Reduction Based Creative Telescoping for Definite Summation of P-recursive Sequences:

the integral basis approach

Lixin Du
Institute for Algebra
Johannes Kepler University Linz

July 17-21, 2023
ACA 2023, Warsaw, Poland

Joint work with Shaoshi Chen, Manuel Kauers and Rong-Hua Wang

Symbolic summation

Summability Problem. Given a sequence $f(n)$ in certain class A, find a sequence $g(n)$ in A such that

$$
g(n)=\sum_{0 \leq k<n} f(k)
$$

Symbolic summation

Summability Problem. Given a sequence $f(n)$ in certain class A, find a sequence $g(n)$ in A such that

$$
g(n)=\sum_{0 \leq k<n} f(k) \Leftrightarrow f(n)=g(n+1)-g(n) .
$$

If such a g exists, we say f is summable in A.

Symbolic summation

Summability Problem. Given a sequence $f(n)$ in certain class A, find a sequence $g(n)$ in A such that

$$
g(n)=\sum_{0 \leq k<n} f(k) \quad \Leftrightarrow \quad f(n)=g(n+1)-g(n) .
$$

If such a g exists, we say f is summable in A.
Examples.

$$
\begin{aligned}
\sum_{0 \leq k<n} k=\frac{n(n-1)}{2}, & \sum_{0 \leq k<n} k^{2}=\frac{n(n-1)(2 n-1)}{6} \\
\sum_{1 \leq k \leq n} \frac{1}{k(k+1)}=\frac{n}{n+1}, & \sum_{0 \leq k \leq n} \frac{\binom{2 k}{k}^{2}}{(k+1) 4^{2 k}}=\frac{(n+1)\binom{2 n+2}{n+1}^{2}}{4^{2 n+1}}
\end{aligned}
$$

Symbolic summation

Summability Problem. Given a sequence $f(n)$ in certain class A, find a sequence $g(n)$ in A such that

$$
g(n)=\sum_{0 \leq k<n} f(k) \Leftrightarrow f(n)=g(n+1)-g(n) .
$$

If such a g exists, we say f is summable in A.
Notation. $S_{k}(f(k))=f(k+1), \quad \Delta_{k}(f)=S_{k}(f)-f$

Symbolic summation

Summability Problem. Given a sequence $f(n)$ in certain class A, find a sequence $g(n)$ in A such that

$$
g(n)=\sum_{0 \leq k<n} f(k) \Leftrightarrow f(n)=g(n+1)-g(n) .
$$

If such a g exists, we say f is summable in A.
Notation. $S_{k}(f(k))=f(k+1), \quad \Delta_{k}(f)=S_{k}(f)-f$
Additive Decomposition Problem. Given $f \in A$, compute $g, r \in A$ s.t.

$$
f=\Delta_{k}(g)+r
$$

with the following two properties:

- (minimality) r is minimal in some sense,
- (summability) f is summable in $A \Leftrightarrow r=0$.

Creative telescoping

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L\left(n, S_{n}\right)$ s.t.

$$
L\left(n, S_{n}\right)(f)=\Delta_{k}(g)
$$

Creative telescoping

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L\left(n, S_{n}\right)$ s.t.

$$
\underbrace{L\left(n, S_{n}\right)}_{\begin{array}{c}
\downarrow \\
\text { telescoper }
\end{array}}(f)=\Delta_{k}(\quad g)
$$

Creative telescoping

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L\left(n, S_{n}\right)$ s.t.

Creative telescoping

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L\left(n, S_{n}\right)$ s.t.

Example. Let $f(n, k)=\binom{n}{k}$. Then f has a telescoper:

$$
L=S_{n}-2 \quad \text { and } \quad g=\frac{k\binom{n}{k}}{k-n-1}
$$

Proving Identities.

$$
\sum_{0 \leq k \leq n}\binom{n}{k}=2^{n}, \quad \sum_{0 \leq k \leq n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Reduction-based Creative Telesuping
2010: Bostan, Chen . Chyzak, Li_{i}
2015: Chen, Huang, Kauers, Li
2016: Chen. Kavers, Koutschan
2018: - Bostan, Chyzak, Lairez, Salvy

- van der Hoeven

2023: Chen. Dn, Kaners

Integral Bases

Rational summation: Abramov's algorithm

Summability Problem. Given $f \in C(k)$, decide whether

$$
f=\Delta_{k}(g) \quad \text { for some } g \in C(k)
$$

If g exists, f is said to be summable in $C(k)$.

