Reduction Based Creative Telescoping for Definite Summation of P-recursive Sequences: the integral basis approach

Lixin Du

Institute for Algebra Johannes Kepler University Linz

July 17-21, 2023 ACA 2023, Warsaw, Poland

Joint work with Shaoshi Chen, Manuel Kauers and Rong-Hua Wang

Summability Problem. Given a sequence f(n) in certain class A, find a sequence g(n) in A such that

$$g(n) = \sum_{0 \le k < n} f(k)$$

Summability Problem. Given a sequence f(n) in certain class A, find a sequence g(n) in A such that

$$g(n) = \sum_{0 \le k < n} f(k) \quad \Leftrightarrow \quad f(n) = g(n+1) - g(n).$$

If such a g exists, we say f is summable in A.

Summability Problem. Given a sequence f(n) in certain class A, find a sequence g(n) in A such that

$$g(n) = \sum_{0 \le k < n} f(k) \quad \Leftrightarrow \quad f(n) = g(n+1) - g(n).$$

If such a g exists, we say f is summable in A.

Examples.

Summability Problem. Given a sequence f(n) in certain class A, find a sequence g(n) in A such that

$$g(n) = \sum_{0 \le k < n} f(k) \quad \Leftrightarrow \quad f(n) = g(n+1) - g(n).$$

If such a g exists, we say f is summable in A.

Notation.
$$S_k(f(k)) = f(k+1), \quad \Delta_k(f) = S_k(f) - f$$

Summability Problem. Given a sequence f(n) in certain class A, find a sequence g(n) in A such that

$$g(n) = \sum_{0 \le k < n} f(k) \quad \Leftrightarrow \quad f(n) = g(n+1) - g(n).$$

If such a g exists, we say f is summable in A.

Notation.
$$S_k(f(k)) = f(k+1), \quad \Delta_k(f) = S_k(f) - f$$

Additive Decomposition Problem. Given $f \in A$, compute $g, r \in A$ s.t.

$$f = \Delta_k(g) + r$$

with the following two properties:

- (minimality) r is minimal in some sense,
- (summability) f is summable in $A \Leftrightarrow r = 0$.

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L(n,S_n)$ s.t.

 $L(n, \mathbf{S}_n)(f) = \Delta_k(g)$

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L(n,S_n)$ s.t.

$$\underbrace{L(n,S_n)}_{\downarrow}(f) = \Delta_k(g)$$

telescoper

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L(n,S_n)$ s.t.

Creative Telescoping Problem. If $f \in A$ depends on n and k, find $g \in A$ and a nonzero linear recurrence operator $L(n,S_n)$ s.t.

Example. Let $f(n,k) = {n \choose k}$. Then f has a telescoper:

$$L = S_n - 2$$
 and $g = \frac{k\binom{n}{k}}{k - n - 1}$

Proving Identities.

$$\sum_{0 \le k \le n} \binom{n}{k} = 2^n, \qquad \sum_{0 \le k \le n} \binom{n}{k}^2 = \binom{2n}{n}$$

Rational summation: Abramov's algorithm

Summability Problem. Given $f \in C(k)$, decide whether

 $f = \Delta_k(g)$ for some $g \in C(k)$.

If g exists, f is said to be summable in C(k).

Rational summation: Abramov's algorithm

Summability Problem. Given $f \in C(k)$, decide whether

 $f = \Delta_k(g)$ for some $g \in C(k)$.

If g exists, f is said to be summable in C(k).

Definition. For $p \in C[k]$, the dispersion of p in k is

$$disp_k(p) = \max\{i \in \mathbb{Z} \mid gcd(p(k), p(k+i)) \neq 1\}$$

= max{ $i \in \mathbb{Z} \mid \exists \alpha \in \overline{C} \text{ s.t. } p(\alpha) = p(\alpha+i) = 0$ }

Example. Let $p = k(k+3)(k-\sqrt{2})(k+\sqrt{2})$. Then disp_k(p) = 3. Definition. $p \in C[k]$ is shift-free in k if disp_k(p) = 0.

Rational summation: Abramov's algorithm

Summability Problem. Given $f \in C(k)$, decide whether

 $f = \Delta_k(g)$ for some $g \in C(k)$.

If g exists, f is said to be summable in C(k).

