Algebraic consequences of the fundamental theorem of calculus in differential rings

Georg Regensburger
joint work with Clemens G. Raab

U N I K A S S E L

D-Finite Functions and Beyond, ACA 2023
Warsaw, July 20, 2023

Fundamental theorem of calculus

Algebraic consequences of the Leibniz rule and

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \text { and } \quad \int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)
$$

Fundamental theorem of calculus

Algebraic consequences of the Leibniz rule and

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \text { and } \quad \int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)
$$

Gian-Carlo Rota:
"The algebraic structure sooner or later comes to dominate [...].
Algebra dictates the analysis."

Fundamental theorem of calculus

Algebraic consequences of the Leibniz rule and

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \text { and } \quad \int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)
$$

Gian-Carlo Rota:
"The algebraic structure sooner or later comes to dominate [...].
Algebra dictates the analysis."

Operator notation:

$$
\begin{gathered}
\partial f \text { instead of } \partial(f) \\
\partial f g=(\partial f) g+f \partial g \quad \partial(f g)=\partial(f) g+f \partial(g)
\end{gathered}
$$

Fundamental theorem of calculus

Algebraic consequences of the Leibniz rule and

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \text { and } \quad \int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)
$$

Gian-Carlo Rota:
"The algebraic structure sooner or later comes to dominate [...].
Algebra dictates the analysis."

Operator notation:

$$
\begin{gathered}
\partial f \text { instead of } \quad \partial(f) \\
\partial f g=(\partial f) g+f \partial g \quad \\
\partial(f g)=\partial(f) g+f \partial(g) \\
\int f
\end{gathered}
$$

Integration and evaluation in differential rings

(\mathcal{R}, ∂) differential ring, $\partial: \mathcal{R} \rightarrow \mathcal{R}$ is linear of its constants

$$
C=\{f \in \mathcal{R} \mid \partial f=0\}
$$

Integration and evaluation in differential rings

(\mathcal{R}, ∂) differential ring, $\partial: \mathcal{R} \rightarrow \mathcal{R}$ is linear of its constants

$$
C=\{f \in \mathcal{R} \mid \partial f=0\}
$$

\mathcal{R} and C can be noncommutative $\left(C^{\infty}(\mathbb{R})^{n \times n}\right.$ with const. matrices $\left.C=\mathbb{R}^{n \times n}\right)$

Integration and evaluation in differential rings

(\mathcal{R}, ∂) differential ring, $\partial: \mathcal{R} \rightarrow \mathcal{R}$ is linear of its constants

$$
C=\{f \in \mathcal{R} \mid \partial f=0\}
$$

\mathcal{R} and C can be noncommutative $\left(C^{\infty}(\mathbb{R})^{n \times n}\right.$ with const. matrices $\left.C=\mathbb{R}^{n \times n}\right)$

Definition

Let (\mathcal{R}, ∂) be a differential ring with constants C. We call a C-linear map $\int: \mathcal{R} \rightarrow \mathcal{R}$ an integration on \mathcal{R}, if

$$
\partial \int f=f
$$

holds for all $f \in \mathcal{R}$.

Integration and evaluation in differential rings

(\mathcal{R}, ∂) differential ring, $\partial: \mathcal{R} \rightarrow \mathcal{R}$ is linear of its constants

$$
C=\{f \in \mathcal{R} \mid \partial f=0\}
$$

\mathcal{R} and C can be noncommutative $\left(C^{\infty}(\mathbb{R})^{n \times n}\right.$ with const. matrices $\left.C=\mathbb{R}^{n \times n}\right)$

Definition

Let (\mathcal{R}, ∂) be a differential ring with constants C. We call a C-linear map $\int: \mathcal{R} \rightarrow \mathcal{R}$ an integration on \mathcal{R}, if

$$
\partial \int f=f
$$

holds for all $f \in \mathcal{R}$.
A C-linear functional

$$
e: \mathcal{R} \rightarrow C
$$

acting on C as the identity is called an evaluation on \mathcal{R}.

