Automatic Lucas-type congruences

Applications of Computer Algebra - ACA 2023
Session on D-Finite Functions and Beyond: Algorithms, Combinatorics, and Arithmetic
Warsaw, Poland - July 17-21, 2023

Armin Straub
July 19, 2023
University of South Alabama

$\underset{\substack{\text { Lucas } \\ 1878}}{\text { THM }}\binom{n}{k} \equiv\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \cdots \quad(\bmod p)$
where n_{i} and k_{i} are the base p digits of n and k.
includes joint work with:

Joel Henningsen (Baylor University)

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

$$
\sum_{n \geqslant 0} a(n, \ldots, n) t^{n}
$$

$$
\text { EG } \frac{1}{1-x-y}
$$

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

$$
\sum_{n \geqslant 0} a(n, \ldots, n) t^{n}
$$

EG

$$
\frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^{k}
$$

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

EG

$$
\frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^{k}
$$

$$
\sum_{n \geqslant 0} \frac{a(n, \ldots, n) t^{n}}{\text { diagonal }}
$$

diagonal: $\quad \sum_{n=0}^{\infty}\binom{2 n}{n} t^{n}=\frac{1}{\sqrt{1-4 t}}$

Diagonals

$$
\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

EG

$$
\frac{1}{1-x-y}=\sum_{k=0}^{\infty}(x+y)^{k}
$$

$$
\sum_{n \geqslant 0} \frac{a(n, \ldots, n) t^{n}}{\text { diagonal }}
$$

diagonal: $\quad \sum_{n=0}^{\infty}\binom{2 n}{n} t^{n}=\frac{1}{\sqrt{1-4 t}}$

THM The diagonal of a rational function is D-finite.
Zeilberger, Lipshitz 1981-88

More generally, the diagonal of a D-finite function is D-finite. $F \in K\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if its partial derivatives span a finite-dimensional vector space over $K\left(x_{1}, \ldots, x_{d}\right)$.

Diagonals: an example from positivity

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger
2008

$$
\frac{1}{1-(x+y+z+w)+2(y z w+x z w+x y w+x y z)+4 x y z w} .
$$

Diagonals: an example from positivity

CONJ All Taylor coefficients of the following function are positive:

Kauers-
Zeilberger
2008

$$
\frac{1}{1-(x+y+z+w)+2(y z w+x z w+x y w+x y z)+4 x y z w} .
$$

- Would imply conjectured positivity of Lewy-Askey function

$$
\frac{1}{(1-x)(1-y)+(1-x)(1-z)+\ldots+(1-z)(1-w)}
$$

Non-negativity proved by a very general result of Scott-Sokal ('14)

Diagonals: an example from positivity

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger
2008

$$
\frac{1}{1-(x+y+z+w)+2(y z w+x z w+x y w+x y z)+4 x y z w} .
$$

- Would imply conjectured positivity of Lewy-Askey function

$$
\frac{1}{(1-x)(1-y)+(1-x)(1-z)+\ldots+(1-z)(1-w)}
$$

Non-negativity proved by a very general result of Scott-Sokal ('14)
PROP The diagonal coefficients of the Kauers-Zeilberger function are
S-Zudilin 2015

$$
D(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{n}^{2} .
$$

- $D(n)$ is an example of an Apéry-like sequence.

Diagonals: an example from positivity

CONJ All Taylor coefficients of the following function are positive:
Kauers-
Zeilberger
2008

$$
\frac{1}{1-(x+y+z+w)+2(y z w+x z w+x y w+x y z)+4 x y z w} .
$$

- Would imply conjectured positivity of Lewy-Askey function

$$
\frac{1}{(1-x)(1-y)+(1-x)(1-z)+\ldots+(1-z)(1-w)}
$$

Non-negativity proved by a very general result of Scott-Sokal ('14)
PROP The diagonal coefficients of the Kauers-Zeilberger function are
S-Zudilin 2015

$$
D(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{n}^{2}
$$

- $D(n)$ is an example of an Apéry-like sequence.

Q Can we conclude the conjectured positivity from the positivity
S-Zudilin 2015 of $D(n)$ together with the (easy) positivity of $\frac{1}{1-(x+y+z)+2 x y z}$?

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez, Salvy '17 $=$ (multiple) binomial sums

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x)=C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Bostan,
Lairez,
Salvy '17
$=$ (multiple) binomial sums

CONJ Diagonals of rational functions over \mathbb{Q}
Christol
'90 $=$ globally bounded, D-finite sequences
(i.e. $c d^{n} a_{n} \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)
(\subseteq known)

Characterizations of diagonals

EG Diagonals of rational functions

- $F(x) \quad=\quad C$-finite sequences
- $F(x, y)=$ sequences with algebraic GF

To see the latter, express the diagonal as $\frac{1}{2 \pi i} \int_{|x|=\varepsilon} F\left(x, \frac{z}{x}\right) \frac{\mathrm{d} x}{x}$.

THM Diagonals of rational functions

Lairez,
Salvy '17
$=$ (multiple) binomial sums

CONJ Diagonals of rational functions over \mathbb{Q}
Christol
'90 $=$ globally bounded, D-finite sequences
(i.e. $c d^{n} a_{n} \in \mathbb{Z}$ for $c, d \in \mathbb{Z}$ and at most exponential growth)

- Open: example of a diagonal that requires more than 3 variables

Automatic automata

$\underset{\text { Thw }}{\text { THM }}$ If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,
Rowland, rassanaid is then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,

Rowland, Yassawi '15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.
EG Catalan numbers $C(n)$ modulo 3:

$$
\begin{aligned}
C(35) & =3,116,285,494,907,301,262 \\
& \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

Instead via automaton: $35=1022$ in base 3

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,

Rowland,
Yassawi '15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz ' 87 .
EG Catalan numbers $C(n)$ modulo 3:

$$
\begin{aligned}
C(35) & =3,116,285,494,907,301,262 \\
& \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

Instead via automaton:

$$
35=1022 \text { in base } 3
$$

$$
C(2)
$$

$$
C(2) \equiv 2
$$

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,

Rowland,
Yassawi '15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz ' 87 .
EG Catalan numbers $C(n)$ modulo 3 :

$$
\begin{aligned}
C(35) & =3,116,285,494,907,301,262 \\
& \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

Instead via automaton:

$$
35=1022 \text { in base } 3
$$

$$
C(8)
$$

$$
\begin{align*}
C(2) & \equiv 2 \tag{2}\\
C(22) & \equiv 2
\end{align*}
$$

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,

Rowland,
Yassawi '15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz ' 87 .
EG Catalan numbers $C(n)$ modulo 3 :

$$
\begin{aligned}
C(35) & =3,116,285,494,907,301,262 \\
& \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

