# Small-Step Walks: Operators Obtained via Creative Telescoping

ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 01 Your browser does not support the HTML5 canvas tag. 00Maplev, then u1.230.0434343915 / 79 / 84 / 4286640 / 9137 / 8118 / 16715537{t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right) 00Mapleu, then v1.30.0434343917 / 97 / 615 / 154312620 / 2434 / 506 / 722542{t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right) 01Maplev, then u3.070.09594642167 / 712 / 123 / 44260635 / 10936 / 10229 / 2219134187{t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right) 01Mapleu, then v2.430.044646421631 / 1717 / 1934 / 30611680010 / 84 / 412 / 1262777{t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right) 10Maplev, then u2.460.04464642167 / 810 / 124 / 43207710 / 1118 / 219 / 8515076{t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right) 10Mapleu, then v3.150.099646421612 / 127 / 822 / 226180757 / 4117 / 969 / 954274{t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right) 11Maplev, then u1.220.0453431083 / 58 / 83 / 4260023 / 9036 / 8018 / 16719516{t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right) 11Mapleu, then v1.320.0453431086 / 86 / 613 / 14330323 / 223 / 508 / 62602{t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right) 11Mathematicau, then v8.23n.a.3431084 / 55 / 55 / 4313915 / 65 / 46 / 52641{t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right) 11Mathematicav, then u1.71n.a.3431084 / 55 / 55 / 4313915 / 65 / 46 / 52641{t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right) x0Mathematicau, then v137n.a.5106240712 / 107 / 89 / 865656113 / 116 / 810 / 10647287{t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right) \left( t{x}^{2}-2 \,tx+t-x \right) \left( t{x}^{2}+2\,tx+t-x \right) \left( 16\,{t}^{3} {x}^{3}+2\,{t}^{2}{x}^{4}+16\,{t}^{3}x+28\,{t}^{2}{x}^{2}-9\,t{x}^{3}+2 \,{t}^{2}-9\,tx+6\,{x}^{2} \right) 0yMathematicau, then v144n.a.5106240714 / 129 / 109 / 889058414 / 129 / 89 / 8737949{t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right) \left( t{y}^{2}-2 \,ty+t-y \right) \left( t{y}^{2}+2\,ty+t-y \right) \left( 16\,{t}^{3} {y}^{3}+2\,{t}^{2}{y}^{4}+16\,{t}^{3}y+28\,{t}^{2}{y}^{2}-9\,t{y}^{3}+2 \,{t}^{2}-9\,ty+6\,{y}^{2} \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
02 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$1.030.0433343903 / 59 / 84 / 422546 / 713 / 147 / 641879${t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
00Maple$u$, then $v$1.080.0433343906 / 77 / 613 / 144187910 / 844 / 7317 / 192216${t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
01Maple$v$, then $u$1.970.04344531229 / 913 / 203 / 4533569 / 12620 / 918 / 5979037${t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
01Maple$u$, then $v$2.250.044945312212 / 4415 / 1232 / 638363025 / 1654 / 14212 / 363381${t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
10Maple$v$, then $u$2.040.04494531226 / 812 / 124 / 4341611 / 1218 / 209 / 8711536${t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
10Maple$u$, then $v$ 20.04344531229 / 128 / 820 / 22789687 / 83 / 412 / 1251205${t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
11Maple$v$, then $u$1.380.04423531555 / 58 / 83 / 43100114 / 9915 / 6019 / 59718155${t}^{2} \left( 1+4\,t \right) \left( 4\,t-1 \right) ^{2}$
11Maple$u$, then $v$1.350.044235315539 / 308 / 834 / 405133055 / 843 / 738 / 203964${t}^{2} \left( 1+4\,t \right) \left( 4\,t-1 \right) ^{2}$
11Mathematica$u$, then $v$14.1n.a.3531554 / 36 / 55 / 4319334 / 36 / 46 / 53656${t}^{2} \left( 1+4\,t \right) \left( 4\,t-1 \right) ^{2}$
11Mathematica$v$, then $u$1.65n.a.3531554 / 36 / 55 / 4319334 / 36 / 46 / 53656${t}^{2} \left( 1+4\,t \right) \left( 4\,t-1 \right) ^{2}$
x0Mathematica$u$, then $v$234n.a.58555712 / 89 / 87 / 884268513 / 99 / 810 / 10835668${t}^{4} \left( 4\,t-1 \right) \left( 1+4\,t \right) \left( 2\,t{x}^{2 }+2\,t+x \right) \left( 2\,t{x}^{2}+2\,t-x \right)$
0yMathematica$u$, then $v$172n.a.5855578 / 610 / 109 / 87244666 / 53 / 89 / 854284${t}^{4} \left( 4\,t-1 \right) \left( 1+4\,t \right) \left( 2\,t{y}^{2 }+2\,t+y \right) \left( 2\,t{y}^{2}+2\,t-y \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 03 Your browser does not support the HTML5 canvas tag. 00Maplev, then u2.360.04374952429 / 712 / 124 / 46267313 / 1020 / 219 / 8918865{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 12\,{t}^{2}-1 \right) 00Mapleu, then v2.50.043749524214 / 139 / 824 / 2692636710 / 74 / 412 / 1263111{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 12\,{t}^{2}-1 \right) 01Maplev, then u3.020.0443410645911 / 712 / 123 / 47486513 / 1120 / 228 / 8926372{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 72\,{t}^{3}-36\,{t}^{2}-6\,t+1 \right) 01Mapleu, then v2.980.0448410645913 / 119 / 819 / 2293465211 / 74 / 412 / 1265885{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 72\,{t}^{3}-36\,{t}^{2}-6\,t+1 \right) 10Maplev, then u2.090.04364741796 / 612 / 124 / 4459013 / 6619 / 809 / 29918983{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) 10Mapleu, then v2.610.043547417915 / 158 / 824 / 2682268410 / 93 / 412 / 1252698{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) 11Maplev, then u1.530.04423852478 / 58 / 83 / 45220510 / 3614 / 526 / 2079206{t}^{2} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 12\,{t}^{2}-1 \right) 11Mapleu, then v1.790.044438524711 / 96 / 615 / 1871519910 / 53 / 416 / 954954{t}^{2} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 12\,{t}^{2}-1 \right) 11Mathematicau, then v15.7n.a.3852477 / 36 / 55 / 4544677 / 35 / 46 / 541317{t}^{2} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 12\,{t}^{2}-1 \right) 11Mathematicav, then u1.94n.a.3852477 / 36 / 55 / 4544677 / 35 / 46 / 541317{t}^{2} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 12\,{t}^{2}-1 \right) x0Mathematicau, then v313n.a.5149479116 / 69 / 87 / 81119423117 / 79 / 810 / 1012154153{t}^{4} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( 2\,t{x}^{2}+2\,tx+2\,t+x \right) \left( 2\,t{x}^{2}+2\,tx+2\,t-x \right) \left( 384\,{t}^{4}{ x}^{4}+192\,{t}^{4}{x}^{3}+576\,{t}^{4}{x}^{2}-28\,{t}^{2}{x}^{4}+192\, {t}^{4}x+8\,{t}^{2}{x}^{3}+384\,{t}^{4}-8\,{t}^{2}{x}^{2}+{x}^{4}+8\,{t }^{2}x+2\,{x}^{3}-28\,{t}^{2}+2\,{x}^{2}+2\,x+1 \right) 0yMathematicau, then v264n.a.51510511216 / 710 / 109 / 81120235715 / 63 / 89 / 81040759{t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 2\,t-1 \right) \left( 6\,t+1 \right) \left( t{y}^{2}+t+y \right) \left( 3456\,{t}^{6}{y}^{4}+6912\,{t}^{6}{y}^{2}-2160\,{t}^{5}{y}^{3}-252\,{t} ^{4}{y}^{4}+3456\,{t}^{6}-2160\,{t}^{5}y-504\,{t}^{4}{y}^{2}+312\,{t}^{ 3}{y}^{3}+9\,{t}^{2}{y}^{4}-252\,{t}^{4}+312\,{t}^{3}y+30\,{t}^{2}{y}^{ 2}-3\,t{y}^{3}+9\,{t}^{2}-3\,ty-{y}^{2} \right) \left( 3\,t{y}^{2}+3\, t-y \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