Integro-differential rings

Definition

Let (\mathcal{R}, ∂) be a differential ring and let $\int: \mathcal{R} \rightarrow \mathcal{R}$ be an integration on \mathcal{R}. We call ($\mathcal{R}, \partial, \int$) a (generalized) integro-differential ring and we define the (induced) evaluation E on \mathcal{R} by

$$
\mathrm{E} f=f-\int \partial f .
$$

Integro-differential rings

Definition

Let (\mathcal{R}, ∂) be a differential ring and let $\int: \mathcal{R} \rightarrow \mathcal{R}$ be an integration on \mathcal{R}. We call ($\mathcal{R}, \partial, \int$) a (generalized) integro-differential ring and we define the (induced) evaluation E on \mathcal{R} by

$$
\mathrm{E} f=f-\int \partial f
$$

Lemma

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. Then,

$$
\mathrm{E} f \in C, \quad \mathrm{E} \int f=0, \quad \text { and } \quad \mathrm{E} c=c .
$$

for all $f \in \mathcal{R}$ and $c \in \mathcal{C}$.

Integro-differential rings

Definition

Let (\mathcal{R}, ∂) be a differential ring and let $\int: \mathcal{R} \rightarrow \mathcal{R}$ be an integration on \mathcal{R}. We call ($\mathcal{R}, \partial, \int$) a (generalized) integro-differential ring and we define the (induced) evaluation E on \mathcal{R} by

$$
\mathrm{E} f=f-\int \partial f
$$

Lemma

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. Then,

$$
\mathrm{E} f \in C, \quad \mathrm{E} \int f=0, \quad \text { and } \quad \mathrm{E} c=c .
$$

for all $f \in \mathcal{R}$ and $c \in \mathcal{C}$. Moreover,

$$
\mathcal{R}=C \oplus \int \mathcal{R}
$$

as direct sum of C-modules.

(Multiplicative) integro-differential rings and algebras

multiplicative evaluation

$$
\mathrm{E} f g=(\mathrm{E} f) \mathrm{E} g
$$

(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz '14, Hossein Poor-Raab-R '18)

$$
\begin{aligned}
& \int_{a}^{x} f(t) d t \text { and evaluation } \mathrm{E} f=f(a) \\
& \text { of continuous functions }
\end{aligned}
$$

(Multiplicative) integro-differential rings and algebras

multiplicative evaluation

$$
\mathrm{E} f g=(\mathrm{E} f) \mathrm{E} g
$$

(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz '14, Hossein Poor-Raab-R '18)

$$
\begin{gathered}
\int_{a}^{x} f(t) d t \text { and evaluation } \mathrm{E} f=f(a) \\
\text { of continuous functions }
\end{gathered}
$$

Ex: (Matrices of) polynomials, smooth/analytic functions, formal power series
Motivation and application:
algebraic setting for boundary value problems for linear ODEs

(Multiplicative) integro-differential rings and algebras

multiplicative evaluation

$$
\mathrm{E} f g=(\mathrm{E} f) \mathrm{E} g
$$

(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz '14, Hossein Poor-Raab-R '18)

$$
\begin{gathered}
\int_{a}^{x} f(t) d t \text { and evaluation } \mathrm{E} f=f(a) \\
\text { of continuous functions }
\end{gathered}
$$

Ex: (Matrices of) polynomials, smooth/analytic functions, formal power series
Motivation and application: algebraic setting for boundary value problems for linear ODEs

Differential Rota-Baxter algebras

$$
\left(\int f\right) \int g=\int f \int g+\int\left(\int f\right) g
$$

Laurent polynomials and series

Laurent polynomials $R=K\left[x, \frac{1}{x}, \ln (x)\right]$ with $\mathbb{Q} \subseteq K, \partial=\frac{d}{d x}$,

Laurent polynomials and series

Laurent polynomials $R=K\left[x, \frac{1}{x}, \ln (x)\right]$ with $\mathbb{Q} \subseteq K, \partial=\frac{d}{d x}$, and \int defined by

$$
\int x^{k} \ln (x)^{n}= \begin{cases}\frac{x^{k+1}}{k+1} & k \neq-1 \wedge n=0 \\ \frac{x^{k+1}}{k+1} \ln (x)^{n}-\frac{n}{k+1} \int x^{k} \ln (x)^{n-1} & k \neq-1 \wedge n>0 \\ \frac{\ln (x)^{n+1}}{n+1} & k=-1\end{cases}
$$