Instead via automaton:

$$
35=1022 \text { in base } 3
$$

$$
C(8)
$$

$$
\left.\begin{array}{rl}
C(& 2
\end{array}\right) \equiv 2, ~=2, ~\left(\begin{array}{lll}
2 & 2) & \equiv 2 \tag{2}\\
C\left(\begin{array}{lll}
0 & 2 & 2
\end{array}\right) & \equiv 2
\end{array}\right.
$$

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,

Rowland,
Yassawi '15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz ' 87 .
EG Catalan numbers $C(n)$ modulo 3 :

$$
\begin{aligned}
C(35) & =3,116,285,494,907,301,262 \\
& \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

Instead via automaton:
$35=1022$ in base 3

$C(2)$	$C(2) \equiv 2$
C (8)	$C\left(\begin{array}{ll}2 & 2\end{array}\right) \equiv 2$
	$C\left(\begin{array}{lll}0 & 2 & 2\end{array}\right) \equiv 2$
C (35)	$C\left(\begin{array}{llll}1 & 0 & 2 & 2\end{array}\right) \equiv 1$

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,
Rowland, Yassamidi is then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz '87.
EG Catalan numbers $C(n)$ modulo 4:
Rowland,
Yassawi '15

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,
Rowland,
Yassawi ' 15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.
Constructive proof of results by Denef and Lipshitz ' 87 .
EG Catalan numbers $C(n)$ modulo 4 :
Rowland,
Yassawi '15

THM
Eu, Liu,
Yeh '08

$$
C(n) \equiv \begin{cases}1, & \text { if } n=2^{a}-1 \text { for some } a \geqslant 0 \\ 2, & \text { if } n=2^{b}+2^{a}-1 \text { for some } b>a \geqslant 0 \\ 0, & \text { otherwise }\end{cases}
$$

Automatic automata

THM If an integer sequence $A(n)$ is the diagonal of $F(\boldsymbol{x}) \in \mathbb{Z}(\boldsymbol{x})$,
Rowland, Yassawi ' 15 then the reductions $A(n)\left(\bmod p^{r}\right)$ are p-automatic.

Constructive proof of results by Denef and Lipshitz ' 87 .
EG Catalan numbers $C(n)$ modulo 4 :
Rowland,
Yassawi '15

THM
Eu, Liu,
Yeh '08

$$
C(n) \equiv \begin{cases}1, & \text { if } n=2^{a}-1 \text { for some } a \geqslant 0 \\ 2, & \text { if } n=2^{b}+2^{a}-1 \text { for some } b>a \geqslant 0, \quad(\bmod 4) \\ 0, & \text { otherwise }\end{cases}
$$

Things quickly get more complicated

- Liu-Yeh (2010) also determine the Catalan numbers modulo 16 and 64.

Theorem 5.5. Let c_{n} be the n-th Catalan number. First of all, $c_{n} \not \equiv_{16} 3,7,9,11,15$ for any n. As for the other congruences, we have

$$
\begin{aligned}
& \left.c_{n} \equiv_{16}\left\{\begin{array}{r}
1 \\
5 \\
13
\end{array}\right\} \quad \begin{array}{l}
\text { if } d(\alpha)=0 \text { and } \quad\left\{\begin{array}{l}
\beta \leq 1, \\
\beta \\
\beta=2, \\
\beta \geq 3,
\end{array}\right. \\
10 \\
6 \\
14 \\
4 \\
12 \\
8
\end{array}\right\} \\
& \text { if } d(\alpha)=1, \alpha=1 \text { and } \quad\left\{\begin{array}{l}
\text { if } d(\alpha)=1, \alpha \geq 2 \text { and } \quad\left\{\begin{array}{l}
\beta=0 \text { or } \beta \geq 2, \\
\beta=1, \\
(\alpha=2, \beta \geq 2) \text { or }(\alpha \geq 3, \beta \leq 1), \\
(\alpha=2, \beta \leq 1) \text { or }(\alpha \geq 3, \beta \geq 2),
\end{array}\right. \\
\text { if } d(\alpha)=2 \text { and } \quad\left\{\begin{array}{l}
z r(\alpha) \equiv_{2} 0, \\
z r(\alpha)=1,
\end{array}\right. \\
\text { if } d(\alpha)=3, \\
\text { if } d(\alpha) \geq 4 .
\end{array}\right.
\end{aligned}
$$

where $\alpha=\left(C F_{2}(n+1)-1\right) / 2$ and $\beta=\omega_{2}(n+1)\left(\right.$ or $\left.\beta=\min \left\{i \mid n_{i}=0\right\}\right)$.

$$
\begin{aligned}
\omega_{p}(n) & =p \text {-adic valuation of } n \\
C F_{p}(n) & =n / p^{\omega_{p}(n)} \\
d(n) & =\text { sum of } 2 \text {-adic digits of } n
\end{aligned}
$$

- For comparison: the corresponding minimal automaton has 26 states.

A different approach to congruences

THM The Catalan numbers modulo 64 are determined by

Kauers, Krattenthaler,
Müller '12

$$
\begin{aligned}
\sum_{n=0}^{\infty} C(n) x^{n} \equiv & 1+13 x+6 x^{2}+16 x^{4}+32 x^{5} \\
& +\left(40+44 x+20 x^{2}+32 x^{3}+32 x^{4}\right) \Phi(x) \\
& +\left(12 x^{-1}+52+30 x+56 x^{2}+16 x^{3}\right) \Phi(x)^{2} \\
& +\left(28 x^{-1}+60+60 x+32 x^{3}\right) \Phi(x)^{3} \\
& +\left(35 x^{-1}+18+48 x+16 x^{2}+32 x^{3}\right) \Phi(x)^{4} \\
& +\left(44+32 x^{2}\right) \Phi(x)^{5}+\left(50 x^{-1}+8+48 x\right) \Phi(x)^{6} \\
& +\left(4 x^{-1}+32+32 x\right) \Phi(x)^{7}(\bmod 64)
\end{aligned}
$$

where

$$
\Phi(x)=\sum_{n=0}^{\infty} x^{2^{n}}
$$

- Such expressions can be automatically obtained modulo any power of 2 .
- For comparison: the corresponding minimal automaton has 134 states.

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\mathrm{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

Catalan numbers

Apéry numbers

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

Catalan numbers

Apéry numbers

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$
Catalan numbers

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\operatorname{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

Apéry numbers

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

All states $\bmod p^{r}$.