04 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$4.040.0534742608 / 912 / 124 / 45398915 / 13930 / 1199 / 411164950${t}^{3} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( 2\,t-1 \right) \left( t+1 \right)$
00Maple$u$, then $v$4.060.05347426015 / 169 / 830 / 3211648148 / 134 / 417 / 2255785${t}^{3} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( 2\,t-1 \right) \left( t+1 \right)$
01Maple$v$, then $u$3.640.0474853319 / 912 / 123 / 46436044 / 16246 / 10729 / 6819261681${t}^{3} \left( 1+4\,t \right) \left( t+1 \right) ^{2} \left( 8\,t-1 \right) ^{2}$
01Maple$u$, then $v$4.270.090648533117 / 179 / 830 / 32128166618 / 134 / 417 / 22610964${t}^{3} \left( 1+4\,t \right) \left( t+1 \right) ^{2} \left( 8\,t-1 \right) ^{2}$
10Maple$v$, then $u$4.320.09064853319 / 912 / 124 / 46473117 / 1730 / 329 / 81281666${t}^{3} \left( 1+4\,t \right) \left( t+1 \right) ^{2} \left( 8\,t-1 \right) ^{2}$
10Maple$u$, then $v$3.590.04748533112 / 128 / 820 / 229240379 / 93 / 412 / 1264360${t}^{3} \left( 1+4\,t \right) \left( t+1 \right) ^{2} \left( 8\,t-1 \right) ^{2}$
11Maple$v$, then $u$1.880.04723641958 / 3812 / 63 / 81544829 / 1116 / 85 / 17610848${t}^{2} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( 2\,t-1 \right) \left( t+1 \right)$
11Maple$u$, then $v$1.930.04723641959 / 95 / 616 / 186108486 / 63 / 48 / 831843${t}^{2} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( 2\,t-1 \right) \left( t+1 \right)$
11Mathematica$u$, then $v$15.5n.a.3641955 / 46 / 55 / 4431675 / 45 / 46 / 541449${t}^{2} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( 2\,t-1 \right) \left( t+1 \right)$
11Mathematica$v$, then $u$2.29n.a.3641955 / 46 / 55 / 4431675 / 45 / 46 / 541449${t}^{2} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( 2\,t-1 \right) \left( t+1 \right)$
x0Mathematica$u$, then $v$475n.a.5139757917 / 139 / 87 / 81240188018 / 149 / 810 / 1013346626${t}^{3} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( t+1 \right) \left( t{x}^{2}+2\,tx+t+x \right) \left( 3\,t{x}^{2}+2\,tx+3 \,t-x \right) \left( 360\,{t}^{5}{x}^{4}+576\,{t}^{5}{x}^{3}+54\,{t}^{ 4}{x}^{4}+944\,{t}^{5}{x}^{2}+168\,{t}^{4}{x}^{3}-54\,{t}^{3}{x}^{4}+ 576\,{t}^{5}x+244\,{t}^{4}{x}^{2}+117\,{t}^{3}{x}^{3}+9\,{t}^{2}{x}^{4} +360\,{t}^{5}+168\,{t}^{4}x+80\,{t}^{3}{x}^{2}+36\,{t}^{2}{x}^{3}+54\,{ t}^{4}+117\,{t}^{3}x+44\,{t}^{2}{x}^{2}-3\,t{x}^{3}-54\,{t}^{3}+36\,{t} ^{2}x-8\,t{x}^{2}+9\,{t}^{2}-3\,tx-{x}^{2} \right)$
0yMathematica$u$, then $v$382n.a.5139757915 / 1110 / 109 / 81127416614 / 109 / 89 / 810107444${t}^{3} \left( 1+4\,t \right) \left( 8\,t-1 \right) \left( t+1 \right) \left( t{y}^{2}+2\,ty+t+y \right) \left( 3\,t{y}^{2}+2\,ty+3 \,t-y \right) \left( 360\,{t}^{5}{y}^{4}+576\,{t}^{5}{y}^{3}+54\,{t}^{ 4}{y}^{4}+944\,{t}^{5}{y}^{2}+168\,{t}^{4}{y}^{3}-54\,{t}^{3}{y}^{4}+ 576\,{t}^{5}y+244\,{t}^{4}{y}^{2}+117\,{t}^{3}{y}^{3}+9\,{t}^{2}{y}^{4} +360\,{t}^{5}+168\,{t}^{4}y+80\,{t}^{3}{y}^{2}+36\,{t}^{2}{y}^{3}+54\,{ t}^{4}+117\,{t}^{3}y+44\,{t}^{2}{y}^{2}-3\,t{y}^{3}-54\,{t}^{3}+36\,{t} ^{2}y-8\,t{y}^{2}+9\,{t}^{2}-3\,ty-{y}^{2} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 05 Your browser does not support the HTML5 canvas tag. 00Maplev, then u0.9610.0436364974 / 59 / 84 / 4235612 / 846 / 14419 / 8179419{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 00Mapleu, then v2.490.0433364979 / 107 / 615 / 16528037 / 66 / 610 / 931675{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 01Maplev, then u66.40.64361811159126 / 10028 / 4432 / 171312335952 / 161101 / 32530 / 144211676397{t}^{3} \left( t-1 \right) \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) \left( 30976 \,{t}^{8}-15696\,{t}^{7}-4464\,{t}^{6}+9864\,{t}^{5}-5124\,{t}^{4}-480 \,{t}^{3}+101\,{t}^{2}+12\,t-6 \right) 01Mapleu, then v 540.41261811159129 / 2413 / 1233 / 381419000023 / 186 / 622 / 241249829{t}^{3} \left( t-1 \right) \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) \left( 30976 \,{t}^{8}-15696\,{t}^{7}-4464\,{t}^{6}+9864\,{t}^{5}-5124\,{t}^{4}-480 \,{t}^{3}+101\,{t}^{2}+12\,t-6 \right) 10Maplev, then u1.180.04463641194 / 58 / 84 / 424229 / 10716 / 929 / 4254633{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 10Mapleu, then v2.590.04413641199 / 106 / 614 / 164288816 / 965 / 7918 / 2448236{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 11Maplev, then u21.70.3795169103618 / 1316 / 164 / 592123435 / 18945 / 16617 / 5320493526{t}^{4} \left( t-1 \right) \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 896\,{t}^{5}-512\,{t}^{4}+832\,{t} ^{3}-127\,{t}^{2}-6\,t-12 \right) \left( 8\,{t}^{2}+1 \right) 11Mapleu, then v33.40.6825169103639 / 8223 / 4938 / 781333571418 / 1425 / 12520 / 34931034{t}^{4} \left( t-1 \right) \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 896\,{t}^{5}-512\,{t}^{4}+832\,{t} ^{3}-127\,{t}^{2}-6\,t-12 \right) \left( 8\,{t}^{2}+1 \right) 11Mathematicau, then v494n.a.5169103628 / 2111 / 119 / 10208400128 / 2111 / 89 / 81838974{t}^{4} \left( t-1 \right) \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 896\,{t}^{5}-512\,{t}^{4}+832\,{t} ^{3}-127\,{t}^{2}-6\,t-12 \right) \left( 8\,{t}^{2}+1 \right) 11Mathematicav, then u32.2n.a.5169103628 / 2111 / 119 / 10208400128 / 2111 / 89 / 81838974{t}^{4} \left( t-1 \right) \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 896\,{t}^{5}-512\,{t}^{4}+832\,{t} ^{3}-127\,{t}^{2}-6\,t-12 \right) \left( 8\,{t}^{2}+1 \right) x0Mathematicau, then v191n.a.49537210 / 88 / 86 / 65783412 / 108 / 89 / 8513056{t}^{3} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) \left( 4\,{t}^{2}{x}^{2}+4\,{t}^{2}-x \right) 0yMathematicau, then v854n.a.61811655540 / 3313 / 1411 / 1229135211140 / 3313 / 1011 / 1027521652{t}^{3} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) \left( 2\,t{y}^{2}+t-y \right) \left( 2\,t{y}^{2}-t+y \right) \left( -y+t \right) \left( 29696\,{t}^{8}{y}^{7}-11520\,{t}^{7}{y}^{8 }-7680\,{t}^{6}{y}^{9}-1280\,{t}^{5}{y}^{10}+1280\,{t}^{8}{y}^{3}-4224 \,{t}^{7}{y}^{4}+3648\,{t}^{6}{y}^{5}+9696\,{t}^{5}{y}^{6}-3312\,{t}^{4 }{y}^{7}-960\,{t}^{3}{y}^{8}+48\,{t}^{7}-432\,{t}^{6}y+1448\,{t}^{5}{y} ^{2}-1812\,{t}^{4}{y}^{3}+480\,{t}^{3}{y}^{4}+106\,{t}^{2}{y}^{5}-5\,{t }^{2}y+12\,t{y}^{2}-6\,{y}^{3} \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