Rational summation: Abramov's algorithm

Summability Problem. Given $f \in C(k)$, decide whether

$$
f=\Delta_{k}(g) \quad \text { for some } g \in C(k) .
$$

If g exists, f is said to be summable in $C(k)$.

Definition. For $p \in C[k]$, the dispersion of p in k is

$$
\begin{aligned}
\operatorname{disp}_{k}(p) & =\max \{i \in \mathbb{Z} \mid \operatorname{gcd}(p(k), p(k+i)) \neq 1\} \\
& =\max \{i \in \mathbb{Z} \mid \exists \alpha \in \bar{C} \text { s.t. } p(\alpha)=p(\alpha+i)=0\}
\end{aligned}
$$

Example. Let $p=k(k+3)(k-\sqrt{2})(k+\sqrt{2})$. Then $\operatorname{disp}_{k}(p)=3$.
Definition. $p \in C[k]$ is shift-free in k if $\operatorname{disp}_{k}(p)=0$.

Rational summation: Abramov's algorithm

Summability Problem. Given $f \in C(k)$, decide whether

$$
f=\Delta_{k}(g) \quad \text { for some } g \in C(k)
$$

If g exists, f is said to be summable in $C(k)$.

Additive Decomposition. Let $f \in C(k)$. Then

$$
f=\Delta_{k}(g)+\frac{a}{b},
$$

where $g \in C(k)$ and $a, b \in C[k]$ with $\operatorname{deg}_{k}(a)<\operatorname{deg}_{k}(b)$ and b being shift-free in k. Moreover
f is summable in $C(k) \Leftrightarrow a=0$

Hypergeometric summation

Definition. $H(k)$ is hypergeometric over $C(k)$ if

$$
\frac{H(k+1)}{H(k)} \triangleq \frac{S_{k}(H)}{H} \in C(k) .
$$

Examples.

$$
1 /(1+k), \quad 2^{k}, \quad k!, \quad \Gamma(2 k+1), \ldots
$$

Summability Problem. For a hypergeom. $H(k)$, decide whether

$$
H=\Delta_{k}(G) \quad \text { for hypergeom. } G \text { over } \mathbb{F}(k) .
$$

If G exists, H is said to be hypergeom. summable.

Hypergeometric summation

Let T be hypergeometric w.r.t. k with $f=S_{k}(T) / T \in C(k)$.

$$
f=\frac{S_{k}(r)}{r} \cdot K \quad \text { ぃ } \quad T=r \cdot H \quad \text { with } \frac{S_{k}(H)}{H}=K,
$$

where $K=m / e$ satisfies $\operatorname{gcd}\left(m, S_{k}^{i}(e)\right)=1$ for all $i \in \mathbb{Z}$.

Hypergeometric summation

Let T be hypergeometric w.r.t. k with $f=S_{k}(T) / T \in C(k)$.

$$
f=\frac{S_{k}(r)}{r} \cdot K \quad \text { m } \quad T=r \cdot H \quad \text { with } \frac{S_{k}(H)}{H}=K,
$$

where $K=m / e$ satisfies $\operatorname{gcd}\left(m, S_{k}^{i}(e)\right)=1$ for all $i \in \mathbb{Z}$.
Modified Abramov-Petkovšek's Reduction (CHKL 2015):

$$
T=\Delta_{k}(\cdots)+\left(\frac{p}{d}+\frac{q}{e}\right) \cdot H
$$

where $p, q, d \in C[k]$ with $\operatorname{deg}_{k}(p)<\operatorname{deg}_{k}(d), d$ shift-free, strongly prime with K and q in a f.d. vector space N_{K} over C.