Laurent polynomials and series

Laurent polynomials $R=K\left[x, \frac{1}{x}, \ln (x)\right]$ with $\mathbb{Q} \subseteq K, \partial=\frac{d}{d x}$, and \int defined by

$$
\int x^{k} \ln (x)^{n}= \begin{cases}\frac{x^{k+1}}{k+1} & k \neq-1 \wedge n=0 \\ \frac{x^{k+1}}{k+1} \ln (x)^{n}-\frac{n}{k+1} \int x^{k} \ln (x)^{n-1} & k \neq-1 \wedge n>0 \\ \frac{\ln (x)^{n+1}}{n+1} & k=-1\end{cases}
$$

$\mathrm{E}=\mathrm{id}-\int \partial$ acts by

$$
\mathrm{E} x^{k} \ln (x)^{n}= \begin{cases}1 & k=n=0 \\ 0 & \text { otherwise }\end{cases}
$$

and is not multiplicative:

Laurent polynomials and series

Laurent polynomials $R=K\left[x, \frac{1}{x}, \ln (x)\right]$ with $\mathbb{Q} \subseteq K, \partial=\frac{d}{d x}$, and \int defined by

$$
\int x^{k} \ln (x)^{n}= \begin{cases}\frac{x^{k+1}}{k+1} & k \neq-1 \wedge n=0 \\ \frac{x^{k+1}}{k+1} \ln (x)^{n}-\frac{n}{k+1} \int x^{k} \ln (x)^{n-1} & k \neq-1 \wedge n>0 \\ \frac{\ln (x)^{n+1}}{n+1} & k=-1\end{cases}
$$

$\mathrm{E}=\mathrm{id}-\int \partial$ acts by

$$
\mathrm{E} x^{k} \ln (x)^{n}= \begin{cases}1 & k=n=0 \\ 0 & \text { otherwise }\end{cases}
$$

and is not multiplicative: for $f=x$ and $g=\frac{1}{x}$

$$
\mathrm{E} f g=1 \quad \text { and } \quad \mathrm{E} f=\mathrm{E} g=0
$$

Laurent polynomials and series

Laurent polynomials $R=K\left[x, \frac{1}{x}, \ln (x)\right]$ with $\mathbb{Q} \subseteq K, \partial=\frac{d}{d x}$, and \int defined by

$$
\int x^{k} \ln (x)^{n}= \begin{cases}\frac{x^{k+1}}{k+1} & k \neq-1 \wedge n=0 \\ \frac{x^{k+1}}{k+1} \ln (x)^{n}-\frac{n}{k+1} \int x^{k} \ln (x)^{n-1} & k \neq-1 \wedge n>0 \\ \frac{\ln (x)^{n+1}}{n+1} & k=-1\end{cases}
$$

$\mathrm{E}=\mathrm{id}-\int \partial$ acts by

$$
\mathrm{E} x^{k} \ln (x)^{n}= \begin{cases}1 & k=n=0 \\ 0 & \text { otherwise }\end{cases}
$$

and is not multiplicative: for $f=x$ and $g=\frac{1}{x}$

$$
\mathrm{E} f g=1 \quad \text { and } \quad \mathrm{E} f=\mathrm{E} g=0
$$

Laurent series:

$$
K((x))[\ln (x)]
$$

contain rational functions $K(x)$ and hyperlogarithms

D-finite functions

D-finite functions are closed under antiderivatives
(Abramov-van Hoeij '97)

D-finite functions

D-finite functions are closed under antiderivatives
(Abramov-van Hoeij '97)
Define integration in terms of an evaluation and antiderivates

Lemma

Let (\mathcal{R}, ∂) be a differential ring such that $\partial \mathcal{R}=\mathcal{R}$ and e be an evaluation on \mathcal{R}. Define $\int_{e}: \mathcal{R} \rightarrow \mathcal{R}$ by

$$
\int_{e} f=g-e g
$$

where $g \in \mathcal{R}$ is such that $\partial g=f$.
Then $\left(\mathcal{R}, \partial, \int_{e}\right)$ is an integro-differential ring with induced evaluation $\mathrm{E}=e$.

D-finite functions

D-finite functions are closed under antiderivatives
(Abramov-van Hoeij '97)
Define integration in terms of an evaluation and antiderivates

Lemma

Let (\mathcal{R}, ∂) be a differential ring such that $\partial \mathcal{R}=\mathcal{R}$ and e be an evaluation on \mathcal{R}. Define $\int_{e}: \mathcal{R} \rightarrow \mathcal{R}$ by

$$
\int_{e} f=g-e g
$$

where $g \in \mathcal{R}$ is such that $\partial g=f$.
Then $\left(\mathcal{R}, \partial, \int_{e}\right)$ is an integro-differential ring with induced evaluation $\mathrm{E}=e$.