Additive Decomposition. Let $f \in C(k)$. Then

 $f = \Delta_k(g) + \frac{a}{b},$

where $g \in C(k)$ and $a, b \in C[k]$ with $\deg_k(a) < \deg_k(b)$ and b being shift-free in k. Moreover

f is summable in $C(k) \Leftrightarrow a = 0$

Hypergeometric summation

Definition. H(k) is hypergeometric over C(k) if

$$\frac{H(k+1)}{H(k)} \triangleq \frac{S_k(H)}{H} \in C(k).$$

Examples.

$$1/(1+k), 2^k, k!, \Gamma(2k+1), \dots$$

Summability Problem. For a hypergeom. H(k), decide whether

 $H = \Delta_k(G)$ for hypergeom. *G* over $\mathbb{F}(k)$.

If G exists, H is said to be hypergeom. summable.

Hypergeometric summation

Let T be hypergeometric w.r.t. k with $f = S_k(T)/T \in C(k)$.

$$f = \frac{S_k(r)}{r} \cdot \mathbf{K} \quad \iff \quad T = r \cdot H \quad \text{with } \frac{S_k(H)}{H} = K,$$

where K = m/e satisfies $gcd(m, S_k^i(e)) = 1$ for all $i \in \mathbb{Z}$.

Hypergeometric summation

Let T be hypergeometric w.r.t. k with $f = S_k(T)/T \in C(k)$.

$$f = \frac{S_k(r)}{r} \cdot \mathbf{K} \quad \iff \quad T = r \cdot H \quad \text{with } \frac{S_k(H)}{H} = K,$$

where K = m/e satisfies $gcd(m, S_k^i(e)) = 1$ for all $i \in \mathbb{Z}$.

Modified Abramov-Petkovšek's Reduction (CHKL 2015):

$$T = \Delta_k(\cdots) + \left(\frac{p}{d} + \frac{q}{e}\right) \cdot H,$$

where $p,q,d \in C[k]$ with $\deg_k(p) < \deg_k(d)$, d shift-free, strongly prime with K and q in a f.d. vector space N_K over C.

Proposition.

$$T = \Delta_k(T') \quad \Leftrightarrow \quad p = q = 0$$

Definition. A sequence f(n) is called P-recursive over C[n] if

$$p_r(n) f(n+r) + \dots + p_1(n) f(n+1) + p_0(n) f(n) = 0,$$

where $p_r \dots, p_0 \in C[n]$ (not all zero).

Definition. A sequence f(n) is called P-recursive over C[n] if

$$p_r(n) f(n+r) + \dots + p_1(n) f(n+1) + p_0(n) f(n) = 0,$$

where $p_r \dots, p_0 \in C[n]$ (not all zero).

Examples. The harmonic sequence $f(n) := \sum_{k=1}^{n} \frac{1}{k}$ satisfying

$$(n+2) f(n+2) - (2n+3) f(n+1) + (n+1) f(n) = 0$$

Definition. A sequence f(n) is called P-recursive over C[n] if

$$p_r(n) f(n+r) + \dots + p_1(n) f(n+1) + p_0(n) f(n) = 0,$$

where $p_r \dots, p_0 \in C[n]$ (not all zero).

Setting.

▶ $L = p_r(n)S^r + \dots + p_1(n)S + p_0(n) \in C[n][S]$ with $p_r p_0 \neq 0$.

•
$$A = C(n)[S]/\langle L \rangle$$
, $Sn = (n+1)S$

▶ $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1 = L = 0$ in A.

Definition. A sequence f(n) is called P-recursive over C[n] if

$$p_r(n) f(n+r) + \dots + p_1(n) f(n+1) + p_0(n) f(n) = 0,$$

where $p_r \dots, p_0 \in C[n]$ (not all zero).

Setting.

- $L = p_r(n)S^r + \dots + p_1(n)S + p_0(n) \in C[n][S]$ with $p_r p_0 \neq 0$.
- $A = C(n)[S]/\langle L \rangle$, Sn = (n+1)S.
- ▶ $1 \in A$ represents a solution y of L. Indeed, $L \cdot 1 = L = 0$ in A.

Summability Problem. For $f \in A$, decide whether

$$f = S(g) - g \triangleq \Delta_n(g)$$
 for some $g \in A$.

If g exists, f is said to be summable in A.

Integral bases: three cases

Algebraic case

- $A = C(x)[y]/\langle m \rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff its minimal polynomial is monic. (e.g. \sqrt{x})
- The integral elements of A form a free C[x]-module.
- Computation: van Hoeij 1994, etc.

Integral bases: three cases

Algebraic case

- $A = C(x)[y]/\langle m \rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff its minimal polynomial is monic. (e.g. \sqrt{x})
- The integral elements of A form a free C[x]-module.
- Computation: van Hoeij 1994, etc.

