \mathbb{Q}(x)$ independent of n, and a function G such that

$$
\underbrace{\left(\lambda_{r}(x) \partial_{x}^{r}+\cdots+\lambda_{1}(x) \partial_{x}+\lambda_{0}\right)}_{\text {telescoper }} F_{n}(x)=\underbrace{G(n+1, x)-G(n, x)}_{G \text { called certificate }}
$$

Creative Telescoping for summation ${ }^{1}$

$F_{n}(x)$ D-finite to be summed

Goal : find $r, \lambda_{i} \in \mathbb{Q}(x)$ independent of n, and a function G such that

$$
\underbrace{\left(\lambda_{r}(x) \partial_{x}^{r}+\cdots+\lambda_{1}(x) \partial_{x}+\lambda_{0}\right)}_{\text {telescoper }} F_{n}(x)=\underbrace{G(n+1, x)-G(n, x)}_{\text {G called certificate }} .
$$

After summation w.r.t n we get:

$$
\left(\lambda_{r}(x) \partial_{x}^{r}+\cdots+\lambda_{1}(x) \partial_{x}+\lambda_{0}\right) \sum_{n=0}^{N} F_{n}(x)=\underbrace{G(N+1, x)-G(0, x)}_{\text {often equals } 0}
$$

\rightsquigarrow Generalises to sums with more parameters and any Ore operator.
${ }^{1}$ Zeilberger, Takayama, Chyzak, Koutschan, Chen ...

Algo1: Chyzak's algorithm (2000)

Recall $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.

シ$\ddot{\theta}^{\prime \prime}$ Fix an order r and use an Ansatz:

$$
\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}\left(F_{n}\right)=\Delta_{n}\left(\sum_{i, j} a_{i, j}(n, x) \partial_{x}^{i}\left(F_{n+j}\right)\right)
$$

where $\Delta_{n}(f)=f(n+1)-f(n)$.

Algo1: Chyzak's algorithm (2000)

Recall $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.
${ }^{\circ}$ " Fix an order r and use an Ansatz:

$$
\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}\left(F_{n}\right)=\Delta_{n}\left(\sum_{i, j} a_{i, j}(n, x) \partial_{x}^{i}\left(F_{n+j}\right)\right)
$$

where $\Delta_{n}(f)=f(n+1)-f(n)$.
Recall:

$$
\begin{aligned}
& -2 x(2 n+1)(n+1)^{2} \partial_{x}\left(F_{n}\right)+n^{2} x^{2} F_{n+1}+(n+1)^{2}\left(8 n^{2}-x^{2}+4 n\right) F_{n}=0 \\
& n^{2}(n+1)(2 n+1) x^{2} F_{n+2}+(\ldots) F_{n+1}+x^{2}(n+1)(2 n+3)(n+2)^{2} F_{n}=0,
\end{aligned}
$$

Algo1: Chyzak's algorithm (2000)

Recall $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.

Fix an order r and use an Ansatz:

$$
\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}\left(F_{n}\right)=\Delta_{n}\left(a_{0}(n, x) F_{n}(x)+a_{1}(n, x) F_{n+1}(x)\right)
$$

where $\Delta_{n}(f)=f(n+1)-f(n)$.
Recall:

$$
\begin{aligned}
& -2 x(2 n+1)(n+1)^{2} \partial_{x}\left(F_{n}\right)+n^{2} x^{2} F_{n+1}+(n+1)^{2}\left(8 n^{2}-x^{2}+4 n\right) F_{n}=0 \\
& n^{2}(n+1)(2 n+1) x^{2} F_{n+2}+(\ldots) F_{n+1}+x^{2}(n+1)(2 n+3)(n+2)^{2} F_{n}=0,
\end{aligned}
$$

Algo1: Chyzak's algorithm (2000)

Recall $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.
© $\ominus^{\prime \prime}$ Fix an order r and use an Ansatz:
$\left(\sum_{i=0}^{r}(\ldots) \lambda_{i}(x)\right) F_{n}(x)+\left(\sum_{i=0}^{r}(\ldots) \lambda_{i}(x)\right) F_{n+1}(x)=\Delta_{n}\left(a_{0}(n, x) F_{n}(x)+a_{1}(n, x) F_{n+1}(x)\right)$
where $\Delta_{n}(f)=f(n+1)-f(n)$.
Recall:

$$
\begin{aligned}
& -2 x(2 n+1)(n+1)^{2} \partial_{x}\left(F_{n}\right)+n^{2} x^{2} F_{n+1}+(n+1)^{2}\left(8 n^{2}-x^{2}+4 n\right) F_{n}=0 \\
& n^{2}(n+1)(2 n+1) x^{2} F_{n+2}+(\ldots) F_{n+1}+x^{2}(n+1)(2 n+3)(n+2)^{2} F_{n}=0,
\end{aligned}
$$