Define an evaluation in terms of formal series solutions

Integro-differential operators

Linear operators

- differential operator ∂
- integral \int
- evaluation $\mathrm{E}=\mathrm{id}-\int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto f g$

Integro-differential operators

Linear operators

- differential operator ∂
- integral \int
- evaluation $\mathrm{E}=\mathrm{id}-\int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto f g$

What are all relations between these operators?

Integro-differential operators

Linear operators

- differential operator ∂
- integral \int
- evaluation $\mathrm{E}=\mathrm{id}-\int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto f g$

What are all relations between these operators?
\mathcal{R} commutative: all operators are \mathcal{C}-linear
\mathcal{R} noncommutative: multiplication operators are only additive

Integro-differential operators

Linear operators

- differential operator ∂
- integral \int
- evaluation $\mathrm{E}=\mathrm{id}-\int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto f g$

What are all relations between these operators?
\mathcal{R} commutative: all operators are \mathcal{C}-linear
\mathcal{R} noncommutative: multiplication operators are only additive
Linear operators with composition form a ring
C commutative: a C-algebra $\quad C$ noncommutative: a C-ring

Generators and relations

Definition

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. We define the ring of integro-differential operators (IDO)

$$
\mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

as the ring generated by \mathcal{R} and $\partial, \int, \mathrm{E}$,

Generators and relations

Definition

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. We define the ring of integro-differential operators (IDO)

$$
\mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

as the ring generated by \mathcal{R} and ∂, \int, E , where for $f \in \mathcal{R}$ the identities

$$
\begin{gathered}
\partial \cdot f=f \cdot \partial+\partial f, \quad \partial \cdot \int=1, \quad \int \cdot \partial=1-\mathrm{E} \\
\partial \cdot f \cdot \mathrm{E}=\partial f \cdot \mathrm{E}, \quad \int \cdot f \cdot \mathrm{E}=\int f \cdot \mathrm{E}, \quad \mathrm{E} \cdot f \cdot \mathrm{E}=\mathrm{E} f \cdot \mathrm{E}
\end{gathered}
$$

hold

Generators and relations

Definition

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. We define the ring of integro-differential operators (IDO)

$$
\mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

as the ring generated by \mathcal{R} and ∂, \int, E , where for $f \in \mathcal{R}$ the identities

$$
\begin{gathered}
\partial \cdot f=f \cdot \partial+\partial f, \quad \partial \cdot \int=1, \quad \int \cdot \partial=1-\mathrm{E} \\
\partial \cdot f \cdot \mathrm{E}=\partial f \cdot \mathrm{E}, \quad \int \cdot f \cdot \mathrm{E}=\int f \cdot \mathrm{E}, \quad \mathrm{E} \cdot f \cdot \mathrm{E}=\mathrm{E} f \cdot \mathrm{E}
\end{gathered}
$$

hold and ∂, \int, E commute with constants in C.

Generators and relations

Definition

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. We define the ring of integro-differential operators (IDO)

$$
\mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

as the ring generated by \mathcal{R} and ∂, \int, E , where for $f \in \mathcal{R}$ the identities

$$
\begin{gathered}
\partial \cdot f=f \cdot \partial+\partial f, \quad \partial \cdot \int=1, \quad \int \cdot \partial=1-\mathrm{E} \\
\partial \cdot f \cdot \mathrm{E}=\partial f \cdot \mathrm{E}, \quad \int \cdot f \cdot \mathrm{E}=\int f \cdot \mathrm{E}, \quad \mathrm{E} \cdot f \cdot \mathrm{E}=\mathrm{E} f \cdot \mathrm{E}
\end{gathered}
$$

hold and ∂, \int, E commute with constants in C.
Identities as rules $\quad \partial \cdot \int \cdot \partial$