D-finite case

- $A = C(x)[D]/\langle L \rangle$, Dx = xD + 1, where $L \in C(x)[D]$.
- The integral elements of A form a free C[x]-module.
- Computation: Kauers-Koutschan 2015, Aldossari 2020.

Integral bases: three cases

Algebraic case

- $A = C(x)[y]/\langle m \rangle$, where $m \in C(x)[y]$ is irreducible
- $f \in A$ is integral iff its minimal polynomial is monic. (e.g. \sqrt{x})
- The integral elements of A form a free C[x]-module.
- Computation: van Hoeij 1994, etc.

D-finite case

- $A = C(x)[D]/\langle L \rangle$, Dx = xD + 1, where $L \in C(x)[D]$.
- The integral elements of A form a free C[x]-module.
- Computation: Kauers-Koutschan 2015, Aldossari 2020.

P-recursive case

- $A = C(n)[S]/\langle L \rangle$, Sn = (n+1)S, where $L \in C(n)[S]$
- The integral elements of V at z form a free $C(n)_{n-z}$ -module.
- Computation: Chen-Du-Kauers-Verron 2020.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then $SW = \frac{1}{e}MW$, where $e \in C[n], M \in C[n]^{r \times r}$

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then $SW = \frac{1}{e}MW$, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Theorem (Chen-Du-Kauers-Wang 2023+). A suitable basis always exists and can be computed via integral bases.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let $L = n^2(n+2)S - (n+1)^4 \in \mathbb{C}(n)[S]$ with one solution $y = \frac{n^2 n!}{n+1}$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad \cdots \quad \beta \quad \cdots \quad \mathbb{Z}$ orbit For $U = \{1\}$, $SU = \underbrace{\frac{1}{n^2(n+2)}}_{1/e} \underbrace{(n+1)^4}_M U$

Then U is not a suitable basis since e has two roots -2, 0 in \mathbb{Z} .

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let $L = n^2(n+2)S - (n+1)^4 \in \mathbb{C}(n)[S]$ with one solution $y = \frac{n^2 n!}{n+1}$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad \cdots \quad \beta \quad \cdots \quad \mathbb{Z}$ orbit For $U = \{1\}$, $SU = \underbrace{\frac{1}{n^2(n+2)}}_{1/e} \underbrace{(n+1)^4}_M U$

Fact. U is an integral basis at $(-\infty, -2] \cap \mathbb{Z}$.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

1

Example 1. Let $L = n^2(n+2)S - (n+1)^4 \in \mathbb{C}(n)[S]$ with one solution $y = \frac{n^2 n!}{n+1}$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad \cdots \quad \beta \quad \cdots \quad \mathbb{Z}$ orbit

An integral basis at $\{-1,0\}$ is $W = \{(n+1)n^{-3}\}$.

SW = nW

Then W is a suitable basis since e = 1 is shift-free.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let $L = n^2(n+2)S - (n+1)^4 \in \mathbb{C}(n)[S]$ with one solution $y = \frac{n^2 n!}{n+1}$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad \cdots \quad \beta \quad \cdots \quad \mathbb{Z}$ orbit

An integral basis at $\{-1, 0, \dots, \beta\}$ is $W = \{(n+1) \prod_{i=0}^{\beta} (n-i)^{-3}\}$.

 $SW = (n - \beta)W$

Then W is a suitable basis since e = 1 is shift-free.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Example 2. Let $L = (n+2)(n+3)S^2 - 2(n+2)S + 1 \in \mathbb{C}(n)[S]$ with two solutions $y_1 = \frac{1}{n!}$ and $y_2 = \frac{1}{(n+1)!}$.

Let W be a C(x)-vector space basis of $A = C(n)[S]/\langle L \rangle$. Then

$$SW = \frac{1}{e}MW$$
, where $e \in C[n], M \in C[n]^{r \times r}$

Definition. W is called a suitable basis if e is shift-free.

Example 2. Let $L = (n+2)(n+3)S^2 - 2(n+2)S + 1 \in \mathbb{C}(n)[S]$ with two solutions $y_1 = \frac{1}{n!}$ and $y_2 = \frac{1}{(n+1)!}$.