Algo1: Chyzak's algorithm (2000)

Recall $F_{n}(x)=(-1)^{n} n^{2} J_{2 n}(x)$ and $S(x)=\sum_{n=1}^{\infty} F_{n}(x)$.
Fix an order r and use an Ansatz:
$\left(\sum_{i=0}^{r}(\ldots) \lambda_{i}(x)\right) F_{n}(x)+\left(\sum_{i=0}^{r}(\ldots) \lambda_{i}(x)\right) F_{n+1}(x)=\Delta_{n}\left(a_{0}(n, x) F_{n}(x)+a_{1}(n, x) F_{n+1}(x)\right)$
where $\Delta_{n}(f)=f(n+1)-f(n)$.
All computations done we get a system of recurrences with parametric rhs:

$$
\begin{aligned}
(\ldots) a_{1}(n+1, x)-a_{0}(n, x) & =\sum_{i=0}^{r}(\ldots) \lambda_{i}(x) \\
a_{0}(n+1, x)+(\ldots) a_{1}(n+1, x)-a_{1}(n, x) & =\sum_{i=0}^{r}(\ldots) \lambda_{i}(x)
\end{aligned}
$$

To conclude uncouple it and find rational solutions.

Algo2: Koutschan's fast heuristic (2010)

Guess the denominators Q_{i} in the Ansatz and avoid uncoupling

$$
\sum_{i=0}^{r} \lambda_{i}(x) \partial_{x}^{r}\left(F_{n}\right)=\Delta_{n}\left(\sum_{i=0}^{N} \frac{a_{0, i}(x) n^{i}}{Q_{0}(n, x)} F_{n}(x)+\frac{a_{1, i}(x) n^{i}}{Q_{1}(n, x)} F_{n+1}(x)\right)
$$

where $a_{0, i}(x)$ and $a_{1, i}(x)$ are polynomials

- May not always return the minimal order equations
- A lot faster than Chyzak's algorithm

Algo3: Reduction based Creative Telescoping ${ }^{1}$

$*{ }^{\circ}$ " Decompose derivatives $\partial_{x}^{i}\left(F_{n}(x)\right)$ modulo the image of Δ_{n} :

- $F_{n}(x)=F_{n}(x)$
- $\partial_{x}\left(F_{n}(x)\right)=\frac{2\left(2 n^{2}+1\right)}{3 x} F_{n}(x)+\Delta_{n}\left(G_{1}\right)$
- $\partial_{x}^{2}\left(F_{n}(x)\right)=\frac{8 n^{2}-3 x^{2}-2}{3 x^{2}} F_{n}(x)+\Delta_{n}\left(G_{2}\right)$

And find a $\mathbb{Q}(x)$-linear combination eliminating the term in $F_{n}(x)$:

$$
x^{2} \partial_{x}^{2}\left(F_{n}(x)\right)-2 x \partial_{x}\left(F_{n}(x)\right)+\left(x^{2}+2\right) F_{n}(x)=\Delta_{n}\left(x^{2} G_{2}-2 x G_{1}\right)
$$

which after summation gives

$$
x^{2} \partial_{x}^{2}(S)-2 x \partial_{x}(S)+\left(x^{2}+2\right) S=0
$$

1 For D-finite integrals: Bostan-Chyzak-Lairez-Salvy, van der Hoeven, Chen-Du-Kauers For sums: (D-finite) van der Hoeven, (P-finite) Chen-Du-Kauers

Algo 3: Pseudocode

$\stackrel{\ominus}{\circ} \overline{\prime \prime}$ Decompose derivatives $\partial_{x}^{i}\left(F_{n}(x)\right)$ modulo the image of Δ_{n}
Require: a D-finite function $F_{n}(x)$
Ensure: a telescoper L and its associated certificate G
1: for $i=0,1,2, \ldots$ do
2: Decompose $\partial_{x}^{i}(F)=R_{i} F+\Delta_{n}\left(G_{i}\right)$ with R_{i} "minimal"
3: if there is a $\mathbb{Q}(x)$-linear combination $\sum_{j \leq i} a_{j} R_{j}=0$ then
4: return $\sum_{j \leq i} a_{j} \partial^{j}, \sum_{j \leq i} a_{j} G_{j}$
5: end if
6: end for
The algorithm generalizes to functions F with more parameters

Reduction of derivatives modulo $\operatorname{Im}\left(\Delta_{n}\right)$

Recall the equations:

$$
\begin{aligned}
-2 x(2 n+1)(n+1)^{2} \partial_{x}\left(F_{n}\right)+n^{2} x^{2} F_{n+1}+(n+1)^{2}\left(8 n^{2}-x^{2}+4 n\right) F_{n} & =0 \\
n^{2}(n+1)(2 n+1) x^{2} F_{n+2}+(\ldots) F_{n+1}+x^{2}(n+1)(2 n+3)(n+2)^{2} F_{n} & =0
\end{aligned}
$$