Generators and relations

Definition

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring with constants C. We define the ring of integro-differential operators (IDO)

$$
\mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

as the ring generated by \mathcal{R} and $\partial, \int, \mathrm{E}$, where for $f \in \mathcal{R}$ the identities

$$
\begin{gathered}
\partial \cdot f=f \cdot \partial+\partial f, \quad \partial \cdot \int=1, \quad \int \cdot \partial=1-\mathrm{E} \\
\partial \cdot f \cdot \mathrm{E}=\partial f \cdot \mathrm{E}, \quad \int \cdot f \cdot \mathrm{E}=\int f \cdot \mathrm{E}, \quad \mathrm{E} \cdot f \cdot \mathrm{E}=\mathrm{E} f \cdot \mathrm{E}
\end{gathered}
$$

hold and ∂, \int, E commute with constants in C.
Identities as rules $\quad \partial \cdot \int \cdot \partial$

A known consequence

$$
\int \cdot \partial=1-\mathrm{E} \quad \text { and } \quad \partial \cdot f=f \cdot \partial+\partial f
$$

A known consequence

$$
\int \cdot \partial=1-\mathrm{E} \text { and } \partial \cdot f=f \cdot \partial+\partial f
$$

Ambiguity
(1-E) •f

A known consequence

$$
\int \cdot \partial=1-\mathrm{E} \text { and } \partial \cdot f=f \cdot \partial+\partial f
$$

Ambiguity

$$
\underset{(1-\mathrm{E}) \cdot f}{\int \cdot \partial \cdot f}-\underset{\int}{\text { - }}
$$

S-polynomial

A known consequence

$$
\int \cdot \partial=1-\mathrm{E} \text { and } \partial \cdot f=f \cdot \partial+\partial f
$$

Ambiguity
(1-E) ff -

S-polynomial

$$
\int \cdot f \cdot \partial=f-\mathrm{E} \cdot f-\int \cdot \partial f
$$

A known consequence

$$
\int \cdot \partial=1-\mathrm{E} \quad \text { and } \quad \partial \cdot f=f \cdot \partial+\partial f
$$

Ambiguity
(1-E) •f -

S-polynomial

$$
\int \cdot f \cdot \partial=f-\mathrm{E} \cdot f-\int \cdot \partial f
$$

integration by parts holds in \mathcal{R}

$$
\int f \partial g=f g-\mathrm{E} f g-\int(\partial f) g
$$

A new consequence

From

$$
\int \cdot f \cdot \partial \cdot \int
$$

integration by parts and $\partial \cdot \int$,
we obtain

$$
\int \cdot f \cdot \int=\int f \cdot \int-\int \cdot \int f-\mathrm{E} \cdot \int f \cdot \int
$$

A new consequence

From

$$
\int \cdot f \cdot \partial \cdot \int
$$

integration by parts and $\partial \cdot \int$,
we obtain

$$
\int \cdot f \cdot \int=\int f \cdot \int-\int \cdot \int f-\mathrm{E} \cdot \int f \cdot \int
$$

Rota-Baxter identity with evaluation in \mathcal{R}

$$
\left(\int f\right) \int g=\int f \int g+\int\left(\int f\right) g+\mathrm{E}\left(\int f\right) \int g
$$

products of integrals $=$ nested integrals plus evaluation

A new consequence

From

$$
\int \cdot f \cdot \partial \cdot \int
$$

integration by parts and $\partial \cdot \int$,
we obtain

$$
\int \cdot f \cdot \int=\int f \cdot \int-\int \cdot \int f-\mathrm{E} \cdot \int f \cdot \int
$$

Rota-Baxter identity with evaluation in \mathcal{R}

$$
\left(\int f\right) \int g=\int f \int g+\int\left(\int f\right) g+\mathrm{E}\left(\int f\right) \int g
$$

products of integrals $=$ nested integrals plus evaluation

E is multiplicative: Rota-Baxter identity (shuffle identities)

$$
\left(\int f\right) \int g=\int f \int g+\int\left(\int f\right) g
$$

All consequences

$$
\begin{array}{|l|rl|}
\hline \partial \cdot f & =f \cdot \partial+\partial f & \int \cdot f \cdot \partial=f-\mathrm{E} \cdot f-\int \cdot \partial f \\
\partial \cdot \mathrm{E} & =0 & \iint f \cdot \mathrm{E}=\int f \cdot \mathrm{E} \\
\partial \cdot \int & =1 \\
\mathrm{E} \cdot f \cdot \mathrm{E} & =\mathrm{E} f \cdot \mathrm{E} \\
\mathrm{E} \cdot \mathrm{E} & =\mathrm{E} & \int \cdot f \cdot \int=\int f \cdot \int-\int \cdot \int f-\mathrm{E} \cdot \int f \cdot \int \\
\mathrm{E} \cdot \int & =0 & \iint \partial=1-\mathrm{E} \\
& & \int \cdot \mathrm{E}=\int 1 \cdot \mathrm{E} \\
& \int \cdot \int & =\int 1 \cdot \int-\int \cdot \int 1-\mathrm{E} \cdot \int 1 \cdot \int \\
\hline
\end{array}
$$