Proposition.

$$
T=\Delta_{k}\left(T^{\prime}\right) \quad \Leftrightarrow \quad p=q=0
$$

P-recursive sequences

Definition. A sequence $f(n)$ is called P -recursive over $C[n]$ if

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0
$$

where $p_{r} \ldots, p_{0} \in C[n]$ (not all zero).

P-recursive sequences

Definition. A sequence $f(n)$ is called P -recursive over $C[n]$ if

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0
$$

where $p_{r} \ldots, p_{0} \in C[n]$ (not all zero).

Examples. The harmonic sequence $f(n):=\sum_{k=1}^{n} \frac{1}{k}$ satisfying

$$
(n+2) f(n+2)-(2 n+3) f(n+1)+(n+1) f(n)=0
$$

P-recursive sequences

Definition. A sequence $f(n)$ is called P -recursive over $C[n]$ if

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0
$$

where $p_{r} \ldots, p_{0} \in C[n]$ (not all zero).
Setting.

- $L=p_{r}(n) S^{r}+\cdots+p_{1}(n) S+p_{0}(n) \in C[n][S]$ with $p_{r} p_{0} \neq 0$.
- $A=C(n)[S] /\langle L\rangle, S n=(n+1) S$.
- $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1=L=0$ in A.

P-recursive sequences

Definition. A sequence $f(n)$ is called P -recursive over $C[n]$ if

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0
$$

where $p_{r} \ldots, p_{0} \in C[n]$ (not all zero).
Setting.

- $L=p_{r}(n) S^{r}+\cdots+p_{1}(n) S+p_{0}(n) \in C[n][S]$ with $p_{r} p_{0} \neq 0$.
- $A=C(n)[S] /\langle L\rangle, S n=(n+1) S$.
- $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1=L=0$ in A.

Summability Problem. For $f \in A$, decide whether

$$
f=S(g)-g \triangleq \Delta_{n}(g) \quad \text { for some } \quad g \in A .
$$

If g exists, f is said to be summable in A.

Integral bases: three cases

Algebraic case

- $A=C(x)[y] /\langle m\rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff its minimal polynomial is monic. (e.g. \sqrt{x})
- The integral elements of A form a free $C[x]$-module.
- Computation: van Hoeij 1994, etc.

Integral bases: three cases

Algebraic case

- $A=C(x)[y] /\langle m\rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff its minimal polynomial is monic. (e.g. \sqrt{x})
- The integral elements of A form a free $C[x]$-module.
- Computation: van Hoeij 1994, etc.

D-finite case

- $A=C(x)[D] /\langle L\rangle, D x=x D+1$, where $L \in C(x)[D]$.
- The integral elements of A form a free $C[x]$-module.
- Computation: Kauers-Koutschan 2015, Aldossari 2020.

Integral bases: three cases

Algebraic case

- $A=C(x)[y] /\langle m\rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff its minimal polynomial is monic. (e.g. \sqrt{x})
- The integral elements of A form a free $C[x]$-module.
- Computation: van Hoeij 1994, etc.

D-finite case

- $A=C(x)[D] /\langle L\rangle, D x=x D+1$, where $L \in C(x)[D]$.
- The integral elements of A form a free $C[x]$-module.
- Computation: Kauers-Koutschan 2015, Aldossari 2020.

P-recursive case

- $A=C(n)[S] /\langle L\rangle, S n=(n+1) S$, where $L \in C(n)[S]$
- The integral elements of V at z form a free $C(n)_{n-z}$-module.
- Computation: Chen-Du-Kauers-Verron 2020.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Theorem (Chen-Du-Kauers-Wang 2023+). A suitable basis always exists and can be computed via integral bases.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Example 1. Let $L=n^{2}(n+2) S-(n+1)^{4} \in \mathbb{C}(n)[S]$ with one solution $y=\frac{n^{2} n!}{n+1}$.

For $U=\{1\}$,

$$
S U=\underbrace{\frac{1}{n^{2}(n+2)}}_{1 / e} \underbrace{(n+1)^{4}}_{M} U
$$

Then U is not a suitable basis since e has two roots $-2,0$ in \mathbb{Z}.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Example 1. Let $L=n^{2}(n+2) S-(n+1)^{4} \in \mathbb{C}(n)[S]$ with one solution $y=\frac{n^{2} n!}{n+1}$.