06 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$5.160.374410544711 / 1614 / 1019 / 224933214 / 12726 / 23411 / 57741238${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t+3 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right)$
00Maple$u$, then $v$19.50.472410544716 / 159 / 821 / 2484184912 / 116 / 613 / 14612645${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t+3 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right)$
01Maple$v$, then $u$1490014.462214229029 / 2028 / 284 / 5168252036 / 2742 / 4412 / 1221347577${t}^{3} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 751104\,{t}^{11}+1393344\,{t}^{10}+ 1298352\,{t}^{9}+208592\,{t}^{8}-234112\,{t}^{7}-9804\,{t}^{6}-37199\,{ t}^{5}-19403\,{t}^{4}-5352\,{t}^{3}-172\,{t}^{2}-13\,t-9 \right)$
01Maple$u$, then $v$1130.5762214229033 / 2413 / 1236 / 391931383227 / 10095 / 49215 / 3217267949${t}^{3} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 751104\,{t}^{11}+1393344\,{t}^{10}+ 1298352\,{t}^{9}+208592\,{t}^{8}-234112\,{t}^{7}-9804\,{t}^{6}-37199\,{ t}^{5}-19403\,{t}^{4}-5352\,{t}^{3}-172\,{t}^{2}-13\,t-9 \right)$
10Maple$v$, then $u$4.640.08411650610 / 814 / 144 / 45462715 / 1324 / 259 / 8847961${t}^{3} \left( 1+2\,t \right) \left( t+1 \right) \left( 4\,{t}^{2}+4 \,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+2\, t+1 \right)$
10Maple$u$, then $v$22.80.472411650620 / 177 / 825 / 25106232017 / 675 / 28221 / 31940044${t}^{3} \left( 1+2\,t \right) \left( t+1 \right) \left( 4\,{t}^{2}+4 \,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+2\, t+1 \right)$
11Maple$v$, then $u$55.50.53952011168525 / 1622 / 224 / 5145287836 / 13299 / 31730 / 49201177085${t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 22656\,{t}^{10}+29504\,{t}^{9}+36608 \,{t}^{8}+36240\,{t}^{7}+23436\,{t}^{6}+12592\,{t}^{5}+3913\,{t}^{4}+ 1378\,{t}^{3}+248\,{t}^{2}+22\,t+3 \right)$
11Maple$u$, then $v$8574.352011168530 / 219 / 1033 / 331619771724 / 155 / 619 / 191353437${t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 22656\,{t}^{10}+29504\,{t}^{9}+36608 \,{t}^{8}+36240\,{t}^{7}+23436\,{t}^{6}+12592\,{t}^{5}+3913\,{t}^{4}+ 1378\,{t}^{3}+248\,{t}^{2}+22\,t+3 \right)$
11Mathematica$u$, then $v$752n.a.52011168531 / 2111 / 1110 / 102110303131 / 219 / 89 / 82046228${t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 22656\,{t}^{10}+29504\,{t}^{9}+36608 \,{t}^{8}+36240\,{t}^{7}+23436\,{t}^{6}+12592\,{t}^{5}+3913\,{t}^{4}+ 1378\,{t}^{3}+248\,{t}^{2}+22\,t+3 \right)$
11Mathematica$v$, then $u$74.9n.a.52011168531 / 2111 / 1110 / 102110303131 / 219 / 89 / 82046228${t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 22656\,{t}^{10}+29504\,{t}^{9}+36608 \,{t}^{8}+36240\,{t}^{7}+23436\,{t}^{6}+12592\,{t}^{5}+3913\,{t}^{4}+ 1378\,{t}^{3}+248\,{t}^{2}+22\,t+3 \right)$
x0Mathematica$u$, then $v$709n.a.51791109019 / 129 / 109 / 81144876521 / 148 / 1010 / 1011442113${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( {t}^{2}{x}^{4}-4\,{t}^{2}{x}^{3}+2\,{t }^{2}{x}^{2}-2\,t{x}^{3}-4\,{t}^{2}x+{t}^{2}-2\,tx+{x}^{2} \right) \left( 16\,{t}^{7}{x}^{4}+96\,{t}^{7}{x}^{3}-16\,{t}^{6}{x}^{4}+32\,{t }^{7}{x}^{2}+352\,{t}^{6}{x}^{3}-8\,{t}^{5}{x}^{4}+96\,{t}^{7}x-32\,{t} ^{6}{x}^{2}+336\,{t}^{5}{x}^{3}+4\,{t}^{4}{x}^{4}+16\,{t}^{7}+352\,{t}^ {6}x+80\,{t}^{5}{x}^{2}+96\,{t}^{4}{x}^{3}+{t}^{3}{x}^{4}-16\,{t}^{6}+ 336\,{t}^{5}x+200\,{t}^{4}{x}^{2}-18\,{t}^{3}{x}^{3}-8\,{t}^{5}+96\,{t} ^{4}x+146\,{t}^{3}{x}^{2}-14\,{t}^{2}{x}^{3}+4\,{t}^{4}-18\,{t}^{3}x+68 \,{t}^{2}{x}^{2}-4\,t{x}^{3}+{t}^{3}-14\,{t}^{2}x+26\,t{x}^{2}-4\,tx+3 \,{x}^{2} \right)$
0yMathematica$u$, then $v$2090n.a.622133797135 / 2513 / 1412 / 1227451087335 / 2510 / 1011 / 10261718071${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( 2\,t{y}^{2}+2\,ty-t+y \right) \left( -y+t \right) \left( 2\,t{y}^{2}+2\,ty+t-y \right) \left( 147456\,{t}^ {11}{y}^{10}+405504\,{t}^{11}{y}^{9}+221184\,{t}^{10}{y}^{10}+382976\,{ t}^{11}{y}^{8}+454656\,{t}^{10}{y}^{9}+92160\,{t}^{9}{y}^{10}+26624\,{t }^{11}{y}^{7}+598016\,{t}^{10}{y}^{8}-49152\,{t}^{9}{y}^{9}-36864\,{t}^ {8}{y}^{10}-185344\,{t}^{11}{y}^{6}+512000\,{t}^{10}{y}^{7}+422400\,{t} ^{9}{y}^{8}-429056\,{t}^{8}{y}^{9}-56832\,{t}^{7}{y}^{10}-50688\,{t}^{ 11}{y}^{5}-120832\,{t}^{10}{y}^{6}+1205760\,{t}^{9}{y}^{7}-105984\,{t}^ {8}{y}^{8}-359168\,{t}^{7}{y}^{9}-23040\,{t}^{6}{y}^{10}+43008\,{t}^{11 }{y}^{4}-307200\,{t}^{10}{y}^{5}+243840\,{t}^{9}{y}^{6}+919296\,{t}^{8} {y}^{7}-289152\,{t}^{7}{y}^{8}-133632\,{t}^{6}{y}^{9}-7936\,{t}^{5}{y}^ {10}-8960\,{t}^{11}{y}^{3}+16128\,{t}^{10}{y}^{4}-596352\,{t}^{9}{y}^{5 }+370432\,{t}^{8}{y}^{6}+320064\,{t}^{7}{y}^{7}-113280\,{t}^{6}{y}^{8}- 42240\,{t}^{5}{y}^{9}-2176\,{t}^{4}{y}^{10}-13824\,{t}^{11}{y}^{2}+ 39424\,{t}^{10}{y}^{3}-100032\,{t}^{9}{y}^{4}-470528\,{t}^{8}{y}^{5}+ 262720\,{t}^{7}{y}^{6}+83328\,{t}^{6}{y}^{7}-40320\,{t}^{5}{y}^{8}-8448 \,{t}^{4}{y}^{9}-192\,{t}^{3}{y}^{10}+3072\,{t}^{11}y-18432\,{t}^{10}{y }^{2}+98304\,{t}^{9}{y}^{3}-138944\,{t}^{8}{y}^{4}-114464\,{t}^{7}{y}^{ 5}+117504\,{t}^{6}{y}^{6}-7072\,{t}^{5}{y}^{7}-8544\,{t}^{4}{y}^{8}-576 \,{t}^{3}{y}^{9}+1280\,{t}^{11}-1536\,{t}^{10}y-12576\,{t}^{9}{y}^{2}+ 94368\,{t}^{8}{y}^{3}-50144\,{t}^{7}{y}^{4}+40800\,{t}^{6}{y}^{5}+20776 \,{t}^{5}{y}^{6}-10480\,{t}^{4}{y}^{7}-1368\,{t}^{3}{y}^{8}-64\,{t}^{10 }-5472\,{t}^{9}y+6976\,{t}^{8}{y}^{2}+44640\,{t}^{7}{y}^{3}+11136\,{t}^ {6}{y}^{4}+30248\,{t}^{5}{y}^{5}-368\,{t}^{4}{y}^{6}-3516\,{t}^{3}{y}^{ 7}-112\,{t}^{2}{y}^{8}-528\,{t}^{9}-848\,{t}^{8}y+6688\,{t}^{7}{y}^{2}+ 7968\,{t}^{6}{y}^{3}+11364\,{t}^{5}{y}^{4}+8984\,{t}^{4}{y}^{5}-1380\,{ t}^{3}{y}^{6}-304\,{t}^{2}{y}^{7}-4\,t{y}^{8}-256\,{t}^{8}+1456\,{t}^{7 }y-816\,{t}^{6}{y}^{2}-1656\,{t}^{5}{y}^{3}+4260\,{t}^{4}{y}^{4}+1032\, {t}^{3}{y}^{5}-132\,{t}^{2}{y}^{6}-4\,t{y}^{7}+80\,{t}^{7}+192\,{t}^{6} y-282\,{t}^{5}{y}^{2}-2574\,{t}^{4}{y}^{3}+1392\,{t}^{3}{y}^{4}+88\,{t} ^{2}{y}^{5}-12\,t{y}^{6}+36\,{t}^{6}-70\,{t}^{5}y-72\,{t}^{4}{y}^{2}- 741\,{t}^{3}{y}^{3}+343\,{t}^{2}{y}^{4}-11\,t{y}^{5}-3\,{y}^{6}-11\,{t} ^{5}+17\,{t}^{4}y-3\,{t}^{3}{y}^{2}-75\,{t}^{2}{y}^{3}+25\,t{y}^{4}-3\, {y}^{5}-2\,{t}^{4}+20\,{t}^{2}{y}^{2}-12\,t{y}^{3}+5\,t{y}^{2}-3\,{y}^{ 3} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 07 Your browser does not support the HTML5 canvas tag. 00Maplev, then u1.280.04473631285 / 79 / 84 / 4368040 / 12340 / 11415 / 6647046{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 00Mapleu, then v3.270.046636312817 / 2214 / 1031 / 316172318 / 396 / 5811 / 3253638{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 01Maplev, then u64.30.6166179124836 / 1541 / 2829 / 51316831338 / 221101 / 19621 / 13221453730{t}^{5} \left( t-1 \right) \left( 4\,t-1 \right) \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) \left( 432\,{t}^{6}-288\,{t}^{4 }+176\,{t}^{3}-39\,{t}^{2}-t-5 \right) 01Mapleu, then v65.80.4736179124827 / 2213 / 1235 / 381419890522 / 1096 / 18123 / 1161148075{t}^{5} \left( t-1 \right) \left( 4\,t-1 \right) \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) \left( 432\,{t}^{6}-288\,{t}^{4 }+176\,{t}^{3}-39\,{t}^{2}-t-5 \right) 10Maplev, then u1.360.04463631275 / 78 / 84 / 4257326 / 10453 / 10530 / 72542475{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 10Mapleu, then v3.230.04483631279 / 106 / 614 / 164342224 / 4126 / 589 / 33510323{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 11Maplev, then u25.40.5095159107620 / 1516 / 164 / 5112571529 / 2429 / 2910 / 1016157488{t}^{2} \left( t-1 \right) \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 5184\,{t}^{7}-4128\,{t}^{6}+4416\,{t}^{5}+400\,{t}^{4} +252\,{t}^{3}-90\,{t}^{2}-42\,t+3 \right) \left( 4\,{t}^{2}+1 \right) 11Mapleu, then v42.40.5625159107625 / 209 / 1030 / 311211302827 / 8474 / 12918 / 9712126550{t}^{2} \left( t-1 \right) \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 5184\,{t}^{7}-4128\,{t}^{6}+4416\,{t}^{5}+400\,{t}^{4} +252\,{t}^{3}-90\,{t}^{2}-42\,t+3 \right) \left( 4\,{t}^{2}+1 \right) 11Mathematicau, then v530n.a.5159107629 / 2211 / 119 / 10208893129 / 2211 / 89 / 81841357{t}^{2} \left( t-1 \right) \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 5184\,{t}^{7}-4128\,{t}^{6}+4416\,{t}^{5}+400\,{t}^{4} +252\,{t}^{3}-90\,{t}^{2}-42\,t+3 \right) \left( 4\,{t}^{2}+1 \right) 11Mathematicav, then u41.8n.a.5159107629 / 2211 / 119 / 10208893129 / 2211 / 89 / 81841357{t}^{2} \left( t-1 \right) \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 5184\,{t}^{7}-4128\,{t}^{6}+4416\,{t}^{5}+400\,{t}^{4} +252\,{t}^{3}-90\,{t}^{2}-42\,t+3 \right) \left( 4\,{t}^{2}+1 \right) x0Mathematicau, then v235n.a.49563710 / 88 / 86 / 651655612 / 108 / 89 / 8525412{t}^{3} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) \left( 4\,{t}^{2}{x}^{2}+4\,{t}^{2}x+4\,{t}^{2}-x \right) 0yMathematicau, then v1170n.a.618111303534 / 2713 / 1411 / 1228209047634 / 2713 / 1011 / 1027808934{t}^{3} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) \left( t{y}^{2}-t+y \right) \left( -y+t \right) \left( 3\,t{y}^{2}+t -y \right) \left( 13824\,{t}^{8}{y}^{9}+30816\,{t}^{8}{y}^{7}+4104\,{t }^{7}{y}^{8}-13392\,{t}^{6}{y}^{9}-1080\,{t}^{5}{y}^{10}+5760\,{t}^{8}{ y}^{5}-1440\,{t}^{7}{y}^{6}-18216\,{t}^{6}{y}^{7}+4656\,{t}^{5}{y}^{8}+ 216\,{t}^{4}{y}^{9}+1440\,{t}^{8}{y}^{3}-3312\,{t}^{7}{y}^{4}+792\,{t}^ {6}{y}^{5}+10172\,{t}^{5}{y}^{6}-2622\,{t}^{4}{y}^{7}-792\,{t}^{3}{y}^{ 8}+576\,{t}^{7}{y}^{2}-3096\,{t}^{6}{y}^{3}+5236\,{t}^{5}{y}^{4}+276\,{ t}^{4}{y}^{5}-186\,{t}^{3}{y}^{6}-553\,{t}^{2}{y}^{7}+72\,{t}^{7}-648\, {t}^{6}y+2140\,{t}^{5}{y}^{2}-2586\,{t}^{4}{y}^{3}+858\,{t}^{3}{y}^{4}+ 124\,{t}^{2}{y}^{5}-111\,t{y}^{6}-4\,{t}^{5}+36\,{t}^{4}y-161\,{t}^{2}{ y}^{3}+87\,t{y}^{4}+12\,{y}^{5}-10\,{t}^{2}y+24\,t{y}^{2}-12\,{y}^{3} \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
08 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$3.780.046741064618 / 714 / 144 / 44373340 / 10946 / 13717 / 4411189381${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+8\,t+3 \right) \left( 8\,{t}^{2}+4\,t-1 \right)$
00Maple$u$, then $v$21.60.514410646117 / 169 / 823 / 25105653115 / 1276 / 8320 / 40833027${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+8\,t+3 \right) \left( 8\,{t}^{2}+4\,t-1 \right)$
01Maple$v$, then $u$1000.44461912164340 / 4237 / 4135 / 81626533473 / 216129 / 33155 / 1303311429765${t}^{3} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 24576\,{t}^{9}+55296\,{t}^{8} +64320\,{t}^{7}+65632\,{t}^{6}+55128\,{t}^{5}+28428\,{t}^{4}+7760\,{t}^ {3}+1020\,{t}^{2}+63\,t+4 \right) \left( 1+2\,t \right) ^{2}$
01Maple$u$, then $v$28900032.561912164331 / 2413 / 1238 / 401833429925 / 186 / 622 / 241566819${t}^{3} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 24576\,{t}^{9}+55296\,{t}^{8} +64320\,{t}^{7}+65632\,{t}^{6}+55128\,{t}^{5}+28428\,{t}^{4}+7760\,{t}^ {3}+1020\,{t}^{2}+63\,t+4 \right) \left( 1+2\,t \right) ^{2}$
10Maple$v$, then $u$5.860.412411653410 / 814 / 144 / 45483419 / 11030 / 15115 / 331199197${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 24\,{t}^{3}+24\,{t}^{2}+11\,t+2 \right) \left( 8\,{t}^{2}+4\,t +1 \right)$
10Maple$u$, then $v$23.50.472411653419 / 177 / 825 / 25105647513 / 115 / 614 / 14715875${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 24\,{t}^{3}+24\,{t}^{2}+11\,t+2 \right) \left( 8\,{t}^{2}+4\,t +1 \right)$
11Maple$v$, then $u$8345.2951811131823 / 1522 / 224 / 5144746629 / 2137 / 379 / 1018213798${t}^{2} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 8192\,{t}^{9}+29696\,{t}^{8}+ 37440\,{t}^{7}+29824\,{t}^{6}+21944\,{t}^{5}+13912\,{t}^{4}+5774\,{t}^{ 3}+1338\,{t}^{2}+160\,t+9 \right) \left( 1+2\,t \right) ^{2}$
11Maple$u$, then $v$13806.5151811131829 / 219 / 1033 / 331619533244 / 19839 / 17513 / 2616218186${t}^{2} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 8192\,{t}^{9}+29696\,{t}^{8}+ 37440\,{t}^{7}+29824\,{t}^{6}+21944\,{t}^{5}+13912\,{t}^{4}+5774\,{t}^{ 3}+1338\,{t}^{2}+160\,t+9 \right) \left( 1+2\,t \right) ^{2}$