Table: Rewrite rules for operator expressions

All consequences

$$
\begin{aligned}
& \partial \cdot f=f \cdot \partial+\partial f \quad \int \cdot f \cdot \partial=f-\mathrm{E} \cdot f-\int \cdot \partial f \\
& \partial \cdot \mathrm{E}=0 \\
& \text { ว. } \int=1 \\
& \mathrm{E} \cdot f \cdot \mathrm{E}=\mathrm{E} f \cdot \mathrm{E} \\
& \int \cdot f \cdot \mathrm{E}=\int f \cdot \mathrm{E} \\
& \int \cdot f \cdot \int=\int f \cdot \int-\int \cdot \int f-\mathrm{E} \cdot \int f \cdot \int \\
& \int \cdot \partial=1-E \\
& \mathrm{E} \cdot \mathrm{E}=\mathrm{E} \\
& \mathrm{E} \cdot \int=0 \\
& \int \cdot \mathrm{E}=\int 1 \cdot \mathrm{E} \\
& \int \cdot \int=\int 1 \cdot \int-\int \cdot \int 1-\mathrm{E} \cdot \int 1 \cdot \int
\end{aligned}
$$

Table: Rewrite rules for operator expressions

Theorem

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring. Then, by repeatedly applying the rewrite rules above in any order, every element of the ring $\mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle$ can be written as a sum of expressions of the form

$$
f \cdot \partial^{j}, \quad f \cdot \int \cdot g, \quad f \cdot \mathrm{E} \cdot g \cdot \partial^{j}, \quad \text { or } f \cdot \mathrm{E} \cdot h \cdot \int \cdot g
$$

where $j \in \mathbb{N}_{0}, f, g \in \mathcal{R}$, and $h \in \int \mathcal{R}$.

Rings of linear operators via tensor reduction systems

Constructive and algorithmic approach to rings of linear operators via tensor reduction systems for tensor algebras and rings
(Bergman '78, Hossein Poor-Raab-R '16, Hossein Poor-Raab-R '18, Raab-R '23)

Rings of linear operators via tensor reduction systems

Constructive and algorithmic approach to rings of linear operators via tensor reduction systems for tensor algebras and rings

- compositions is represented by tensor product
- families of relations can be represented as one homomorphism

$$
\partial \otimes f \mapsto f \otimes \partial+\partial f
$$

- tensor over the ring of constants to deal with linearity
- construction via quotients of tensor rings

Rings of linear operators via tensor reduction systems

Constructive and algorithmic approach to rings of linear operators via tensor reduction systems for tensor algebras and rings

- compositions is represented by tensor product
- families of relations can be represented as one homomorphism

$$
\partial \otimes f \mapsto f \otimes \partial+\partial f
$$

- tensor over the ring of constants to deal with linearity
- construction via quotients of tensor rings
- Diamond Lemma for tensors for unique normal forms (confluence proof)
- completion analogous to Buchberger's algorithm

Rings of linear operators via tensor reduction systems

Constructive and algorithmic approach to rings of linear operators via tensor reduction systems for tensor algebras and rings

- compositions is represented by tensor product
- families of relations can be represented as one homomorphism

$$
\partial \otimes f \mapsto f \otimes \partial+\partial f
$$

- tensor over the ring of constants to deal with linearity
- construction via quotients of tensor rings
- Diamond Lemma for tensors for unique normal forms (confluence proof)
- completion analogous to Buchberger's algorithm