For $U=\{1\}$,

$$
S U=\underbrace{\frac{1}{n^{2}(n+2)}}_{1 / e} \underbrace{(n+1)^{4}}_{M} U
$$

Fact. U is an integral basis at $(-\infty,-2] \cap \mathbb{Z}$.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Example 1. Let $L=n^{2}(n+2) S-(n+1)^{4} \in \mathbb{C}(n)[S]$ with one solution $y=\frac{n^{2} n!}{n+1}$.

An integral basis at $\{-1,0\}$ is $W=\left\{(n+1) n^{-3}\right\}$.

$$
S W=n W
$$

Then W is a suitable basis since $e=1$ is shift-free.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Example 1. Let $L=n^{2}(n+2) S-(n+1)^{4} \in \mathbb{C}(n)[S]$ with one solution $y=\frac{n^{2} n!}{n+1}$.

$$
\begin{array}{lllllllll}
\cdots & -3 & -2 & -1 & 0 & 1 & \cdots & \beta & \cdots
\end{array} \quad \mathbb{Z} \text { orbit }
$$

An integral basis at $\{-1,0, \ldots, \beta\}$ is $W=\left\{(n+1) \prod_{i=0}^{\beta}(n-i)^{-3}\right\}$.

$$
S W=(n-\beta) W
$$

Then W is a suitable basis since $e=1$ is shift-free.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Example 2. Let $L=(n+2)(n+3) S^{2}-2(n+2) S+1 \in \mathbb{C}(n)[S]$ with two solutions $y_{1}=\frac{1}{n!}$ and $y_{2}=\frac{1}{(n+1)!}$.

Suitable bases

Let W be a $C(x)$-vector space basis of $A=C(n)[S] /\langle L\rangle$. Then

$$
S W=\frac{1}{e} M W, \quad \text { where } \quad e \in C[n], M \in C[n]^{r \times r}
$$

Definition. W is called a suitable basis if e is shift-free.
Example 2. Let $L=(n+2)(n+3) S^{2}-2(n+2) S+1 \in \mathbb{C}(n)[S]$ with two solutions $y_{1}=\frac{1}{n!}$ and $y_{2}=\frac{1}{(n+1)!}$.

$$
\cdots-4-3-2-1 \quad 0 \quad 1 \quad \cdots \quad \begin{array}{lllll}
\cdots & & \cdots & \\
\cdots & \text { orbit }
\end{array}
$$

An integral basis at $\{-2\}$ is $W=\{1,(n+2) S\}$, which is suitable:

$$
S\binom{1}{(n+2) S}=\underbrace{\frac{1}{(n+2)}}_{1 / e} \underbrace{\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)}_{M}\binom{1}{(n+2) S}
$$

Reduce the dispersion

Let W be a $C(x)$-vector space basis:

$$
S W=\frac{1}{e} M W
$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A=C(n)[S] /\langle L\rangle$ such that for any $f \in A$,

$$
f=\Delta_{n}(g)+\frac{1}{d} P W+\frac{1}{e} R W,
$$

where $g \in A, d \in C[n]$ and $P, R \in C[n]^{r}$ satisfying

Reduce the dispersion

Let W be a $C(x)$-vector space basis:

$$
S W=\frac{1}{e} M W
$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A=C(n)[S] /\langle L\rangle$ such that for any $f \in A$,

$$
f=\Delta_{n}(g)+\frac{1}{d} P W+\frac{1}{e} R W,
$$

where $g \in A, d \in C[n]$ and $P, R \in C[n]^{r}$ satisfying

- de is shift-free and $\operatorname{deg}_{n}(P)<\operatorname{deg}_{n}(d)$;
- $f=\Delta_{n}(h) \Rightarrow P=0$ and $h=b W$ with $b \in C[n]^{r}$.