- For each state $A_{i}(n)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{n} Q_{i}(\boldsymbol{x})\right]$ and each $k \in\{0,1, \ldots, p-1\}$,

$$
A_{i}(p n+k)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{p n} Q_{i}(\boldsymbol{x}) P_{i}(\boldsymbol{x})^{k}\right]
$$

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$
Catalan numbers

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\mathrm{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

Apéry numbers

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

All states $\bmod p^{r}$.

- For each state $A_{i}(n)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{n} Q_{i}(\boldsymbol{x})\right]$ and each $k \in\{0,1, \ldots, p-1\}$,

$$
\begin{aligned}
A_{i}(p n+k) & =\operatorname{ct}\left[\begin{array}{ll}
P_{i}(\boldsymbol{x})^{p n} & Q_{i}(\boldsymbol{x}) P_{i}(\boldsymbol{x})^{k}
\end{array}\right] \\
& \equiv \operatorname{ct}\left[\begin{array}{ll}
P_{j}(\boldsymbol{x})^{n} & Q_{j}(\boldsymbol{x})
\end{array}\right]
\end{aligned}
$$

where the RHS is either a previous state or a new one.
Repeat until done!

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$
Catalan numbers

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\mathrm{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

Apéry numbers

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

All states $\bmod p^{r}$.

- For each state $A_{i}(n)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{n} Q_{i}(\boldsymbol{x})\right]$ and each $k \in\{0,1, \ldots, p-1\}$,

$$
\begin{aligned}
A_{i}(p n+k) & =\operatorname{ct}\left[\begin{array}{ll}
P_{i}(\boldsymbol{x})^{p n} & Q_{i}(\boldsymbol{x}) P_{i}(\boldsymbol{x})^{k}
\end{array}\right] \\
& \equiv \operatorname{ct}\left[\begin{array}{ll}
P_{j}(\boldsymbol{x})^{n} & Q_{j}(\boldsymbol{x})
\end{array}\right]
\end{aligned}
$$

where the RHS is either a previous state or a new one.
Repeat until done!
LEM $P(\boldsymbol{x})^{p^{r}} \equiv P\left(\boldsymbol{x}^{p}\right)^{p^{r-1}}\left(\bmod p^{r}\right) \quad$ for any $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\mathrm{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

All states $\bmod p^{r}$.

- For each state $A_{i}(n)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{n} Q_{i}(\boldsymbol{x})\right]$ and each $k \in\{0,1, \ldots, p-1\}$,

$$
\begin{aligned}
A_{i}(p n+k) & =\operatorname{ct}\left[\begin{array}{ll}
P_{i}(\boldsymbol{x})^{p n} & Q_{i}(\boldsymbol{x}) P_{i}(\boldsymbol{x})^{k}
\end{array}\right] \\
& \equiv \operatorname{ct}\left[\begin{array}{ll}
P_{j}(\boldsymbol{x})^{n} & Q_{j}(\boldsymbol{x})
\end{array}\right]
\end{aligned}
$$

where the RHS is either a previous state or a new one.
Repeat until done!
LEM $P(\boldsymbol{x})^{p^{r}} \equiv P\left(\boldsymbol{x}^{p}\right)^{p^{r-1}}\left(\bmod p^{r}\right) \quad$ for any $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.

- Simplifying using this lemma, the P_{i} are $P(\boldsymbol{x})^{p^{s}}$ with $0 \leqslant s<r$.

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\mathrm{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

Catalan numbers

Apéry numbers

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

All states $\bmod p^{r}$.

- For each state $A_{i}(n)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{n} Q_{i}(\boldsymbol{x})\right]$ and each $k \in\{0,1, \ldots, p-1\}$,

$$
\begin{aligned}
A_{i}(p n+k) & =\operatorname{ct}\left[\begin{array}{ll}
P_{i}(\boldsymbol{x})^{p n} & Q_{i}(\boldsymbol{x}) P_{i}(\boldsymbol{x})^{k}
\end{array}\right] \\
& \equiv \operatorname{ct}\left[\begin{array}{ll}
P_{j}(\boldsymbol{x})^{n} & Q_{j}(\boldsymbol{x})
\end{array}\right]
\end{aligned}
$$

where the RHS is either a previous state or a new one.
Repeat until done!
LEM $P(\boldsymbol{x})^{p^{r}} \equiv P\left(\boldsymbol{x}^{p}\right)^{p^{r-1}}\left(\bmod p^{r}\right) \quad$ for any $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.

- Simplifying using this lemma, the P_{i} are $P(\boldsymbol{x})^{p^{s}}$ with $0 \leqslant s<r$.
- The degree of the Q_{i} can be bounded.

Hence, this process terminates.

Constant terms and p-schemes

- Rowland and Zeilberger '14 construct congruence automata for constant terms $A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

EG $\quad C(n)=\operatorname{ct}\left[\left(x^{-1}+2+x\right)^{n}(1-x)\right]$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}=\mathrm{ct}\left[\frac{(x+1)(x+y)(x+y+1)}{x y}\right]^{n}
$$

Catalan numbers
Apéry numbers

- Start with the state $A_{0}(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]$.

All states $\bmod p^{r}$.

- For each state $A_{i}(n)=\operatorname{ct}\left[P_{i}(\boldsymbol{x})^{n} Q_{i}(\boldsymbol{x})\right]$ and each $k \in\{0,1, \ldots, p-1\}$,

$$
\begin{aligned}
A_{i}(p n+k) & =\operatorname{ct}\left[\begin{array}{ll}
P_{i}(\boldsymbol{x})^{p n} & \left.Q_{i}(\boldsymbol{x}) P_{i}(\boldsymbol{x})^{k}\right] \\
& \equiv \operatorname{ct}\left[\begin{array}{ll}
P_{j}(\boldsymbol{x})^{n} & \left.Q_{j}(\boldsymbol{x})\right]
\end{array}\right.
\end{array} . \begin{array}{l}
\text {. }
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { linear } p \text {-scheme: } \\
& \equiv \sum_{j} \alpha_{j} \operatorname{ct}\left[P_{j}(\boldsymbol{x})^{n} Q_{j}(\boldsymbol{x})\right]
\end{aligned}
$$

where the RHS is either a previous state or a new one.
LEM $P(\boldsymbol{x})^{p^{r}} \equiv P\left(\boldsymbol{x}^{p}\right)^{p^{r-1}}\left(\bmod p^{r}\right) \quad$ for any $P \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.

- Simplifying using this lemma, the P_{i} are $P(\boldsymbol{x})^{p^{s}}$ with $0 \leqslant s<r$.
- The degree of the Q_{i} can be bounded.

Hence, this process terminates.