11Mathematica$u$, then $v$725n.a.51811131828 / 1911 / 1110 / 10219350628 / 199 / 89 / 81941848${t}^{2} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 8192\,{t}^{9}+29696\,{t}^{8}+ 37440\,{t}^{7}+29824\,{t}^{6}+21944\,{t}^{5}+13912\,{t}^{4}+5774\,{t}^{ 3}+1338\,{t}^{2}+160\,t+9 \right) \left( 1+2\,t \right) ^{2}$
11Mathematica$v$, then $u$92.9n.a.51811131828 / 1911 / 1110 / 10219350628 / 199 / 89 / 81941848${t}^{2} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 8192\,{t}^{9}+29696\,{t}^{8}+ 37440\,{t}^{7}+29824\,{t}^{6}+21944\,{t}^{5}+13912\,{t}^{4}+5774\,{t}^{ 3}+1338\,{t}^{2}+160\,t+9 \right) \left( 1+2\,t \right) ^{2}$
x0Mathematica$u$, then $v$890n.a.517101148419 / 129 / 109 / 81350553621 / 148 / 1010 / 1013486583${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 16\,{t}^{7}{x}^{4}+320\,{t}^{ 7}{x}^{3}+16\,{t}^{6}{x}^{4}+480\,{t}^{7}{x}^{2}+544\,{t}^{6}{x}^{3}+22 \,{t}^{5}{x}^{4}+320\,{t}^{7}x+1120\,{t}^{6}{x}^{2}+312\,{t}^{5}{x}^{3} +12\,{t}^{4}{x}^{4}+16\,{t}^{7}+544\,{t}^{6}x+1252\,{t}^{5}{x}^{2}+12\, {t}^{4}{x}^{3}+2\,{t}^{3}{x}^{4}+16\,{t}^{6}+312\,{t}^{5}x+872\,{t}^{4} {x}^{2}-58\,{t}^{3}{x}^{3}+22\,{t}^{5}+12\,{t}^{4}x+438\,{t}^{3}{x}^{2} -25\,{t}^{2}{x}^{3}+12\,{t}^{4}-58\,{t}^{3}x+158\,{t}^{2}{x}^{2}-4\,t{x }^{3}+2\,{t}^{3}-25\,{t}^{2}x+34\,t{x}^{2}-4\,tx+3\,{x}^{2} \right) \left( {t}^{2}{x}^{4}-4\,{t}^{2}{x}^{3}-2\,{t}^{2}{x}^{2}-2\,t{x}^{3}- 4\,{t}^{2}x+{t}^{2}-2\,tx+{x}^{2} \right)$
0yMathematica$u$, then $v$2350n.a.622143706436 / 2613 / 1412 / 1230481442036 / 2610 / 1011 / 10291813285${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( yt-t+y \right) \left( t{y}^{ 2}+2\,yt-t+y \right) \left( 3\,t{y}^{2}+2\,yt+t-y \right) \left( 60048\,{t}^{11}{y}^{9}-34992\,{t}^{11}{y}^{8}+92880\,{t}^{10}{y}^{9}+ 159456\,{t}^{11}{y}^{7}-329184\,{t}^{10}{y}^{8}+30294\,{t}^{9}{y}^{9}- 34784\,{t}^{11}{y}^{6}+504240\,{t}^{10}{y}^{7}-731106\,{t}^{9}{y}^{8}- 27648\,{t}^{8}{y}^{9}-286912\,{t}^{11}{y}^{5}+67952\,{t}^{10}{y}^{6}+ 587124\,{t}^{9}{y}^{7}-776538\,{t}^{8}{y}^{8}-29214\,{t}^{7}{y}^{9}+ 8960\,{t}^{11}{y}^{4}-796016\,{t}^{10}{y}^{5}+148140\,{t}^{9}{y}^{6}+ 333822\,{t}^{8}{y}^{7}-466758\,{t}^{7}{y}^{8}-14256\,{t}^{6}{y}^{9}+ 35616\,{t}^{11}{y}^{3}+54832\,{t}^{10}{y}^{4}-868824\,{t}^{9}{y}^{5}- 23202\,{t}^{8}{y}^{6}+112038\,{t}^{7}{y}^{7}-167940\,{t}^{6}{y}^{8}- 5076\,{t}^{5}{y}^{9}-9248\,{t}^{11}{y}^{2}+143184\,{t}^{10}{y}^{3}+ 242064\,{t}^{9}{y}^{4}-504834\,{t}^{8}{y}^{5}-215586\,{t}^{7}{y}^{6}+ 39168\,{t}^{6}{y}^{7}-35307\,{t}^{5}{y}^{8}-1080\,{t}^{4}{y}^{9}+3120\, {t}^{11}y-11632\,{t}^{10}{y}^{2}+209292\,{t}^{9}{y}^{3}+447634\,{t}^{8} {y}^{4}-227760\,{t}^{7}{y}^{5}-200034\,{t}^{6}{y}^{6}+21582\,{t}^{5}{y} ^{7}-3384\,{t}^{4}{y}^{8}-81\,{t}^{3}{y}^{9}+432\,{t}^{11}+3744\,{t}^{ 10}y+7764\,{t}^{9}{y}^{2}+136690\,{t}^{8}{y}^{3}+447488\,{t}^{7}{y}^{4} -133770\,{t}^{6}{y}^{5}-87597\,{t}^{5}{y}^{6}+9747\,{t}^{4}{y}^{7}+81\, {t}^{3}{y}^{8}-336\,{t}^{10}+7938\,{t}^{9}y+13522\,{t}^{8}{y}^{2}+22706 \,{t}^{7}{y}^{3}+280458\,{t}^{6}{y}^{4}-80194\,{t}^{5}{y}^{5}-19596\,{t }^{4}{y}^{6}+2574\,{t}^{3}{y}^{7}+27\,{t}^{2}{y}^{8}-558\,{t}^{9}+9586 \,{t}^{8}y+146\,{t}^{7}{y}^{2}-23706\,{t}^{6}{y}^{3}+119729\,{t}^{5}{y} ^{4}-34220\,{t}^{4}{y}^{5}-1506\,{t}^{3}{y}^{6}+351\,{t}^{2}{y}^{7}-200 \,{t}^{8}+5222\,{t}^{7}y-5196\,{t}^{6}{y}^{2}-18864\,{t}^{5}{y}^{3}+ 36370\,{t}^{4}{y}^{4}-9744\,{t}^{3}{y}^{5}+289\,{t}^{2}{y}^{6}+18\,t{y} ^{7}-58\,{t}^{7}+1380\,{t}^{6}y-2381\,{t}^{5}{y}^{2}-7161\,{t}^{4}{y}^{ 3}+8019\,{t}^{3}{y}^{4}-1823\,{t}^{2}{y}^{5}+80\,t{y}^{6}-72\,{t}^{6}+ 244\,{t}^{5}y-316\,{t}^{4}{y}^{2}-1728\,{t}^{3}{y}^{3}+1275\,{t}^{2}{y} ^{4}-211\,t{y}^{5}+6\,{y}^{6}-32\,{t}^{5}+44\,{t}^{4}y+90\,{t}^{3}{y}^{ 2}-304\,{t}^{2}{y}^{3}+141\,t{y}^{4}-12\,{y}^{5}-4\,{t}^{4}+3\,{t}^{3}y +43\,{t}^{2}{y}^{2}-41\,t{y}^{3}+9\,{y}^{4}+5\,t{y}^{2}-3\,{y}^{3} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 09 Your browser does not support the HTML5 canvas tag. 00Maplev, then u3.710.086741162929 / 914 / 144 / 45262022 / 9336 / 11411 / 101263684{t}^{3} \left( 14\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 00Mapleu, then v17.30.444411629218 / 159 / 825 / 27103878381 / 31361 / 9312 / 54843207{t}^{3} \left( 14\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 01Maplev, then u1290.74462716308541 / 5737 / 5626 / 692335514563 / 16572 / 19023 / 32342714311{t}^{3} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 7575552\,{t}^{15}+52695360\,{t}^{ 14}-79023168\,{t}^{13}-42726912\,{t}^{12}+49317984\,{t}^{11}-4024620\,{ t}^{10}-3772728\,{t}^{9}+815652\,{t}^{8}-302496\,{t}^{7}+13422\,{t}^{6} +43725\,{t}^{5}-5535\,{t}^{4}-1586\,{t}^{3}+240\,{t}^{2}+25\,t-3 \right) 01Mapleu, then vnot available 10Maplev, then u3.370.045341163048 / 814 / 144 / 4478117 / 8426 / 8811 / 171036937{t}^{3} \left( 13\,{t}^{2}-2 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 10Mapleu, then v14.90.444411630418 / 157 / 824 / 2793090054 / 31226 / 9320 / 54847053{t}^{3} \left( 13\,{t}^{2}-2 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 11Maplev, then u5693.552414228832 / 1822 / 224 / 5188319285 / 22985 / 21918 / 18313524149{t}^{2} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 2944512\,{t}^{13}-6994944\,{t}^{ 12}-12219648\,{t}^{11}+80088\,{t}^{10}+1723824\,{t}^{9}+648742\,{t}^{8} -42124\,{t}^{7}-133223\,{t}^{6}+9836\,{t}^{5}+15063\,{t}^{4}-528\,{t}^{ 3}-801\,{t}^{2}-72\,t+3 \right) 11Mapleu, then v87209.5952414228835 / 229 / 1033 / 352028485470 / 43226 / 12430 / 7620294072{t}^{2} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 2944512\,{t}^{13}-6994944\,{t}^{ 12}-12219648\,{t}^{11}+80088\,{t}^{10}+1723824\,{t}^{9}+648742\,{t}^{8} -42124\,{t}^{7}-133223\,{t}^{6}+9836\,{t}^{5}+15063\,{t}^{4}-528\,{t}^{ 3}-801\,{t}^{2}-72\,t+3 \right) 11Mathematicau, then v1020n.a.52414228837 / 2311 / 911 / 82215881038 / 2411 / 1011 / 1022102471{t}^{2} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 2944512\,{t}^{13}-6994944\,{t}^{ 12}-12219648\,{t}^{11}+80088\,{t}^{10}+1723824\,{t}^{9}+648742\,{t}^{8} -42124\,{t}^{7}-133223\,{t}^{6}+9836\,{t}^{5}+15063\,{t}^{4}-528\,{t}^{ 3}-801\,{t}^{2}-72\,t+3 \right) 11Mathematicav, then u88.7n.a.52414228837 / 2311 / 911 / 82215881038 / 2411 / 1011 / 1022102471{t}^{2} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 2944512\,{t}^{13}-6994944\,{t}^{ 