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Symbolic summation

Summability Problem. Given a sequence f (n) in certain class A,
find a sequence g(n) in A such that

g(n) =
∑

0≤k<n

f (k)

⇔ f (n) = g(n+1)−g(n).

If such a g exists, we say f is summable in A.
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g(n) =
∑

0≤k<n

f (k) ⇔ f (n) = g(n+1)−g(n).

If such a g exists, we say f is summable in A.

Examples.∑
0≤k<n

k =
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,

∑
0≤k<n
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∑
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,
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Symbolic summation

Summability Problem. Given a sequence f (n) in certain class A,
find a sequence g(n) in A such that

g(n) =
∑

0≤k<n

f (k) ⇔ f (n) = g(n+1)−g(n).

If such a g exists, we say f is summable in A.

Notation. Sk(f (k)) = f (k+1), ∆k(f ) = Sk(f )− f

Additive Decomposition Problem. Given f ∈ A, compute g,r ∈ A
s.t.

f = ∆k(g)+ r

with the following two properties:
(minimality) r is minimal in some sense,
(summability) f is summable in A ⇔ r = 0.

, 2/13



Creative telescoping

Creative Telescoping Problem. If f ∈ A depends on n and k, find
g ∈ A and a nonzero linear recurrence operator L(n,Sn) s.t.

L(n,Sn)

︸ ︷︷ ︸

( f ) = ∆k( g

︸︷︷︸

)

telescoper certificate

Example. Let f (n,k) =
(n

k

)
. Then f has a telescoper:

L = Sn −2 and g =
k
(n

k

)
k−n−1

Proving Identities.∑
0≤k≤n

(
n
k

)
= 2n,

∑
0≤k≤n

(
n
k

)2

=

(
2n
n

)
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)
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Rational summation: Abramov’s algorithm

Summability Problem. Given f ∈ C(k), decide whether

f = ∆k(g) for some g ∈ C(k).

If g exists, f is said to be summable in C(k).
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Rational summation: Abramov’s algorithm

Summability Problem. Given f ∈ C(k), decide whether

f = ∆k(g) for some g ∈ C(k).

If g exists, f is said to be summable in C(k).

Definition. For p ∈ C[k], the dispersion of p in k is

dispk(p) = max{i ∈ Z | gcd(p(k),p(k+ i)) 6= 1}

= max{i ∈ Z | ∃α ∈ C̄ s.t. p(α) = p(α + i) = 0}

Example. Let p = k(k+3)(k−
√

2)(k+
√

2). Then dispk(p) = 3.

Definition. p ∈ C[k] is shift-free in k if dispk(p) = 0.
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Rational summation: Abramov’s algorithm

Summability Problem. Given f ∈ C(k), decide whether

f = ∆k(g) for some g ∈ C(k).

If g exists, f is said to be summable in C(k).

Additive Decomposition. Let f ∈ C(k). Then

f = ∆k(g)+
a
b
,

where g ∈ C(k) and a,b ∈ C[k] with degk(a)< degk(b) and b being
shift-free in k. Moreover

f is summable in C(k) ⇔ a = 0
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Hypergeometric summation

Definition. H(k) is hypergeometric over C(k) if

H(k+1)
H(k)

,
Sk(H)

H
∈ C(k).

Examples.
1/(1+ k), 2k, k!, Γ (2k+1), . . .

Summability Problem. For a hypergeom. H(k), decide whether

H = ∆k(G) for hypergeom. G over F(k).

If G exists, H is said to be hypergeom. summable.
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Hypergeometric summation

Let T be hypergeometric w.r.t. k with f = Sk(T)/T ∈ C(k).

f =
Sk(r)

r
·K ! T = r ·H with

Sk(H)

H
= K,

where K = m/e satisfies gcd(m,Si
k(e)) = 1 for all i ∈ Z.

Modified Abramov-Petkovšek’s Reduction (CHKL 2015):

T = ∆k(· · ·)+
(p

d
+

q
e

)
·H,

where p,q,d ∈ C[k] with degk(p)< degk(d), d shift-free, strongly
prime with K and q in a f.d. vector space NK over C.

Proposition.
T = ∆k(T ′) ⇔ p = q = 0
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P-recursive sequences

Definition. A sequence f (n) is called P-recursive over C[n] if

pr(n) f (n+ r)+ · · ·+p1(n) f (n+1)+p0(n) f (n) = 0,

where pr . . . ,p0 ∈ C[n] (not all zero).
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P-recursive sequences

Definition. A sequence f (n) is called P-recursive over C[n] if

pr(n) f (n+ r)+ · · ·+p1(n) f (n+1)+p0(n) f (n) = 0,

where pr . . . ,p0 ∈ C[n] (not all zero).