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}
$$

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\frac{(1+x)^{2 n}}{x^{n}}(1-x)\right]
$$

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\frac{(1+x)^{2 n}}{x^{n}}(1-x)\right]
$$

$$
\begin{aligned}
A_{0}(3 n) & =A_{1}(n) & A_{2}(3 n) & =A_{3}(n) \\
A_{0}(3 n+1) & =A_{1}(n) & A_{2}(3 n+1) & =0 \\
A_{0}(3 n+2) & =A_{2}(n) & A_{2}(3 n+2) & =A_{2}(n) \\
A_{1}(3 n) & =A_{1}(n) & A_{3}(3 n) & =A_{3}(n) \\
A_{1}(3 n+1) & =A_{3}(n) & A_{3}(3 n+1) & =A_{1}(n) \\
A_{1}(3 n+2) & =0 & A_{3}(3 n+2) & =0
\end{aligned}
$$

Initial conditions:

$$
A_{0}(0)=A_{1}(0)=1, \quad A_{2}(0)=A_{3}(0)=2
$$

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\frac{(1+x)^{2 n}}{x^{n}}(1-x)\right]
$$

EG $\bmod 3$

 automatic 3-scheme

$$
\begin{aligned}
A_{0}(3 n) & =A_{1}(n) & A_{2}(3 n) & =A_{3}(n) \\
A_{0}(3 n+1) & =A_{1}(n) & A_{2}(3 n+1) & =0 \\
A_{0}(3 n+2) & =A_{2}(n) & A_{2}(3 n+2) & =A_{2}(n) \\
A_{1}(3 n) & =A_{1}(n) & A_{3}(3 n) & =A_{3}(n) \\
A_{1}(3 n+1) & =A_{3}(n) & A_{3}(3 n+1) & =A_{1}(n) \\
A_{1}(3 n+2) & =0 & A_{3}(3 n+2) & =0
\end{aligned}
$$

Initial conditions:

$$
A_{0}(0)=A_{1}(0)=1, \quad A_{2}(0)=A_{3}(0)=2
$$

$$
\begin{aligned}
A_{0}(3 n) & =A_{1}(n) & A_{1}(3 n) & =A_{1}(n) \\
A_{0}(3 n+1) & =A_{1}(n) & A_{1}(3 n+1) & =2 A_{1}(n) \\
A_{0}(3 n+2) & =A_{0}(n)+A_{1}(n) & A_{1}(3 n+2) & =0
\end{aligned}
$$

Initial conditions: $A_{0}(0)=A_{1}(0)=1$

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\frac{(1+x)^{2 n}}{x^{n}}(1-x)\right]
$$

EG $\bmod 3$

 automatic 3-scheme

$$
\begin{aligned}
A_{0}(3 n) & =A_{1}(n) & A_{2}(3 n) & =A_{3}(n) \\
A_{0}(3 n+1) & =A_{1}(n) & A_{2}(3 n+1) & =0 \\
A_{0}(3 n+2) & =A_{2}(n) & A_{2}(3 n+2) & =A_{2}(n) \\
A_{1}(3 n) & =A_{1}(n) & A_{3}(3 n) & =A_{3}(n) \\
A_{1}(3 n+1) & =A_{3}(n) & A_{3}(3 n+1) & =A_{1}(n) \\
A_{1}(3 n+2) & =0 & A_{3}(3 n+2) & =0
\end{aligned}
$$

Initial conditions:

$$
A_{0}(0)=A_{1}(0)=1, \quad A_{2}(0)=A_{3}(0)=2
$$

EG	$A_{0}(3 n)$	$=A_{1}(n)$	$A_{1}(3 n)$	$=A_{1}(n)$
mod 3	$A_{0}(3 n+1)$	$=A_{1}(n)$	$A_{1}(3 n+1)$	$=2 A_{1}(n)$
linear		$=A_{0}(n)+A_{1}(n)$	$A_{1}(3 n+2)$	$=0$

Initial conditions: $A_{0}(0)=A_{1}(0)=1$

Linear vs. automatic schemes

- The Catalan numbers $C(n)$ have the constant term expression:

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}=\operatorname{ct}\left[\frac{(1+x)^{2 n}}{x^{n}}(1-x)\right]
$$

EG $\bmod 3$

 automatic 3-scheme

$$
\begin{aligned}
A_{0}(3 n) & =A_{1}(n) & A_{2}(3 n) & =A_{3}(n) \\
A_{0}(3 n+1) & =A_{1}(n) & A_{2}(3 n+1) & =0 \\
A_{0}(3 n+2) & =A_{2}(n) & A_{2}(3 n+2) & =A_{2}(n) \\
A_{1}(3 n) & =A_{1}(n) & A_{3}(3 n) & =A_{3}(n) \\
A_{1}(3 n+1) & =A_{3}(n) & A_{3}(3 n+1) & =A_{1}(n) \\
A_{1}(3 n+2) & =0 & A_{3}(3 n+2) & =0
\end{aligned}
$$

Initial conditions:

$$
A_{0}(0)=A_{1}(0)=1, \quad A_{2}(0)=A_{3}(0)=2
$$

EG	$A_{0}(3 n)$	$=A_{1}(n)$	$A_{1}(3 n)$	$=A_{1}(n)$
mod 3	$A_{0}(3 n+1)$	$=A_{1}(n)$	$A_{1}(3 n+1)$	$=2 A_{1}(n)$
linear		$=A_{0}(n)+A_{1}(n)$	$A_{1}(3 n+2)$	$=0$

Initial conditions: $A_{0}(0)=A_{1}(0)=1$

Scaling schemes

EG	$A_{0}(3 n)$	$=A_{1}(n)$	$A_{1}(3 n)$	$=A_{1}(n)$
mod 3	$A_{0}(3 n+1)$	$=A_{1}(n)$	$A_{1}(3 n+1)$	$=2 A_{1}(n)$
linear 3-scheme	$A_{0}(3 n+2)$	$=A_{0}(n)+A_{1}(n)$	$A_{1}(3 n+2)$	$=0$

Initial conditions: $A_{0}(0)=A_{1}(0)=1$

Scaling schemes

EG	$A_{0}(3 n)$	$=A_{1}(n)$	$A_{1}(3 n)$	$=A_{1}(n)$
mod 3	$A_{0}(3 n+1)$	$=A_{1}(n)$	$A_{1}(3 n+1)$	$=2 A_{1}(n)$
linear 3-scheme	$A_{0}(3 n+2)$	$=A_{0}(n)+A_{1}(n)$	$A_{1}(3 n+2)$	$=0$