12}-12219648\,{t}^{11}+80088\,{t}^{10}+1723824\,{t}^{9}+648742\,{t}^{8} -42124\,{t}^{7}-133223\,{t}^{6}+9836\,{t}^{5}+15063\,{t}^{4}-528\,{t}^{ 3}-801\,{t}^{2}-72\,t+3 \right) x0Mathematicau, then v1240n.a.5169572224 / 1611 / 107 / 81553307321 / 1311 / 1010 / 1014383322{t}^{4} \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 4\,{t}^{2}{x}^{4}+4\,{t}^{2}{x}^{3}+8\,{t }^{2}{x}^{2}+4\,{t}^{2}x+4\,{t}^{2}-{x}^{2} \right) \left( 270\,{t}^{4 }{x}^{4}-148\,{t}^{4}{x}^{3}+402\,{t}^{4}{x}^{2}-29\,{t}^{2}{x}^{4}-148 \,{t}^{4}x+3\,{t}^{2}{x}^{3}+270\,{t}^{4}-46\,{t}^{2}{x}^{2}+{x}^{4}+3 \,{t}^{2}x+{x}^{3}-29\,{t}^{2}+2\,{x}^{2}+x+1 \right) 0yMathematicau, then v2450n.a.627162681053 / 3714 / 1411 / 1233516429945 / 298 / 1011 / 1029908968{t}^{3} \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( t+y \right) \left( 3\,t{y}^{2}+2\,t-y \right) \left( 3538944\,{t}^{15}{y}^{9}+8534016\,{t}^{15}{y}^{7}+ 17608320\,{t}^{14}{y}^{8}-5329152\,{t}^{13}{y}^{9}-13357440\,{t}^{12}{y }^{10}+5289984\,{t}^{15}{y}^{5}+46596096\,{t}^{14}{y}^{6}-42028416\,{t} ^{13}{y}^{7}-44301504\,{t}^{12}{y}^{8}-9649152\,{t}^{11}{y}^{9}+5175360 \,{t}^{10}{y}^{10}-958464\,{t}^{15}{y}^{3}+37555200\,{t}^{14}{y}^{4}- 70778880\,{t}^{13}{y}^{5}-39816640\,{t}^{12}{y}^{6}+6112416\,{t}^{11}{y }^{7}+19388904\,{t}^{10}{y}^{8}-525528\,{t}^{9}{y}^{9}-541080\,{t}^{8}{ y}^{10}-1253376\,{t}^{15}y+6119424\,{t}^{14}{y}^{2}-36813312\,{t}^{13}{ y}^{3}-540928\,{t}^{12}{y}^{4}+47722272\,{t}^{11}{y}^{5}+5744864\,{t}^{ 10}{y}^{6}+1337272\,{t}^{9}{y}^{7}-3034548\,{t}^{8}{y}^{8}+196560\,{t}^ {7}{y}^{9}+25380\,{t}^{6}{y}^{10}-2488320\,{t}^{14}-3096576\,{t}^{13}y+ 9767168\,{t}^{12}{y}^{2}+41923968\,{t}^{11}{y}^{3}-25051744\,{t}^{10}{y }^{4}-651552\,{t}^{9}{y}^{5}-1819116\,{t}^{8}{y}^{6}-320390\,{t}^{7}{y} ^{7}+207420\,{t}^{6}{y}^{8}-10260\,{t}^{5}{y}^{9}-540\,{t}^{4}{y}^{10}+ 2795520\,{t}^{12}+12526464\,{t}^{11}y-13667584\,{t}^{10}{y}^{2}-4441840 \,{t}^{9}{y}^{3}+4130448\,{t}^{8}{y}^{4}-753666\,{t}^{7}{y}^{5}+254098 \,{t}^{6}{y}^{6}+22695\,{t}^{5}{y}^{7}-6960\,{t}^{4}{y}^{8}+108\,{t}^{3 }{y}^{9}+360960\,{t}^{10}-3263808\,{t}^{9}y+2975088\,{t}^{8}{y}^{2}- 51016\,{t}^{7}{y}^{3}-222022\,{t}^{6}{y}^{4}+65091\,{t}^{5}{y}^{5}- 14987\,{t}^{4}{y}^{6}-860\,{t}^{3}{y}^{7}+144\,{t}^{2}{y}^{8}-79488\,{t }^{8}+323520\,{t}^{7}y-242896\,{t}^{6}{y}^{2}+23940\,{t}^{5}{y}^{3}+ 3353\,{t}^{4}{y}^{4}-1716\,{t}^{3}{y}^{5}+396\,{t}^{2}{y}^{6}+31\,t{y}^ {7}+4864\,{t}^{6}-14016\,{t}^{5}y+8192\,{t}^{4}{y}^{2}-896\,{t}^{3}{y}^ {3}+36\,{t}^{2}{y}^{4}+15\,t{y}^{5}-3\,{y}^{6}-128\,{t}^{4}+192\,{t}^{3 }y-96\,{t}^{2}{y}^{2}+4\,t{y}^{3}-3\,{y}^{4} \right) \left( t{y}^{2}+2 \,t+y \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
10 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$5.450.0903412657212 / 914 / 144 / 46730521 / 9132 / 8115 / 1412174215${t}^{3} \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 12\,{t}^{3}+20\,{t}^{2}-3\,t- 2 \right)$
00Maple$u$, then $v$60.11.47412657221 / 189 / 825 / 271210002018 / 136 / 618 / 161138557${t}^{3} \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 12\,{t}^{3}+20\,{t}^{2}-3\,t- 2 \right)$
01Maple$v$, then $u$1410.80162716319240 / 2338 / 3735 / 522357209101 / 109152 / 12451 / 696022696302${t}^{3} \left( 5\,t+1 \right) \left( 1+2\,t \right) \left( 7\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 1720320\,{t}^{15}- 7335936\,{t}^{14}-15458304\,{t}^{13}+17353216\,{t}^{12}+39173248\,{t}^{ 11}+15160576\,{t}^{10}-5888512\,{t}^{9}-5109856\,{t}^{8}-987976\,{t}^{7 }-11248\,{t}^{6}+9440\,{t}^{5}+1700\,{t}^{4}-434\,{t}^{3}-344\,{t}^{2}- 17\,t+3 \right)$
01Maple$u$, then $v$1450.70262716319245 / 2727 / 1842 / 4437108676537 / 206 / 632 / 2923193746${t}^{3} \left( 5\,t+1 \right) \left( 1+2\,t \right) \left( 7\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 1720320\,{t}^{15}- 7335936\,{t}^{14}-15458304\,{t}^{13}+17353216\,{t}^{12}+39173248\,{t}^{ 11}+15160576\,{t}^{10}-5888512\,{t}^{9}-5109856\,{t}^{8}-987976\,{t}^{7 }-11248\,{t}^{6}+9440\,{t}^{5}+1700\,{t}^{4}-434\,{t}^{3}-344\,{t}^{2}- 17\,t+3 \right)$
10Maple$v$, then $u$7.080.439412657313 / 914 / 144 / 46779016 / 3023 / 4011 / 10957775${t}^{3} \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 8\,{t}^{3}+40\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+ t+1 \right)$
10Maple$u$, then $v$24.20.0978412657331 / 1414 / 2132 / 251227626720 / 928 / 613 / 1821894${t}^{3} \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 8\,{t}^{3}+40\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+ t+1 \right)$
11Maple$v$, then $u$15406.3752414239131 / 1822 / 224 / 5188101445 / 8948 / 9318 / 1824939302${t}^{2} \left( 7\,t-1 \right) \left( 1+2\,t \right) \left( 5\,t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 337920\,{t}^{13}+1373184\, {t}^{12}-4304640\,{t}^{11}-6344576\,{t}^{10}-444096\,{t}^{9}+2010720\,{ t}^{8}+901808\,{t}^{7}+180552\,{t}^{6}+55164\,{t}^{5}+31010\,{t}^{4}+ 11106\,{t}^{3}+1914\,{t}^{2}+106\,t-3 \right)$
11Maple$u$, then $v$1830011.552414239135 / 229 / 1033 / 352230734531 / 165 / 619 / 191994522${t}^{2} \left( 7\,t-1 \right) \left( 1+2\,t \right) \left( 5\,t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 337920\,{t}^{13}+1373184\, {t}^{12}-4304640\,{t}^{11}-6344576\,{t}^{10}-444096\,{t}^{9}+2010720\,{ t}^{8}+901808\,{t}^{7}+180552\,{t}^{6}+55164\,{t}^{5}+31010\,{t}^{4}+ 11106\,{t}^{3}+1914\,{t}^{2}+106\,t-3 \right)$
11Mathematica$u$, then $v$1150n.a.52414239137 / 2311 / 911 / 82617272038 / 2411 / 1011 / 1026110029${t}^{2} \left( 7\,t-1 \right) \left( 1+2\,t \right) \left( 5\,t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 337920\,{t}^{13}+1373184\, {t}^{12}-4304640\,{t}^{11}-6344576\,{t}^{10}-444096\,{t}^{9}+2010720\,{ t}^{8}+901808\,{t}^{7}+180552\,{t}^{6}+55164\,{t}^{5}+31010\,{t}^{4}+ 11106\,{t}^{3}+1914\,{t}^{2}+106\,t-3 \right)$
11Mathematica$v$, then $u$106n.a.52414239137 / 2311 / 911 / 82617272038 / 2411 / 1011 / 1026110029${t}^{2} \left( 7\,t-1 \right) \left( 1+2\,t \right) \left( 5\,t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 337920\,{t}^{13}+1373184\, {t}^{12}-4304640\,{t}^{11}-6344576\,{t}^{10}-444096\,{t}^{9}+2010720\,{ t}^{8}+901808\,{t}^{7}+180552\,{t}^{6}+55164\,{t}^{5}+31010\,{t}^{4}+ 11106\,{t}^{3}+1914\,{t}^{2}+106\,t-3 \right)$