Using these equations it is possible to decompose $\partial_{x}\left(F_{n}\right)$ as follow:

$$
\begin{aligned}
\partial_{x}\left(F_{n}\right)= & \frac{n^{2} x}{2(2 n+1)(n+1)^{2}} F_{n+1}+\frac{8 n^{2}-x^{2}+4 n}{2 x(2 n+1)} F_{n} \\
= & \left(\frac{(n-1)^{2} x}{2 n^{2}(2 n-1)}+\frac{8 n^{2}-x^{2}+4 n}{2 x(2 n+1)}\right) F_{n} \\
& +\Delta_{n}\left(\frac{(n-1)^{2} x}{2 n^{2}(2 n-1)} F_{n}\right)
\end{aligned}
$$

It is possible to further reduce the coefficient in front of F_{n} modulo $\operatorname{Im}\left(\Delta_{n}\right)$.

> Lagrange's identity
> $L(f)=\sum_{i=0}^{r} a^{i} S_{n}^{i}(f) \quad \longleftrightarrow \quad L^{*}(f)=\sum_{i=0}^{r} a_{i}(n-i) S_{n}^{-i}(f)$

Lagrange's identity (Barrett, Dristy 1960)
Let $u(n), v(n)$ be two sequences and $L \in \mathbb{Q}(n, x)\left\langle S_{n}\right\rangle$ then

$$
u L(v)-L^{*}(u) v=\Delta_{n}\left(P_{L}(u, v)\right)
$$

where P_{L} is linear in u and v.

$$
\begin{gathered}
\text { Lagrange's identity } \\
L(f)=\sum_{i=0}^{r} a^{i} S_{n}^{i}(f) \quad \longleftrightarrow \quad L^{*}(f)=\sum_{i=0}^{r} a_{i}(n-i) S_{n}^{-i}(f)
\end{gathered}
$$

Lagrange's identity (Barrett, Dristy 1960)
Let $u(n), v(n)$ be two sequences and $L \in \mathbb{Q}(n, x)\left\langle S_{n}\right\rangle$ then

$$
u L(v)-L^{*}(u) v=\Delta_{n}\left(P_{L}(u, v)\right)
$$

where P_{L} is linear in u and v.
Take $v=F, u \in \mathbb{Q}(n, x)$, and L minimal annihilating F, this identity gives

$$
L^{*}(u) F=\Delta_{n}\left(-P_{L}(u, F)\right)
$$

Computing modulo $\operatorname{Im}\left(\Delta_{n}\right) \Leftrightarrow$ computing modulo $\operatorname{Im}\left(L^{*}\right)$
For all $R \in \mathbb{Q}(n, x)$

$$
R F \in \operatorname{Im}\left(\Delta_{n}\right) \text { if and only if } R \in L^{*}(\mathbb{Q}(n, x))
$$

Reduction by a difference operator

$$
L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}
$$

We want to define a $\mathbb{Q}(x)$-linear map [.]: $\mathbb{Q}(n, x) \rightarrow \mathbb{Q}(n, x)$ such that for all $R \in \mathbb{Q}(n, x)$

- $[R]-R \in L^{*}(\mathbb{Q}(n, x))$
- $\left[L^{*}(R)\right]=0$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

* Concentrate the poles in the yellow area

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

+ : poles of $L^{*}(1 /(n-(1 / 2+i 3 / 2))$
Reduction step:

$$
R \leftarrow R-L^{*}\left(\frac{(\ldots)}{\left(n-(1 / 2+i 3 / 2)^{\square}\right.}\right)
$$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

+ : poles of $L^{*}(1 /(n-(-1 / 2+i 3 / 2))$
Reduction step:

$$
R \leftarrow R-L^{*}\left(\frac{(\ldots)}{\left(n-(-1 / 2+i 3 / 2)^{\square}\right.}\right)
$$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

+ : poles of $L^{*}(1 /(n-(-3 / 2-i 4 / 3))$
: not a pole of $L^{*}(1 /(n-(-3 / 2-i 4 / 3))$ because
$1 /\left(n-(-1 / 2+i 3 / 2)\right.$ is a singularity of p_{0}

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

+ : poles of $L^{*}\left(1 /\left(n-(-3 / 2-i 4 / 3)^{2}\right)\right.$
Reduction step:

$$
R \leftarrow R-L^{*}\left(\frac{(\ldots)}{\left(n-(-2 / 2+i 4 / 3)^{\square+1}\right.}\right)
$$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