Initial conditions: $A_{0}(0)=A_{1}(0)=1$

EG

$\bmod 3$

$$
\begin{aligned}
& A_{0}(3 n)=A_{1}(n) \quad A_{1}(3 n)=A_{1}(n) \quad A_{2}(3 n)=A_{1}(n) \\
& A_{0}(3 n+1)=A_{1}(n) \quad A_{1}(3 n+1)=2 A_{1}(n) \quad A_{2}(3 n+1)=0 \\
& \underset{\substack{\text { scaling } \\
3 \text {-scheme }}}{\substack{\text { lol } \\
0}}(3 n+2)=2 A_{2}(n) \quad A_{1}(3 n+2)=0 \quad A_{2}(3 n+2)=A_{2}(n)
\end{aligned}
$$

Initial conditions: $A_{0}(0)=A_{1}(0)=A_{2}(0)=1$

- 3 -schemes for Catalan numbers modulo 3 :
- automatic: 4 states
(most informative)
- scaling: 3 states
- linear: 2 states
(least informative)

Scaling schemes

$\underset{\bmod 3}{E G}$

$$
\begin{aligned}
A_{0}(3 n) & =A_{1}(n) \\
A_{0}(3 n+1) & =A_{1}(n) \\
A_{0}(3 n+2) & =A_{0}(n)+A_{1}(n)
\end{aligned}
$$

Initial conditions: $A_{0}(0)=A_{1}(0)=1$
EG
$\bmod 3$

$$
\begin{aligned}
& A_{0}(3 n)=A_{1}(n) \quad A_{1}(3 n)=A_{1}(n) \quad A_{2}(3 n)=A_{1}(n) \\
& A_{0}(3 n+1)=A_{1}(n) \quad A_{1}(3 n+1)=2 A_{1}(n) \quad A_{2}(3 n+1)=0 \\
& \underset{\substack{\text { scaling } \\
3 \text {-scheme }}}{\substack{\text { she } \\
0}}(3 n+2)=2 A_{2}(n) \quad A_{1}(3 n+2)=0 \quad A_{2}(3 n+2)=A_{2}(n)
\end{aligned}
$$

Initial conditions: $A_{0}(0)=A_{1}(0)=A_{2}(0)=1$

- 3 -schemes for Catalan numbers modulo 3 :
- automatic: 4 states
(most informative)
- scaling: 3 states
- linear: 2 states
(least informative)
- p-adic valuations: Modulo p^{r}, scaling p-schemes for $A(n)$ can be simplified into automatic schemes for $p^{\nu_{p}(A(n))}$ by "forgetting the constants".

A conjecture on Motzkin numbers modulo p^{2}

$\underset{\text { Rowiand, }}{\mathbf{Q}}$ For the Motzkin numbers, are there infinitely many primes p such that Yassawi '15 $M(n) \not \equiv 0\left(\bmod p^{2}\right)$ for all $n \geqslant 0$?

- Rowland-Yassawi proved that 5 and 13 are such primes.
- They further conjectured that $31,37,61$ are such primes as well.

A conjecture on Motzkin numbers modulo p^{2}

Q For the Motzkin numbers, are there infinitely many primes p such that Yassawi '15 $M(n) \not \equiv 0\left(\bmod p^{2}\right)$ for all $n \geqslant 0$?

- Rowland-Yassawi proved that 5 and 13 are such primes.
- They further conjectured that $31,37,61$ are such primes as well.

THM Let $p \in\{5,13,31,37,61,79,97,103\}$.
S 2022 For all $n \in \mathbb{Z}_{\geqslant 0}, M(n) \not \equiv 0\left(\bmod p^{2}\right)$.

- Proof by computing a scaling p-scheme modulo p^{2} using

$$
M(n)=\operatorname{ct}\left[\left(x^{-1}+1+x\right)^{n}\left(1-x^{2}\right)\right] .
$$

A conjecture on Motzkin numbers modulo p^{2}

Q For the Motzkin numbers, are there infinitely many primes p such that

$$
M(n) \not \equiv 0\left(\bmod p^{2}\right) \text { for all } n \geqslant 0 ?
$$

- Rowland-Yassawi proved that 5 and 13 are such primes.
- They further conjectured that $31,37,61$ are such primes as well.

THM Let $p \in\{5,13,31,37,61,79,97,103\}$.
S 2022 For all $n \in \mathbb{Z}_{\geqslant 0}, M(n) \not \equiv 0\left(\bmod p^{2}\right)$.

- Proof by computing a scaling p-scheme modulo p^{2} using

$$
M(n)=\operatorname{ct}\left[\left(x^{-1}+1+x\right)^{n}\left(1-x^{2}\right)\right] .
$$

- These scaling p-schemes have much fewer states than automatic ones:
- $p=31: 125$ rather than 28,081 states
- $p=37$: 149 rather than 44,173 states

The case $p=13$ as an example

- SageMath implementation:
https://github.com/arminstraub/congruenceschemes
$\underset{\mathrm{R}-\mathrm{Y}^{\prime} 15}{\mathrm{E}} M(n) \not \equiv 0\left(\bmod 13^{2}\right)$ for all $n \geqslant 0$

The case $p=13$ as an example

- SageMath implementation: https://github.com/arminstraub/congruenceschemes
$\underset{R-Y 15}{\text { EG }} M(n) \not \equiv 0\left(\bmod 13^{2}\right)$ for all $n \geqslant 0$
>>> R.〈x> = LaurentPolynomialRing(Zmod(13~2))
>>> S = CongruenceSchemeAutomatic(1/x+1+x, 1-x^2); S
Linear 13-scheme with 2097 states over Ring of integers modulo 169
>>> S.impossible_values()
$\{0\}$
- Takes about 10sec (vs 40min mentioned in RY paper; 30sec using Rowland's excellent Mathematica package IntegerSequences).

The case $p=13$ as an example

- SageMath implementation: https://github.com/arminstraub/congruenceschemes

```
R.Y'15
```

>>> R.<x> = LaurentPolynomialRing(Zmod(13^2))
>>> S = CongruenceSchemeAutomatic(1/x+1+x, 1-x^2); S
Linear 13-scheme with 2097 states over Ring of integers modulo 169
>>> S.impossible_values()
\{0\}

- Takes about 10sec (vs 40min mentioned in RY paper; 30sec using Rowland's excellent Mathematica package IntegerSequences).
- The following cuts this down to half a second:
>>> S = CongruenceSchemeScaling(1/x+1+x, 1-x^2); S
Linear 13-scheme with 48 states over Ring of integers modulo 169
>>> V = S.valuation_scheme(); V
Linear 13-scheme with 5 states over Ring of integers modulo 169 >>> V.possible_values()
$\{1,13\}$

Lucas congruences

THM
Lucas 1878

$$
\binom{n}{k} \equiv\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \cdots \quad(\bmod p)
$$

where n_{i} and k_{i} are the p-adic digits of n and k.