Mathematica package TenRes

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
(\partial+a) \cdot z=\partial \cdot z+a \cdot z=
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
(\partial+a) \cdot z=\partial \cdot z+a \cdot z=z \cdot \partial+\partial z+a z=
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
(\partial+a) \cdot z=\partial \cdot z+a \cdot z=z \cdot \partial+\partial z+a z=z \cdot \partial
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
\begin{aligned}
& (\partial+a) \cdot z=\partial \cdot z+a \cdot z=z \cdot \partial+\partial z+a z=z \cdot \partial \\
& (\partial+a) \cdot\left(z \cdot \int \cdot z^{-1}\right)=z \cdot \partial \cdot \int \cdot z^{-1}=
\end{aligned}
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
\begin{aligned}
& (\partial+a) \cdot z=\partial \cdot z+a \cdot z=z \cdot \partial+\partial z+a z=z \cdot \partial \\
& (\partial+a) \cdot\left(z \cdot \int \cdot z^{-1}\right)=z \cdot \partial \cdot \int \cdot z^{-1}=
\end{aligned}
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
\begin{aligned}
& (\partial+a) \cdot z=\partial \cdot z+a \cdot z=z \cdot \partial+\partial z+a z=z \cdot \partial \\
& (\partial+a) \cdot\left(z \cdot \int \cdot z^{-1}\right)=z \cdot \partial \cdot \int \cdot z^{-1}=z \cdot z^{-1}=1
\end{aligned}
$$

Proving variation of constants

$$
x^{\prime}(t)+A(t) x(t)=f(t) \quad x_{0}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s) d s
$$

$\left(\mathcal{R}, \partial, \int\right)$ and

$$
L=\partial+a
$$

"fundamental matrix" $z \in \mathcal{R}, \quad \partial z+a z=0$,

$$
H=z \cdot \int \cdot z^{-1} \in \mathcal{R}\left\langle\partial, \int, \mathrm{E}\right\rangle
$$

is a right inverse of L :

$$
\begin{aligned}
& (\partial+a) \cdot z=\partial \cdot z+a \cdot z=z \cdot \partial+\partial z+a z=z \cdot \partial \\
& (\partial+a) \cdot\left(z \cdot \int \cdot z^{-1}\right)=z \cdot \partial \cdot \int \cdot z^{-1}=z \cdot z^{-1}=1
\end{aligned}
$$

Rewrite rules and normal forms: equational prover in calculus, discover identities by ansatz, basics of linear ODEs with initial conditions

Generalized Taylor formula

Integro-differential subring generated by 1 and constants contains "monomials"

$$
x_{i}=\int^{i} 1
$$

Generalized Taylor formula

Integro-differential subring generated by 1 and constants contains "monomials"

$$
x_{i}=\int^{i} 1
$$

Theorem

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring such that E is multiplicative on the integro-differential subring generated by 1 . Then, for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& 1=\sum_{k=0}^{n} x_{k} \cdot \mathrm{E} \cdot \partial^{k}+\sum_{k=0}^{n}(-1)^{n-k} x_{k} \cdot \int \cdot x_{n-k} \cdot \partial^{n+1} \\
&-\sum_{k=0}^{n-1} \sum_{j=1}^{n-k}(-1)^{n-k-j} x_{k} \cdot \mathrm{E} \cdot x_{j} \cdot \int \cdot x_{n-k-j} \cdot \partial^{n+1}
\end{aligned}
$$

Generalized Taylor formula

Integro-differential subring generated by 1 and constants contains "monomials"

$$
x_{i}=\int^{i} 1
$$

Theorem

Let $\left(\mathcal{R}, \partial, \int\right)$ be an integro-differential ring such that E is multiplicative on the integro-differential subring generated by 1 . Then, for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& 1=\sum_{k=0}^{n} x_{k} \cdot \mathrm{E} \cdot \partial^{k}+\sum_{k=0}^{n}(-1)^{n-k} x_{k} \cdot \int \cdot x_{n-k} \cdot \partial^{n+1} \\
&-\sum_{k=0}^{n-1} \sum_{j=1}^{n-k}(-1)^{n-k-j} x_{k} \cdot \mathrm{E} \cdot x_{j} \cdot \int \cdot x_{n-k-j} \cdot \partial^{n+1}
\end{aligned}
$$

$\mathbb{Q} \subseteq \mathcal{R}:$

$$
f=\sum_{k=0}^{n} \frac{x_{1}^{k}}{k!} \mathrm{E} \partial^{k} f+\sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!(n-k)!} x_{1}^{k} \int x_{1}^{n-k} \partial^{n+1}-\sum_{k=0}^{n-1} \sum_{j=1}^{n-k} \frac{(-1)^{n-k-j}}{k!j!(n-k-j)!} x_{1}^{k} \mathrm{E} x_{1}^{j} \int x_{1}^{n-k-j} \partial^{n+1} f
$$