An integral basis at $\{-2\}$ is $W = \{1, (n+2)S\}$, which is suitable:

$$S\begin{pmatrix}1\\(n+2)S\end{pmatrix} = \underbrace{\frac{1}{(n+2)}}_{1/e} \underbrace{\begin{pmatrix}0 & 1\\-1 & 2\end{pmatrix}}_{M} \begin{pmatrix}1\\(n+2)S\end{pmatrix}$$

Let *W* be a C(x)-vector space basis:

$$SW = \frac{1}{e}MW$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A = C(n)[S]/\langle L \rangle$ such that for any $f \in A$,

$$f = \Delta_n(g) + \frac{1}{d}PW + \frac{1}{e}RW,$$

where $g \in A$, $d \in C[n]$ and $P, R \in C[n]^r$ satisfying

Let *W* be a C(x)-vector space basis:

$$SW = \frac{1}{e}MW$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A = C(n)[S]/\langle L \rangle$ such that for any $f \in A$,

$$f = \Delta_n(g) + \frac{1}{d}PW + \frac{1}{e}RW,$$

where $g \in A$, $d \in C[n]$ and $P, R \in C[n]^r$ satisfying

- *de* is shift-free and $\deg_n(P) < \deg_n(d)$;
- $f = \Delta_n(h) \Rightarrow P = 0$ and h = bW with $b \in C[n]^r$.

Let *W* be a C(x)-vector space basis:

$$SW = \frac{1}{e}MW$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A = C(n)[S]/\langle L \rangle$ such that for any $f \in A$,

$$f = \Delta_n(g) + \frac{1}{d}PW + \frac{1}{e}RW,$$

where $g \in A$, $d \in C[n]$ and $P, R \in C[n]^r$ satisfying

- *de* is shift-free and $\deg_n(P) < \deg_n(d)$;
- $f = \Delta_n(h) \Rightarrow P = 0$ and h = bW with $b \in C[n]^r$.

Let *W* be a C(x)-vector space basis:

$$SW = \frac{1}{e}MW$$

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable basis W of $A = C(n)[S]/\langle L \rangle$ such that for any $f \in A$,

$$f = \Delta_n(g) + \frac{1}{d}PW + \frac{1}{e}RW,$$

Example. Let $L = (n+2)(n+3)S^2 - 2(n+2)S + 1 \in \mathbb{C}(n)[S]$ and $W = \{1, (n+2)S\}$. For $f = \frac{1}{(n+1)(n+2)} + \frac{n}{n+1}S$,

Then f is not summable because $P \neq 0$.

Additive decomposition

Let W, V be two C(x)-vector space bases:

$$SW = \frac{1}{e}MW$$
 and $\Delta_n V = \frac{1}{a}BV$

Additive decomposition

Let W, V be two C(x)-vector space bases:

$$SW = rac{1}{e}MW$$
 and $\Delta_n V = rac{1}{a}BV$

Theorem (Chen-Du-Kauers-Wang 2023+). There exist a suitable basis W and an integral basis at infinity V such that for any $f \in A$,

$$f = \Delta_n(g) + \frac{1}{d}PW + \frac{1}{a}QV,$$

where $g \in A$, $d \in C[n]$, $P \in C[n]^r$, $Q \in C[n, n^{-1}]^r$ satisfying

- ▶ de is shift-free and deg_n(P) < deg_n(d);
- $Q \in N_V$, a finite-dimensional *C*-vector space;
- f is summable in $A \Leftrightarrow P = Q = 0$.

Additive decomposition

Let W, V be two C(x)-vector space bases:

$$SW = rac{1}{e}MW$$
 and $\Delta_n V = rac{1}{a}BV$

Theorem (Chen-Du-Kauers-Wang 2023+). There exist a suitable basis W and an integral basis at infinity V such that for any $f \in A$,

$$f = \Delta_n(g) + \frac{1}{d}PW + \frac{1}{a}QV,$$

where $g \in A$, $d \in C[n]$, $P \in C[n]^r$, $Q \in C[n, n^{-1}]^r$ satisfying

- ▶ de is shift-free and deg_n(P) < deg_n(d);
- $Q \in N_V$, a finite-dimensional *C*-vector space;
- f is summable in $A \Leftrightarrow P = Q = 0$.

Creative telescoping. For $f \in A = C(k,n)[S_k,S_n]/I$, find a nonzero $T \in C(k)[S_k]$ and $g \in A$ such that $T(k,S_k)(f) = \Delta_n(g)$.

Summary

Main results.

- reduction for univariate P-recursive sequences
- telescoping algorithm for bivariate P-recursive sequences

New tools.

- find a suitable basis to reduce the dispersion
- find an integral basis at infinity to reduce the degree

Summary

Main results.

- reduction for univariate P-recursive sequences
- telescoping algorithm for bivariate P-recursive sequences

New tools.

- find a suitable basis to reduce the dispersion
- find an integral basis at infinity to reduce the degree

Thank you!