x0Mathematica$u$, then $v$2030n.a.520101534130 / 1711 / 107 / 817141273827 / 1411 / 1010 / 10171078634${t}^{3} \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 720\,{t}^{9}{x}^{4}-480\,{t} ^{9}{x}^{3}+4896\,{t}^{8}{x}^{4}+1440\,{t}^{9}{x}^{2}+288\,{t}^{8}{x}^{ 3}+7272\,{t}^{7}{x}^{4}-480\,{t}^{9}x+9792\,{t}^{8}{x}^{2}+864\,{t}^{7} {x}^{3}+3420\,{t}^{6}{x}^{4}+720\,{t}^{9}+288\,{t}^{8}x+14064\,{t}^{7}{ x}^{2}+336\,{t}^{6}{x}^{3}-207\,{t}^{5}{x}^{4}+4896\,{t}^{8}+864\,{t}^{ 7}x+6088\,{t}^{6}{x}^{2}+834\,{t}^{5}{x}^{3}-225\,{t}^{4}{x}^{4}+7272\, {t}^{7}+336\,{t}^{6}x-174\,{t}^{5}{x}^{2}+1182\,{t}^{4}{x}^{3}+18\,{t}^ {3}{x}^{4}+3420\,{t}^{6}+834\,{t}^{5}x+234\,{t}^{4}{x}^{2}+315\,{t}^{3} {x}^{3}+9\,{t}^{2}{x}^{4}-207\,{t}^{5}+1182\,{t}^{4}x+222\,{t}^{3}{x}^{ 2}+3\,{t}^{2}{x}^{3}-225\,{t}^{4}+315\,{t}^{3}x+6\,{t}^{2}{x}^{2}-3\,t{ x}^{3}+18\,{t}^{3}+3\,{t}^{2}x-9\,t{x}^{2}+9\,{t}^{2}-3\,tx-{x}^{2} \right) \left( 3\,{t}^{2}{x}^{4}+4\,{t}^{2}{x}^{3}+6\,{t}^{2}{x}^{2}+ 2\,t{x}^{3}+4\,{t}^{2}x+3\,{t}^{2}+2\,tx-{x}^{2} \right)$
0yMathematica$u$, then $v$3590n.a.627165592053 / 3814 / 1411 / 12351089831045 / 308 / 1011 / 10311934114${t}^{3} \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( yt+t+y \right) \left( t{y}^ {2}+2\,yt+2\,t+y \right) \left( 1036800\,{t}^{15}{y}^{10}+1181952\,{t} ^{15}{y}^{9}+10471680\,{t}^{14}{y}^{10}-910080\,{t}^{15}{y}^{8}+ 39591936\,{t}^{14}{y}^{9}+17521920\,{t}^{13}{y}^{10}-3158784\,{t}^{15}{ y}^{7}+71875584\,{t}^{14}{y}^{8}+90657792\,{t}^{13}{y}^{9}+3792960\,{t} ^{12}{y}^{10}-4628736\,{t}^{15}{y}^{6}+72695040\,{t}^{14}{y}^{7}+ 196669440\,{t}^{13}{y}^{8}+57312000\,{t}^{12}{y}^{9}-9400320\,{t}^{11}{ y}^{10}-94208\,{t}^{15}{y}^{5}+19311360\,{t}^{14}{y}^{6}+228911616\,{t} ^{13}{y}^{7}+156566976\,{t}^{12}{y}^{8}-4752576\,{t}^{11}{y}^{9}- 5739120\,{t}^{10}{y}^{10}+2586624\,{t}^{15}{y}^{4}-45313280\,{t}^{14}{y }^{5}+119357952\,{t}^{13}{y}^{6}+220910720\,{t}^{12}{y}^{7}+31113600\,{ t}^{11}{y}^{8}-16396704\,{t}^{10}{y}^{9}-223560\,{t}^{9}{y}^{10}+ 5801984\,{t}^{15}{y}^{3}-82440192\,{t}^{14}{y}^{4}-84521984\,{t}^{13}{y }^{5}+175711872\,{t}^{12}{y}^{6}+82289792\,{t}^{11}{y}^{7}-13272240\,{t }^{10}{y}^{8}-4289328\,{t}^{9}{y}^{9}+341820\,{t}^{8}{y}^{10}+3828736\, {t}^{15}{y}^{2}-69646336\,{t}^{14}{y}^{3}-215676672\,{t}^{13}{y}^{4}+ 5598976\,{t}^{12}{y}^{5}+108297600\,{t}^{11}{y}^{6}+1508288\,{t}^{10}{y }^{7}-8533512\,{t}^{9}{y}^{8}+157032\,{t}^{8}{y}^{9}-16200\,{t}^{7}{y}^ {10}+2400256\,{t}^{15}y-39163904\,{t}^{14}{y}^{2}-227806720\,{t}^{13}{y }^{3}-135161856\,{t}^{12}{y}^{4}+68862400\,{t}^{11}{y}^{5}+21146496\,{t }^{10}{y}^{6}-12617104\,{t}^{9}{y}^{7}-3346524\,{t}^{8}{y}^{8}+160299\, {t}^{7}{y}^{9}-16740\,{t}^{6}{y}^{10}+557056\,{t}^{15}-12541952\,{t}^{ 14}y-137959424\,{t}^{13}{y}^{2}-194395904\,{t}^{12}{y}^{3}+9551232\,{t} ^{11}{y}^{4}+28839232\,{t}^{10}{y}^{5}-14106368\,{t}^{9}{y}^{6}-8509648 \,{t}^{8}{y}^{7}-947079\,{t}^{7}{y}^{8}+73260\,{t}^{6}{y}^{9}+3915\,{t} ^{5}{y}^{10}-1519616\,{t}^{14}-55175168\,{t}^{13}y-131443200\,{t}^{12}{ y}^{2}-32233088\,{t}^{11}{y}^{3}+22857024\,{t}^{10}{y}^{4}-5092736\,{t} ^{9}{y}^{5}-12237656\,{t}^{8}{y}^{6}-2931529\,{t}^{7}{y}^{7}-4767\,{t}^ {6}{y}^{8}+31869\,{t}^{5}{y}^{9}+1080\,{t}^{4}{y}^{10}-9270272\,{t}^{13 }-60045312\,{t}^{12}y-32731392\,{t}^{11}{y}^{2}+22264192\,{t}^{10}{y}^{ 3}+153328\,{t}^{9}{y}^{4}-5708336\,{t}^{8}{y}^{5}-3876587\,{t}^{7}{y}^{ 6}-372707\,{t}^{6}{y}^{7}+39909\,{t}^{5}{y}^{8}+3573\,{t}^{4}{y}^{9}- 12081152\,{t}^{12}-18213888\,{t}^{11}y+9899904\,{t}^{10}{y}^{2}+7931168 \,{t}^{9}{y}^{3}+241312\,{t}^{8}{y}^{4}-1562636\,{t}^{7}{y}^{5}-378303 \,{t}^{6}{y}^{6}+11920\,{t}^{5}{y}^{7}-6441\,{t}^{4}{y}^{8}-216\,{t}^{3 }{y}^{9}-6917120\,{t}^{11}+6239232\,{t}^{10}y+3583040\,{t}^{9}{y}^{2}+ 2921264\,{t}^{8}{y}^{3}+1481608\,{t}^{7}{y}^{4}-316267\,{t}^{6}{y}^{5}+ 92241\,{t}^{5}{y}^{6}-12617\,{t}^{4}{y}^{7}-3762\,{t}^{3}{y}^{8}- 1543424\,{t}^{10}+3436544\,{t}^{9}y+656096\,{t}^{8}{y}^{2}+1899968\,{t} ^{7}{y}^{3}+277572\,{t}^{6}{y}^{4}-18088\,{t}^{5}{y}^{5}+23700\,{t}^{4} {y}^{6}-8153\,{t}^{3}{y}^{7}-288\,{t}^{2}{y}^{8}+315968\,{t}^{9}-233344 \,{t}^{8}y+1009844\,{t}^{7}{y}^{2}+290144\,{t}^{6}{y}^{3}-39402\,{t}^{5 }{y}^{4}+23765\,{t}^{4}{y}^{5}-1789\,{t}^{3}{y}^{6}-1274\,{t}^{2}{y}^{7 }+168704\,{t}^{8}-159808\,{t}^{7}y+348048\,{t}^{6}{y}^{2}-94372\,{t}^{5 }{y}^{3}+6480\,{t}^{4}{y}^{4}+5002\,{t}^{3}{y}^{5}-931\,{t}^{2}{y}^{6}- 62\,t{y}^{7}+2240\,{t}^{7}+47616\,{t}^{6}y+3336\,{t}^{5}{y}^{2}-20560\, {t}^{4}{y}^{3}+5672\,{t}^{3}{y}^{4}-77\,{t}^{2}{y}^{5}-22\,t{y}^{6}- 4096\,{t}^{6}+15552\,{t}^{5}y-10608\,{t}^{4}{y}^{2}+1736\,{t}^{3}{y}^{3 }+386\,{t}^{2}{y}^{4}+t{y}^{5}+6\,{y}^{6}+320\,{t}^{5}-468\,{t}^{3}{y}^ {2}+368\,{t}^{2}{y}^{3}+2\,t{y}^{4}+6\,{y}^{5}+128\,{t}^{4}-192\,{t}^{3 }y+96\,{t}^{2}{y}^{2}-4\,t{y}^{3}+3\,{y}^{4} \right) \left( 3\,t{y}^{2 }+2\,yt+2\,t-y \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 11 Your browser does not support the HTML5 canvas tag. 00Maplev, then u1.210.04413631285 / 78 / 64 / 437089 / 4214 / 327 / 654623{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 00Mapleu, then v2.390.04523631288 / 97 / 613 / 154365920 / 4831 / 1749 / 2547499{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 01Maplev, then u20.30.4375159100824 / 1823 / 2132 / 5136524933 / 2634 / 3318 / 1619366435{t}^{3} \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 1728\,{t}^{7}+576\,{t}^{6}+864\,{t}^{5}+768\,{t}^{4}-108\,{t}^{3}+28\,{ t}^{2}-22\,t-5 \right) \left( 4\,{t}^{2}+1 \right) 01Mapleu, then v 681.615159100827 / 2017 / 1632 / 341324935917 / 1386 / 51216 / 61926168{t}^{3} \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 1728\,{t}^{7}+576\,{t}^{6}+864\,{t}^{5}+768\,{t}^{4}-108\,{t}^{3}+28\,{ t}^{2}-22\,t-5 \right) \left( 4\,{t}^{2}+1 \right) 10Maplev, then u1.080.04393631275 / 77 / 64 / 425859 / 1011 / 117 / 642579{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 10Mapleu, then v2.310.043536312710 / 116 / 616 / 18566978 / 75 / 59 / 842665{t}^{2} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) 11Maplev, then u 180.128515898721 / 1616 / 164 / 5102662829 / 2125 / 2610 / 1013103867{t}^{3} \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 4\, {t}^{2}+1 \right) \left( 576\,{t}^{7}-288\,{t}^{6}-80\,{t}^{4}-100\,{t }^{3}-42\,{t}^{2}-14\,t-3 \right) 