EG

$$
\begin{array}{r}
\binom{136}{79} \equiv\binom{3}{2}\binom{5}{4}\binom{2}{1}=3 \cdot 5 \cdot 2 \equiv 2 \quad(\bmod 7) \\
\mathrm{LHS}=1009220746942993946271525627285911932800
\end{array}
$$

THM
Lucas 1878

$$
\binom{n}{k} \equiv\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \cdots \quad(\bmod p)
$$

where n_{i} and k_{i} are the p-adic digits of n and k.

EG

$$
\begin{array}{r}
\binom{136}{79} \equiv\binom{3}{2}\binom{5}{4}\binom{2}{1}=3 \cdot 5 \cdot 2 \equiv 2 \quad(\bmod 7) \\
\mathrm{LHS}=1009220746942993946271525627285911932800
\end{array}
$$

- Interesting sequences like the Apéry numbers

$$
A(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

satisfy such Lucas congruences as well:
THM
Gessel '82

$$
A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)
$$

Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide RowlandYassawi
'15 any Apéry number $A(n)$. Such as $p=2,3,7,13,23,29,43,47, \ldots$

Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide
Rowland-
Yassawi
'15 any Apéry number $A(n)$. Such as $p=2,3,7,13,23,29,43,47, \ldots$

EG - The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are $1,5,3,3,3,5,1$.

Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide

Rowland-
Yassawi
'15 any Apéry number $A(n)$. Such as $p=2,3,7,13,23,29,43,47, \ldots$

EG - The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7

- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.

Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide

Rowland-
Yassawi
'15 any Apéry number $A(n)$. Such as $p=2,3,7,13,23,29,43,47, \ldots$

EG
$p=7$

- The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are $1,5,3,3,3,5,1$.
- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.

CONJ The proportion of primes not dividing any Apéry number $A(n)$
Malik-S ${ }_{16}$ is $e^{-1 / 2} \approx 60.65 \%$.

Application: Primes not dividing Apéry numbers

CONJ There are infinitely many primes p such that p does not divide

Rowland-
Yassawi
'15 any Apéry number $A(n)$. Such as $p=2,3,7,13,23,29,43,47, \ldots$

EG - The values of Apéry numbers $A(0), A(1), \ldots, A(6)$ modulo 7 are $1,5,3,3,3,5,1$.

- Hence, the Lucas congruences imply that 7 does not divide any Apéry number.

CONJ The proportion of primes not dividing any Apéry number $A(n)$
Malik-S ${ }^{\prime} 16$ is $e^{-1 / 2} \approx 60.65 \%$.

- Heuristically, combine Lucas congruences,
- palindromic behavior of Apéry numbers, that is

$$
A(n) \equiv A(p-1-n) \quad(\bmod p)
$$

- and $e^{-1 / 2}=\lim _{p \rightarrow \infty}\left(1-\frac{1}{p}\right)^{(p+1) / 2}$.

Lucas congruences correspond to the simplest schemes

Lucas congruences: $A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)$
n_{i} are the p-adic digits of n
PROP Suppose $A(0)=1$.
$A(n)$ satisfies Lucas congruences modulo p.
$\Longleftrightarrow A(n)(\bmod p)$ can be encoded by a single-state linear p-scheme.

Lucas congruences: $A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)$
n_{i} are the p-adic digits of n
PROP Suppose $A(0)=1$.
$A(n)$ satisfies Lucas congruences modulo p.
$\Longleftrightarrow A(n)(\bmod p)$ can be encoded by a single-state linear p-scheme.

$$
\text { proof } p \text {-scheme with single state } A_{0}(n) \equiv A(n)(\bmod p) \text { : }
$$

$$
A_{0}(p n+k) \equiv \alpha_{k} A_{0}(n) \quad(\bmod p) \quad \text { for all } 0 \leqslant k<p, n \geqslant 0
$$

Lucas congruences correspond to the simplest schemes

Lucas congruences: $A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)$
n_{i} are the p-adic digits of n
PROP Suppose $A(0)=1$.
$A(n)$ satisfies Lucas congruences modulo p.
$\Longleftrightarrow A(n)(\bmod p)$ can be encoded by a single-state linear p-scheme.
proof p-scheme with single state $A_{0}(n) \equiv A(n)(\bmod p)$:

$$
\begin{array}{rlr}
A_{0}(p n+k) & \equiv \alpha_{k} A_{0}(n) \quad(\bmod p) \quad \text { for all } 0 \leqslant k<p, n \geqslant 0 \\
n=0 & \quad A_{0}(k) & \equiv \alpha_{k}
\end{array}
$$

Lucas congruences: $A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)$ n_{i} are the p-adic digits of n

PROP Suppose $A(0)=1$.
$A(n)$ satisfies Lucas congruences modulo p.
$\Longleftrightarrow A(n)(\bmod p)$ can be encoded by a single-state linear p-scheme.
proof p-scheme with single state $A_{0}(n) \equiv A(n)(\bmod p)$:

$$
\begin{aligned}
A_{0}(p n+k) & \equiv \alpha_{k} A_{0}(n) \quad(\bmod p) \quad \text { for all } 0 \leqslant k<p, n \geqslant 0 \\
n=0: \quad A_{0}(k) & \equiv \alpha_{k} \\
A_{0}(p n+k) & \equiv A_{0}(k) A_{0}(n) \quad(\bmod p)
\end{aligned}
$$

Lucas congruences correspond to the simplest schemes
Lucas congruences: $A(n) \equiv A\left(n_{0}\right) A\left(n_{1}\right) \cdots A\left(n_{r}\right) \quad(\bmod p)$
n_{i} are the p-adic digits of n
PROP Suppose $A(0)=1$.
Henningsen
S '21
$A(n)$ satisfies Lucas congruences modulo p.
$\Longleftrightarrow A(n)(\bmod p)$ can be encoded by a single-state linear p-scheme.
proof p-scheme with single state $A_{0}(n) \equiv A(n)(\bmod p)$:

$$
\begin{aligned}
A_{0}(p n+k) & \equiv \alpha_{k} A_{0}(n) \quad(\bmod p) \quad \text { for all } 0 \leqslant k<p, n \geqslant 0 \\
n=0: \quad A_{0}(k) & \equiv \alpha_{k} \\
A_{0}(p n+k) & \equiv A_{0}(k) A_{0}(n) \quad(\bmod p)
\end{aligned}
$$

- This suggests generalizations such as:
$A(n)$ satisfies Lucas congruences of order k modulo p. $\Longleftrightarrow A(n)(\bmod p)$ can be encoded by a linear p-scheme with k states.