Reduce the dispersion

Let W be a $C(x)$-vector space basis:

$$
S W=\frac{1}{e} M W
$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A=C(n)[S] /\langle L\rangle$ such that for any $f \in A$,

$$
f=\Delta_{n}(g)+\frac{1}{d} P W+\frac{1}{e} R W,
$$

where $g \in A, d \in C[n]$ and $P, R \in C[n]^{r}$ satisfying

- de is shift-free and $\operatorname{deg}_{n}(P)<\operatorname{deg}_{n}(d)$;
- $f=\Delta_{n}(h) \Rightarrow P=0$ and $h=b W$ with $b \in C[n]^{r}$.

Reduce the dispersion

Let W be a $C(x)$-vector space basis:

$$
S W=\frac{1}{e} M W
$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A=C(n)[S] /\langle L\rangle$ such that for any $f \in A$,

$$
f=\Delta_{n}(g)+\frac{1}{d} P W+\frac{1}{e} R W,
$$

Example. Let $L=(n+2)(n+3) S^{2}-2(n+2) S+1 \in \mathbb{C}(n)[S]$ and $W=\{1,(n+2) S\}$. For $f=\frac{1}{(n+1)(n+2)}+\frac{n}{n+1} S$,

$$
f=\Delta_{n}(\underbrace{\frac{(-1,1)}{n+1} W}_{g})+\underbrace{\frac{1}{(n+2)^{2}}}_{1 / d} \underbrace{(1,-1)}_{P} W+\underbrace{\frac{1}{(n+2)}}_{1 / e} \underbrace{(-1,2)}_{R} W .
$$

Then f is not summable because $P \neq 0$.

Additive decomposition

Let W, V be two $C(x)$-vector space bases:

$$
S W=\frac{1}{e} M W \quad \text { and } \quad \Delta_{n} V=\frac{1}{a} B V
$$

Additive decomposition

Let W, V be two $C(x)$-vector space bases:

$$
S W=\frac{1}{e} M W \quad \text { and } \quad \Delta_{n} V=\frac{1}{a} B V
$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exist a suitable basis W and an integral basis at infinity V such that for any $f \in A$,

$$
f=\Delta_{n}(g)+\frac{1}{d} P W+\frac{1}{a} Q V,
$$

where $g \in A, d \in C[n], P \in C[n]^{r}, Q \in C\left[n, n^{-1}\right]^{r}$ satisfying

- de is shift-free and $\operatorname{deg}_{n}(P)<\operatorname{deg}_{n}(d)$;
- $Q \in N_{V}$, a finite-dimensional C-vector space;
- f is summable in $A \Leftrightarrow P=Q=0$.

Additive decomposition

Let W, V be two $C(x)$-vector space bases:

$$
S W=\frac{1}{e} M W \quad \text { and } \quad \Delta_{n} V=\frac{1}{a} B V
$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exist a suitable basis W and an integral basis at infinity V such that for any $f \in A$,

$$
f=\Delta_{n}(g)+\frac{1}{d} P W+\frac{1}{a} Q V,
$$

where $g \in A, d \in C[n], P \in C[n]^{r}, Q \in C\left[n, n^{-1}\right]^{r}$ satisfying

- de is shift-free and $\operatorname{deg}_{n}(P)<\operatorname{deg}_{n}(d)$;
- $Q \in N_{V}$, a finite-dimensional C-vector space;
- f is summable in $A \Leftrightarrow P=Q=0$.

Creative telescoping. For $f \in A=C(k, n)\left[S_{k}, S_{n}\right] / I$, find a nonzero $T \in C(k)\left[S_{k}\right]$ and $g \in A$ such that $T\left(k, S_{k}\right)(f)=\Delta_{n}(g)$.

Summary

Main results.

- reduction for univariate P -recursive sequences
- telescoping algorithm for bivariate P -recursive sequences

New tools.

- find a suitable basis to reduce the dispersion
- find an integral basis at infinity to reduce the degree

Summary

Main results.

- reduction for univariate P -recursive sequences
- telescoping algorithm for bivariate P -recursive sequences

New tools.

- find a suitable basis to reduce the dispersion
- find an integral basis at infinity to reduce the degree

Thank you!