Examples. The harmonic sequence f (n) :=
∑n

k=1
1
k satisfying

(n+2) f (n+2)−(2n+3) f (n+1)+(n+1) f (n) = 0
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P-recursive sequences

Definition. A sequence f (n) is called P-recursive over C[n] if

pr(n) f (n+ r)+ · · ·+p1(n) f (n+1)+p0(n) f (n) = 0,

where pr . . . ,p0 ∈ C[n] (not all zero).

Setting.
L = pr(n)Sr + · · ·+p1(n)S+p0(n) ∈ C[n][S] with prp0 6= 0.
A = C(n)[S]/〈L〉, Sn = (n+1)S.
1 ∈ A represents a solution y of L. Indeed, L ·1 = L = 0 in A.
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P-recursive sequences

Definition. A sequence f (n) is called P-recursive over C[n] if

pr(n) f (n+ r)+ · · ·+p1(n) f (n+1)+p0(n) f (n) = 0,

where pr . . . ,p0 ∈ C[n] (not all zero).

Setting.
L = pr(n)Sr + · · ·+p1(n)S+p0(n) ∈ C[n][S] with prp0 6= 0.
A = C(n)[S]/〈L〉, Sn = (n+1)S.
1 ∈ A represents a solution y of L. Indeed, L ·1 = L = 0 in A.

Summability Problem. For f ∈ A, decide whether

f = S(g)−g , ∆n(g) for some g ∈ A.

If g exists, f is said to be summable in A.
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Integral bases: three cases

Algebraic case
A = C(x)[y]/〈m〉, where m ∈ C(x)[y] is irreducible
f ∈ A is integral iff its minimal polynomial is monic. (e.g.

√
x)

The integral elements of A form a free C[x]-module.
Computation: van Hoeij 1994, etc.

D-finite case
A = C(x)[D]/〈L〉, Dx = xD+1, where L ∈ C(x)[D].
The integral elements of A form a free C[x]-module.
Computation: Kauers-Koutschan 2015, Aldossari 2020.

P-recursive case
A = C(n)[S]/〈L〉, Sn = (n+1)S, where L ∈ C(n)[S]
The integral elements of V at z form a free C(n)n−z-module.
Computation: Chen-Du-Kauers-Verron 2020.
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Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

, 10/13



Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

, 10/13



Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Theorem (Chen-Du-Kauers-Wang 2023+). A suitable basis always
exists and can be computed via integral bases.

, 10/13



Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let L = n2(n+2)S−(n+1)4 ∈ C(n)[S] with one
solution y = n2n!

n+1 .

Z orbit· · · −3 −2 −1 0 1 · · · β · · ·

For U = {1},

SU =
1

n2(n+2)︸ ︷︷ ︸
1/e

(n+1)4︸ ︷︷ ︸
M

U

Then U is not a suitable basis since e has two roots −2, 0 in Z.
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Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let L = n2(n+2)S−(n+1)4 ∈ C(n)[S] with one
solution y = n2n!

n+1 .

Z orbit· · · −3 −2 −1 0 1 · · · β · · ·

For U = {1},

SU =
1

n2(n+2)︸ ︷︷ ︸
1/e

(n+1)4︸ ︷︷ ︸
M

U

Fact. U is an integral basis at (−∞,−2]∩Z.
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Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let L = n2(n+2)S−(n+1)4 ∈ C(n)[S] with one
solution y = n2n!

n+1 .

Z orbit· · · −3 −2 −1 0 1 · · · β · · ·

An integral basis at {−1,0} is W = {(n+1)n−3}.

SW = nW

Then W is a suitable basis since e = 1 is shift-free.
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Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Example 1. Let L = n2(n+2)S−(n+1)4 ∈ C(n)[S] with one
solution y = n2n!

n+1 .

Z orbit· · · −3 −2 −1 0 1 · · · β · · ·

An integral basis at {−1,0, . . . ,β } is W = {(n+1)
∏β

i=0(n− i)−3}.

SW = (n−β )W

Then W is a suitable basis since e = 1 is shift-free.
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Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Example 2. Let L = (n+2)(n+3)S2 −2(n+2)S+1 ∈ C(n)[S] with
two solutions y1 =

1
n! and y2 =

1
(n+1)! .