+ : poles of $L^{*}(1 /(n-(-1 / 2-i 4 / 3))$
Reduction step:

$$
R \leftarrow R-L^{*}\left(\frac{(\ldots)}{\left(n-(-1 / 2-i 4 / 3)^{\square}\right.}\right)
$$

Reduction of poles

Assume $L^{*}=\sum_{i=0}^{r} p_{i}(n, x) S_{n}^{-i}$ has order $r=2$ and $R \in \mathbb{Q}(n, x)$ has all its poles in \mathbb{C} as a r.f. in n.

x : poles of R to be reduced by $\operatorname{Im}\left(L^{*}\right)$

+ : poles of $L^{*}(1 /(n-(-1 / 2-i 4 / 3))$

4. Is it enough? No!

Strong reduction of poles

Let $[.]_{w}$ be the reduction procedure described previously

x : poles of $L^{*}(1 /(n-\alpha)), \alpha$ root of $p_{0}(n)$ or $p_{r}(n-r)$ of order n_{α} not a pole because of a cancelation

$$
E=\operatorname{Vect}_{\mathbb{Q}(x)}\left\{\left[L^{*}\left(1 /(n-\alpha)^{i}\right)\right]_{w} \mid \alpha, i \leq n_{\alpha}\right\}
$$

Stong reduction: reduce $[R]_{w}$ modulo E

Reduction of polynomials

Similar (skipped)

Timing 1: (mostly) special functions

	HF-CT	HF-FCT	redctsum
21 easy examples	10.0 s	9.2 s	2.4 s
eq. (1)	99 s	50 s	1.2 s
eq. (2)	2138 s	44 s	13.8 s
eq. (3)	63 s	1.6 s	39 s
eq. (4)	4.5 s	1.4 s	61 s
eq. (5)	$>1 \mathrm{~h}$	$\left.3.2 \mathrm{~s} *^{*}\right)$	$>1 \mathrm{~h}$
eq. (6)	$>1 \mathrm{~h}$	$\left.108 \mathrm{~s} \mathrm{~N}^{*}\right)$	$>1 \mathrm{~h}$
eq. (7)	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$	1.2 s
$\sum_{j}\binom{m+x}{m-i+j} c_{n, j} \quad$ where $c_{n, j}$ satisfies recurrences of order 2			
$\sum_{n} C_{n}^{(k)}(x) C_{n}^{(k)}(y) \frac{u^{n}}{n!}$			
$\sum_{n} J_{n}(x) C_{n}^{k}(y) \frac{u^{n}}{n!}$			
$\sum_{n} \frac{(4 n+1)(2 n)!\sqrt{2 \pi}}{n!2^{2 n} \sqrt{x}} J_{2 n+1 / 2}(x) P_{2 n}(u)$			

Timing 1: (mostly) special functions

	HF-CT	HF-FCT	redctsum
easy examples	10.0 s	9.2 s	2.4 s
eq. (1)	99 s	50 s	1.2 s
eq. (2)	2138 s	44 s	13.8 s
eq. (3)	63 s	1.6 s	39 s
eq. (4)	4.5 s	1.4 s	61 s
eq. (5)	$>1 \mathrm{~h}$	$3.2 \mathrm{~s}\left(^{*}\right)$	$>1 \mathrm{~h}$
eq. (6)	$>1 \mathrm{~h}$	$108 \mathrm{~s}\left(^{*}\right)$	$>1 \mathrm{~h}$
eq. (7)	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$	1.2 s

$$
\begin{align*}
& \sum_{n} P_{n}(x) P_{n}(y) P_{n}(z) \tag{5}\\
& \sum_{k} \frac{(a+b+1)_{k}}{(a+1)_{k}(b+1)_{k}} J_{k}^{(a, b)}(x) J_{k}^{(a, b)}(y) \tag{6}\\
& \sum_{y} \frac{4 x+2}{(45 x+5 y+10 z+47)(45 x+5 y+10 z+2)(63 x-5 y+2 z+58)(63 x-5 y+2 z-5)} \tag{7}
\end{align*}
$$

Timing 2: Gillis-Reznick-Zeilberger sequence

$$
S_{r}=\sum_{k=0}^{n} \frac{(-1)^{k}(r n-(r-1) k)!(r!)^{k}}{(n-k)!r k!}
$$

Telescoper of order r and degree $r(r-1) / 2$

	HF-CT	HF-FCT	redctsum
S_{6}	11 s	64 s	0.4 s
S_{7}	32 s	331 s	0.9 s
S_{8}	106 s	1044 s	2 s
S_{9}	325 s	3341 s	5 s
S_{10}	1035 s	$>1 \mathrm{~h}$	8 s

Links

arxiv link: https://arxiv.org/abs/2307.07216
github link: https://github.com/HBrochet/CreativeTelescoping