Generalized Lucas congruences

$\underset{\text { Henningsen }}{\operatorname{THM}}$ Let $A(n)=\operatorname{ct}\left[P(x, y)^{n} Q(x, y)\right]$ where $P, Q \in \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ with
S '21

$$
P(x, y)=\sum_{(i, j) \in\{-1,0,1\}^{2}} a_{i, j} x^{i} y^{j}, \quad Q(x, y)=\alpha+\beta x+\gamma y+\delta x y .
$$

Generalized Lucas congruences

$\underset{\text { Henningsen }}{\operatorname{THM}}$ Let $A(n)=\operatorname{ct}\left[P(x, y)^{n} Q(x, y)\right]$ where $P, Q \in \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ with

$$
P(x, y)=\sum_{(i, j) \in\{-1,0,1\}^{2}} a_{i, j} x^{i} y^{j}, \quad Q(x, y)=\alpha+\beta x+\gamma y+\delta x y .
$$

Then, for any $n \in \mathbb{Z}_{\geqslant 0}$ and $k \in\{0,1, \ldots, p-1\}$,

$$
A(p n+k) \equiv B(n) A(k)+\left\{\begin{array}{ll}
0, & \text { if } k<p-1, \\
\tilde{A}(n), & \text { if } k=p-1,
\end{array} \quad(\bmod p) .\right.
$$

Here, $B(n)=\operatorname{ct}\left[P(x, y)^{n}\right]$ and $\tilde{A}(n)=\operatorname{ct}\left[P(x, y)^{n} \tilde{Q}(x, y)\right]$ with:

Generalized Lucas congruences

$\underset{\text { Henningsen }}{\operatorname{THM}}$ Let $A(n)=\operatorname{ct}\left[P(x, y)^{n} Q(x, y)\right]$ where $P, Q \in \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ with

$$
P(x, y)=\sum_{(i, j) \in\{-1,0,1\}^{2}} a_{i, j} x^{i} y^{j}, \quad Q(x, y)=\alpha+\beta x+\gamma y+\delta x y .
$$

Then, for any $n \in \mathbb{Z}_{\geqslant 0}$ and $k \in\{0,1, \ldots, p-1\}$,

$$
A(p n+k) \equiv B(n) A(k)+\left\{\begin{array}{ll}
0, & \text { if } k<p-1, \\
\tilde{A}(n), & \text { if } k=p-1,
\end{array} \quad(\bmod p) .\right.
$$

Here, $B(n)=\operatorname{ct}\left[P(x, y)^{n}\right]$ and $\tilde{A}(n)=\operatorname{ct}\left[P(x, y)^{n} \tilde{Q}(x, y)\right]$ with:

- $\tilde{Q}(x, y)=Q\left(\sigma_{x} x, \sigma_{y} y\right)-\alpha+\delta\left(\frac{a_{1,0}}{2 a_{1,1}}\left(1-\sigma_{x}\right) x+\frac{a_{0,1}}{2 a_{1,1}}\left(1-\sigma_{y}\right) y+\left(1-\sigma_{x} \sigma_{y}\right) x y\right)$
- $\sigma_{x}=\left(\frac{a_{1,0}^{2}-4 a_{1,-1} a_{1,1}}{p}\right) \in\{0, \pm 1\}$

$$
p \neq 2, p \nmid a_{1,1}
$$

- $\sigma_{y}=\left(\frac{a_{0,1}^{2}-4 a_{-1,1} a_{1,1}}{p}\right) \in\{0, \pm 1\}$

Generalized Lucas congruences

$\underset{\text { Henmingsen }}{\operatorname{THM}}$ Let $A(n)=\operatorname{ct}\left[P(x, y)^{n} Q(x, y)\right]$ where $P, Q \in \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ with

$$
P(x, y)=\sum_{(i, j) \in\{-1,0,1\}^{2}} a_{i, j} x^{i} y^{j}, \quad Q(x, y)=\alpha+\beta x+\gamma y+\delta x y .
$$

Then, for any $n \in \mathbb{Z}_{\geqslant 0}$ and $k \in\{0,1, \ldots, p-1\}$,

$$
A(p n+k) \equiv B(n) A(k)+\left\{\begin{array}{ll}
0, & \text { if } k<p-1, \\
\tilde{A}(n), & \text { if } k=p-1,
\end{array} \quad(\bmod p) .\right.
$$

Here, $B(n)=\operatorname{ct}\left[P(x, y)^{n}\right]$ and $\tilde{A}(n)=\operatorname{ct}\left[P(x, y)^{n} \tilde{Q}(x, y)\right]$ with:

- $\tilde{Q}(x, y)=Q\left(\sigma_{x} x, \sigma_{y} y\right)-\alpha+\delta\left(\frac{a_{1,0}}{2 a_{1,1}}\left(1-\sigma_{x}\right) x+\frac{a_{0,1}}{2 a_{1,1}}\left(1-\sigma_{y}\right) y+\left(1-\sigma_{x} \sigma_{y}\right) x y\right)$
- $\sigma_{x}=\left(\frac{a_{1,0}^{2}-4 a_{1,-1} a_{1,1}}{p}\right) \in\{0, \pm 1\}$

$$
p \neq 2, p \nmid a_{1,1}
$$

- $\sigma_{y}=\left(\frac{a_{0,1}^{2}-4 a_{-1,1} a_{1,1}}{p}\right) \in\{0, \pm 1\}$

If $Q=1$, these reduce to the usual Lucas congruences.