Z orbit· · ·· · · −4 −3 −2 −1 0 1 · · ·
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Suitable bases

Let W be a C(x)-vector space basis of A = C(n)[S]/〈L〉. Then

SW =
1
e

MW, where e ∈ C[n], M ∈ C[n]r×r

Definition. W is called a suitable basis if e is shift-free.

Example 2. Let L = (n+2)(n+3)S2 −2(n+2)S+1 ∈ C(n)[S] with
two solutions y1 =

1
n! and y2 =

1
(n+1)! .

Z orbit· · ·· · · −4 −3 −2 −1 0 1 · · ·

An integral basis at {−2} is W = {1,(n+2)S}, which is suitable:

S
(

1
(n+2)S

)
=

1
(n+2)︸ ︷︷ ︸

1/e

(
0 1
−1 2

)
︸ ︷︷ ︸

M

(
1

(n+2)S

)
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Reduce the dispersion

Let W be a C(x)-vector space basis:

SW =
1
e

MW

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable
basis W of A = C(n)[S]/〈L〉 such that for any f ∈ A,

f = ∆n(g)+
1
d

PW +
1
e

RW,

where g ∈ A, d ∈ C[n] and P,R ∈ C[n]r satisfying
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f = ∆n(g)+
1
d

PW +
1
e

RW,

where g ∈ A, d ∈ C[n] and P,R ∈ C[n]r satisfying
de is shift-free and degn(P)< degn(d);
f = ∆n(h) ⇒ P = 0 and h = bW with b ∈ C[n]r.
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Reduce the dispersion

Let W be a C(x)-vector space basis:

SW =
1
e

MW

Theorem (Chen-Du-Kauers-Wang 2023+). There exists a suitable
basis W of A = C(n)[S]/〈L〉 such that for any f ∈ A,

f = ∆n(g)+
1
d

PW +
1
e

RW,

Example. Let L = (n+2)(n+3)S2 −2(n+2)S+1 ∈ C(n)[S] and
W = {1,(n+2)S}. For f = 1

(n+1)(n+2) +
n

n+1 S,

f = ∆n

((−1,1)
n+1

W︸ ︷︷ ︸
g

)
+

1
(n+2)2︸ ︷︷ ︸

1/d

(1,−1)︸ ︷︷ ︸
P

W +
1

(n+2)︸ ︷︷ ︸
1/e

(−1,2)︸ ︷︷ ︸
R

W.

Then f is not summable because P 6= 0.
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Additive decomposition

Let W,V be two C(x)-vector space bases:

SW =
1
e

MW and ∆nV =
1
a

BV

Theorem (Chen-Du-Kauers-Wang 2023+). There exist a suitable

basis W and an integral basis at infinity V such that for any f ∈ A,

f = ∆n(g)+
1
d

PW +
1
a

QV,

where g ∈ A, d ∈ C[n], P ∈ C[n]r, Q ∈ C[n,n−1]r satisfying
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1
d

PW +
1
a

QV,

where g ∈ A, d ∈ C[n], P ∈ C[n]r, Q ∈ C[n,n−1]r satisfying

de is shift-free and degn(P)< degn(d);
Q ∈ NV , a finite-dimensional C-vector space;
f is summable in A ⇔ P = Q = 0.
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Additive decomposition

Let W,V be two C(x)-vector space bases:

SW =
1
e

MW and ∆nV =
1
a

BV

Theorem (Chen-Du-Kauers-Wang 2023+). There exist a suitable

basis W and an integral basis at infinity V such that for any f ∈ A,

f = ∆n(g)+
1
d

PW +
1
a

QV,

where g ∈ A, d ∈ C[n], P ∈ C[n]r, Q ∈ C[n,n−1]r satisfying

de is shift-free and degn(P)< degn(d);
Q ∈ NV , a finite-dimensional C-vector space;
f is summable in A ⇔ P = Q = 0.

Creative telescoping. For f ∈ A = C(k,n)[Sk,Sn]/I, find a nonzero
T ∈ C(k)[Sk] and g ∈ A such that T(k,Sk)(f ) = ∆n(g).
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Summary

Main results.
reduction for univariate P-recursive sequences
telescoping algorithm for bivariate P-recursive sequences

New tools.
find a suitable basis to reduce the dispersion
find an integral basis at infinity to reduce the degree

Thank you!
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