Generalized shuffle relations

\mathcal{R} commutative integro-differential ring
$\mathcal{C}\langle\mathcal{R}\rangle=\bigoplus_{n=0}^{\infty} \mathcal{R}^{\otimes n}$ with shuffle product \amalg, homomorphism

$$
\varphi\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\int a_{1} \int a_{2} \ldots \int a_{n} \in \mathcal{R} \quad \text { and } \quad a_{i}^{j}=a_{i} \otimes a_{i+1} \otimes \ldots \otimes a_{j}
$$

Generalized shuffle relations

\mathcal{R} commutative integro-differential ring
$\mathcal{C}\langle\mathcal{R}\rangle=\bigoplus_{n=0}^{\infty} \mathcal{R}^{\otimes n}$ with shuffle product \amalg, homomorphism

$$
\varphi\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\int a_{1} \int a_{2} \ldots \int a_{n} \in \mathcal{R} \quad \text { and } \quad a_{i}^{j}=a_{i} \otimes a_{i+1} \otimes \ldots \otimes a_{j}
$$

Theorem

Let $\left(\mathcal{R}, \partial, \int\right)$ be a commutative integro-differential ring with constants C. Let $f, g \in C\langle\mathcal{R}\rangle$ be pure tensors of length m and n. Then, the product of $\varphi(f)=\int f_{1} \int f_{2} \ldots \int f_{m}$ and $\varphi(g)=\int g_{1} \int g_{2} \ldots \int g_{n}$ is given by

$$
\varphi(f) \varphi(g)=\varphi(f \amalg g)+\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} e\left(f_{i+1}^{m}, g_{j+1}^{n}\right) \varphi\left(f_{1}^{i} \amalg g_{1}^{j}\right) \in \mathcal{R}
$$

with constants $e\left(f_{i+1}^{m}, g_{j+1}^{n}\right)=\mathrm{E} \varphi\left(f_{i+1}^{m}\right) \varphi\left(g_{j+1}^{n}\right) \in C$.

Generalized shuffle relations

\mathcal{R} commutative integro-differential ring
$\mathcal{C}\langle\mathcal{R}\rangle=\bigoplus_{n=0}^{\infty} \mathcal{R}^{\otimes n}$ with shuffle product \amalg, homomorphism

$$
\varphi\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\int a_{1} \int a_{2} \ldots \int a_{n} \in \mathcal{R} \quad \text { and } \quad a_{i}^{j}=a_{i} \otimes a_{i+1} \otimes \ldots \otimes a_{j}
$$

Theorem

Let $\left(\mathcal{R}, \partial, \int\right)$ be a commutative integro-differential ring with constants C. Let $f, g \in C\langle\mathcal{R}\rangle$ be pure tensors of length m and n. Then, the product of $\varphi(f)=\int f_{1} \int f_{2} \ldots \int f_{m}$ and $\varphi(g)=\int g_{1} \int g_{2} \ldots \int g_{n}$ is given by

$$
\varphi(f) \varphi(g)=\varphi(f \amalg g)+\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} e\left(f_{i+1}^{m}, g_{j+1}^{n}\right) \varphi\left(f_{1}^{i} \amalg g_{1}^{j}\right) \in \mathcal{R}
$$

with constants $e\left(f_{i+1}^{m}, g_{j+1}^{n}\right)=\mathrm{E} \varphi\left(f_{i+1}^{m}\right) \varphi\left(g_{j+1}^{n}\right) \in C$.
E multiplicative:

$$
\left(\int f_{1} \int f_{2} \ldots \int f_{m}\right)\left(\int g_{1} \int g_{2} \ldots \int g_{n}\right)=\int f_{1} \int f_{2} \ldots \int f_{m} ш \int g_{1} \int g_{2} \ldots \int g_{n}
$$

Outlook

- Integro-differential rings over integral domains
- Tensor reduction systems
- Other operator rings (with linear substitutions, discrete analogs, ...)
- Free integro-differential rings (integro-differential polynomials)

Clemens G. Raab, R., The fundamental theorem of calculus in differential rings. arXiv:2301.13134 [math.RA] (2023)
Clemens G. Raab, R., The free commutative generalized integro-differential ring. (2023) In preparation.