Application: Catalan numbers

$\underset{\text { Henningsen }}{\text { COR }}$ If $p-1, \ldots, p-1, n_{0}, n_{1}, \ldots, n_{r}$ is the p-adic expansion of n, then S:21 S '21 $C(n) \equiv \delta\left(n_{0}, s\right) C\left(n_{0}\right)\binom{2 n_{1}}{n_{1}} \cdots\binom{2 n_{r}}{n_{r}} \quad(\bmod p)$ where $\delta\left(n_{0}, s\right)= \begin{cases}1, & \text { if } s=0, \\ -\left(2 n_{0}+1\right), & \text { if } s \geqslant 1 .\end{cases}$

Application: Catalan numbers

$\underset{\text { Henninsen }}{\text { COR }}$ If $p-1, \ldots, p-1, n_{0}, n_{1}, \ldots, n_{r}$ is the p-adic expansion of n, then Henningsen S '21

$$
C(n) \equiv \delta\left(n_{0}, s\right) C\left(n_{0}\right)\binom{2 n_{1}}{n_{1}} \cdots\binom{2 n_{r}}{n_{r}} \quad(\bmod p)
$$

where $\delta\left(n_{0}, s\right)= \begin{cases}1, & \text { if } s=0, \\ -\left(2 n_{0}+1\right), & \text { if } s \geqslant 1 .\end{cases}$

$$
C(n) \equiv\left\{\begin{array}{ll}
(-1)^{\tau(n+1)}, & \text { if } n+1 \in T, \\
0, & \text { otherwise }
\end{array} \quad(\bmod 3)\right.
$$

$$
\text { where } m=m_{0}+3 m_{1}+3^{2} m_{2}+\ldots \in T \text { iff } m_{1}, m_{2}, \ldots \in\{0,1\} .
$$

$$
\tau(m)=\left(\# \text { of } m_{1}, m_{2}, \ldots \text { equal to } 1\right)
$$

Application: Catalan numbers

$\underset{\text { Henningsen }}{\text { COR }}$ If $p-1, \ldots, p-1, n_{0}, n_{1}, \ldots, n_{r}$ is the p-adic expansion of n, then

Henningsen S '21

$$
C(n) \equiv \delta\left(n_{0}, s\right) C\left(n_{0}\right)\binom{2 n_{1}}{n_{1}} \cdots\binom{2 n_{r}}{n_{r}} \quad(\bmod p)
$$

where $\delta\left(n_{0}, s\right)= \begin{cases}1, & \text { if } s=0, \\ -\left(2 n_{0}+1\right), & \text { if } s \geqslant 1 .\end{cases}$

EG

Deutsch,
Sagan '06

$$
C(n) \equiv\left\{\begin{array}{ll}
(-1)^{\tau(n+1)}, & \text { if } n+1 \in T, \\
0, & \text { otherwise }
\end{array} \quad(\bmod 3)\right.
$$

where $m=m_{0}+3 m_{1}+3^{2} m_{2}+\ldots \in T$ iff $m_{1}, m_{2}, \ldots \in\{0,1\}$. $\tau(m)=\left(\#\right.$ of m_{1}, m_{2}, \ldots equal to 1)

$$
C(n) \equiv\left\{\begin{array}{ll}
2^{\lambda(n)}, & \text { if } n \notin Z, \\
0, & \text { otherwise }
\end{array} \quad(\bmod 5)\right.
$$

where $n \in Z$ iff $n_{0}=3$, or ($n_{0}=2, s \geqslant 1$), or one of $n_{1}, n_{2}, \ldots \in\{3,4\}$.
$\lambda(n)=\left(\#\right.$ of n_{1}, n_{2}, \ldots equal to 1$)+ \begin{cases}1, & \text { if } n_{0}=2, \text { or if both } n_{0}=1 \text { and } s \geqslant 1, \\ 2, & \text { if } n_{0}=0 \text { and } s \geqslant 1 .\end{cases}$

Catalan numbers: forbidden residues

$$
\begin{array}{rlr}
\underset{\substack{\text { Rowland, } \\
\text { Yassawi '15 }}}{\text { EG(}} \mathbf{C}) & \not \equiv 3(\bmod 4) & \text { Eu-Liu-Yeh '08 } \\
C(n) & \neq 9(\bmod 16) & \text { Liu-Yeh '10 } \\
C(n) & \not \equiv 17,21,26(\bmod 32) & \\
C(n) & \not \equiv 10,13,33,37(\bmod 64) &
\end{array}
$$

Catalan numbers: forbidden residues

\(\underset{\substack{Rowland,

Yassawi '15}}{C(n)}\)| $C(n) \not \equiv 3(\bmod 4)$ |
| :--- |
| $C(n)$ |
| $C=17,21,26(\bmod 16)$ |
| $C(n)$ |$\neq 10,13,33,37(\bmod 64)$

Catalan numbers: forbidden residues

$\underset{\text { Rowland, }}{\text { EG }} C(n) \not \equiv 3(\bmod 4)$
Rowland,
$C(n) \not \equiv 9(\bmod 16)$
$C(n) \not \equiv 17,21,26(\bmod 32)$
$C(n) \not \equiv 10,13,33,37(\bmod 64)$
Q Let $P(r)$ be the proportion of residues not attained by $C(n) \bmod 2^{r}$.
Yassawi ' 15 Does $P(r) \rightarrow 1$ as $r \rightarrow \infty$?

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$P(r)$	0	.25	.25	.31	.41	.47	.54	.59	.65	.69	.73	.76	.79	.82
$N(r)$	0	1	2	5	13	30	69	152	332	710	1502	3133	6502	13394
$A(r)$	0	1	0	1	3	4	9	14	28	46	82	129	236	390

$N(r)=\#$ residues not attained $\bmod 2^{r}$
$A(r)=\#$ additional residues not attained $\bmod 2^{r}=N(r)-2 N(r-1)$

Catalan numbers: forbidden residues

EG $C(n) \not \equiv 3(\bmod 4)$
Rowland,
$C(n) \not \equiv 9(\bmod 16)$
Liu-Yeh '10
$C(n) \not \equiv 17,21,26(\bmod 32)$
$C(n) \not \equiv 10,13,33,37(\bmod 64)$
Let $P(r)$ be the proportion of residues not attained by $C(n) \bmod 2^{r}$.

Rowland,
Yassawi '15

Does $P(r) \rightarrow 1$ as $r \rightarrow \infty$?

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$P(r)$	0	.25	.25	.31	.41	.47	.54	.59	.65	.69	.73	.76	.79	.82
$N(r)$	0	1	2	5	13	30	69	152	332	710	1502	3133	6502	13394
$A(r)$	0	1	0	1	3	4	9	14	28	46	82	129	236	390

$N(r)=\#$ residues not attained mod 2^{r}
$A(r)=\#$ additional residues not attained $\bmod 2^{r}=N(r)-2 N(r-1)$

CONJ $C(n) \not \equiv 3 \quad(\bmod 10) \quad$ for all $n \geqslant 0$.
Bostan
'15
$C(n) \not \equiv 1,7,9(\bmod 10) \quad$ for sufficiently large n.

If true, the last digit of any sufficiently large odd Catalan number is always 5 . ($n>255$?)

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

J. Henningsen, A. Straub
Generalized Lucas congruences and linear p-schemes
Advances in Applied Mathematics, Vol. 141, 2022, p. 1-20, \#102409

A. Straub

On congruence schemes for constant terms and their applications
Research in Number Theory, Vol. 8, Nr. 3, 2022, p. 1-21, \#42