11Mapleu, then v38.11.1515898721 / 169 / 1026 / 28107754015 / 103 / 416 / 16712855{t}^{3} \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 4\, {t}^{2}+1 \right) \left( 576\,{t}^{7}-288\,{t}^{6}-80\,{t}^{4}-100\,{t }^{3}-42\,{t}^{2}-14\,t-3 \right) 11Mathematicau, then v262n.a.515898723 / 1610 / 119 / 10165330921 / 1410 / 89 / 81421994{t}^{3} \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 4\, {t}^{2}+1 \right) \left( 576\,{t}^{7}-288\,{t}^{6}-80\,{t}^{4}-100\,{t }^{3}-42\,{t}^{2}-14\,t-3 \right) 11Mathematicav, then u 33n.a.515898723 / 1610 / 119 / 10165330921 / 1410 / 89 / 81421994{t}^{3} \left( 4\,t-1 \right) \left( 12\,{t}^{2}-1 \right) \left( 4\, {t}^{2}+1 \right) \left( 576\,{t}^{7}-288\,{t}^{6}-80\,{t}^{4}-100\,{t }^{3}-42\,{t}^{2}-14\,t-3 \right) x0Mathematicau, then v152n.a.4956377 / 58 / 86 / 65199728 / 68 / 89 / 8518604{t}^{3} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) \left( 4\,{t}^{2}{x}^{2}+4\,{t}^{2}x+4\,{t}^{2}-x \right) 0yMathematicau, then v352n.a.5169764225 / 1812 / 129 / 101433479519 / 1210 / 87 / 61277334{t}^{3} \left( 4\,{t}^{2}+1 \right) \left( 12\,{t}^{2}-1 \right) \left( t{y}^{2}-t-y \right) \left( t{y}^{2}+3\,t-y \right) \left( 144\,{t}^{7}{y}^{7}+432\,{t}^{7}{y}^{5}-288\,{t}^{6}{y}^{6}+48\,{t}^{5} {y}^{7}+60\,{t}^{4}{y}^{8}+2448\,{t}^{7}{y}^{3}+144\,{t}^{6}{y}^{4}+648 \,{t}^{5}{y}^{5}+114\,{t}^{4}{y}^{6}-152\,{t}^{3}{y}^{7}+6\,{t}^{2}{y}^ {8}+432\,{t}^{7}y+1296\,{t}^{6}{y}^{2}+672\,{t}^{5}{y}^{3}+438\,{t}^{4} {y}^{4}-48\,{t}^{3}{y}^{5}+103\,{t}^{2}{y}^{6}-16\,t{y}^{7}+360\,{t}^{5 }y+870\,{t}^{4}{y}^{2}-142\,{t}^{3}{y}^{3}-65\,{t}^{2}{y}^{4}+2\,t{y}^{ 5}+10\,{y}^{6}+54\,{t}^{4}+126\,{t}^{3}y+12\,{t}^{2}{y}^{2}-30\,t{y}^{3 }-20\,{y}^{4} \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
12 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$4.780.12841064618 / 713 / 124 / 44380117 / 1025 / 109 / 19953630${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+8\,t+3 \right) \left( 8\,{t}^{2}+4\,t-1 \right)$
00Maple$u$, then $v$17.70.451410646122 / 2324 / 2429 / 399897529 / 584 / 31814 / 1056744${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+8\,t+3 \right) \left( 8\,{t}^{2}+4\,t-1 \right)$
01Maple$v$, then $u$1201.1462112199428 / 4333 / 3728 / 81517539481 / 5455 / 3321 / 24232011675${t}^{4} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 4224\,{t}^{10}+11456\,{t}^{9} +13808\,{t}^{8}+9560\,{t}^{7}+2656\,{t}^{6}-1608\,{t}^{5}-1862\,{t}^{4} -740\,{t}^{3}-146\,{t}^{2}-16\,t-1 \right) \left( 1+2\,t \right) ^{2}$
01Maple$u$, then $v$5620018.262112199439 / 2221 / 1840 / 402066969021 / 954 / 57822 / 141131632${t}^{4} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 4224\,{t}^{10}+11456\,{t}^{9} +13808\,{t}^{8}+9560\,{t}^{7}+2656\,{t}^{6}-1608\,{t}^{5}-1862\,{t}^{4} -740\,{t}^{3}-146\,{t}^{2}-16\,t-1 \right) \left( 1+2\,t \right) ^{2}$
10Maple$v$, then $u$5.20.376411653410 / 813 / 124 / 45491414 / 1220 / 209 / 8834379${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 24\,{t}^{3}+24\,{t}^{2}+11\,t+2 \right) \left( 8\,{t}^{2}+4\,t +1 \right)$
10Maple$u$, then $v$25.10.996411653415 / 137 / 822 / 2493779310 / 83 / 412 / 1266577${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 24\,{t}^{3}+24\,{t}^{2}+11\,t+2 \right) \left( 8\,{t}^{2}+4\,t +1 \right)$
11Maple$v$, then $u$1191.7451811144721 / 1422 / 224 / 5134313731 / 2032 / 3412 / 1017209546${t}^{3} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 1824\,{t}^{8}-4996\,{t}^{6}- 7188\,{t}^{5}-5321\,{t}^{4}-2353\,{t}^{3}-618\,{t}^{2}-89\,t-6 \right) \left( 1+2\,t \right) ^{2}$
11Maple$u$, then $v$39307.2751811144724 / 179 / 1029 / 311412308127 / 7781 / 44917 / 1612161913${t}^{3} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 1824\,{t}^{8}-4996\,{t}^{6}- 7188\,{t}^{5}-5321\,{t}^{4}-2353\,{t}^{3}-618\,{t}^{2}-89\,t-6 \right) \left( 1+2\,t \right) ^{2}$
11Mathematica$u$, then $v$354n.a.51811144724 / 1611 / 119 / 10186575721 / 138 / 89 / 81517562${t}^{3} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 1824\,{t}^{8}-4996\,{t}^{6}- 7188\,{t}^{5}-5321\,{t}^{4}-2353\,{t}^{3}-618\,{t}^{2}-89\,t-6 \right) \left( 1+2\,t \right) ^{2}$
11Mathematica$v$, then $u$61.4n.a.51811144724 / 1611 / 119 / 10186575721 / 138 / 89 / 81517562${t}^{3} \left( 6\,t-1 \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( 1824\,{t}^{8}-4996\,{t}^{6}- 7188\,{t}^{5}-5321\,{t}^{4}-2353\,{t}^{3}-618\,{t}^{2}-89\,t-6 \right) \left( 1+2\,t \right) ^{2}$
x0Mathematica$u$, then $v$862n.a.517101148426 / 1910 / 107 / 818101508224 / 1710 / 1010 / 1016678434${t}^{3} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}{x}^{4}-4\,{t}^{2}{x}^ {3}-2\,{t}^{2}{x}^{2}-2\,t{x}^{3}-4\,{t}^{2}x+{t}^{2}-2\,tx+{x}^{2} \right) \left( 16\,{t}^{7}{x}^{4}+320\,{t}^{7}{x}^{3}+16\,{t}^{6}{x}^ {4}+480\,{t}^{7}{x}^{2}+544\,{t}^{6}{x}^{3}+22\,{t}^{5}{x}^{4}+320\,{t} ^{7}x+1120\,{t}^{6}{x}^{2}+312\,{t}^{5}{x}^{3}+12\,{t}^{4}{x}^{4}+16\,{ t}^{7}+544\,{t}^{6}x+1252\,{t}^{5}{x}^{2}+12\,{t}^{4}{x}^{3}+2\,{t}^{3} {x}^{4}+16\,{t}^{6}+312\,{t}^{5}x+872\,{t}^{4}{x}^{2}-58\,{t}^{3}{x}^{3 }+22\,{t}^{5}+12\,{t}^{4}x+438\,{t}^{3}{x}^{2}-25\,{t}^{2}{x}^{3}+12\,{ t}^{4}-58\,{t}^{3}x+158\,{t}^{2}{x}^{2}-4\,t{x}^{3}+2\,{t}^{3}-25\,{t}^ {2}x+34\,t{x}^{2}-4\,tx+3\,{x}^{2} \right)$
0yMathematica$u$, then $v$1710n.a.622132750434 / 2413 / 1410 / 1222306797731 / 219 / 109 / 820731683${t}^{4} \left( 1+2\,t \right) \left( 8\,{t}^{2}+4\,t+1 \right) \left( 8\,{t}^{2}+4\,t-1 \right) \left( t{y}^{2}+2\,ty+3\,t-y \right) \left( t{y}^{2}-2\,ty-t-y \right) \left( 2384\,{t}^{11}{y}^{ 7}+6512\,{t}^{11}{y}^{6}+7600\,{t}^{10}{y}^{7}+13232\,{t}^{11}{y}^{5}+ 7360\,{t}^{10}{y}^{6}+8238\,{t}^{9}{y}^{7}-28464\,{t}^{11}{y}^{4}+53824 \,{t}^{10}{y}^{5}-12774\,{t}^{9}{y}^{6}+4924\,{t}^{8}{y}^{7}-99600\,{t} ^{11}{y}^{3}-62928\,{t}^{10}{y}^{4}+89826\,{t}^{9}{y}^{5}-29002\,{t}^{8 }{y}^{6}+1376\,{t}^{7}{y}^{7}+13776\,{t}^{11}{y}^{2}-330960\,{t}^{10}{y }^{3}-69234\,{t}^{9}{y}^{4}+66158\,{t}^{8}{y}^{5}-24428\,{t}^{7}{y}^{6} -36\,{t}^{6}{y}^{7}+78480\,{t}^{11}y+63840\,{t}^{10}{y}^{2}-490950\,{t} ^{9}{y}^{3}-59812\,{t}^{8}{y}^{4}+18028\,{t}^{7}{y}^{5}-9570\,{t}^{6}{y }^{6}-133\,{t}^{5}{y}^{7}-11664\,{t}^{11}+170784\,{t}^{10}y+168462\,{t} ^{9}{y}^{2}-389872\,{t}^{8}{y}^{3}-50000\,{t}^{7}{y}^{4}-7014\,{t}^{6}{ y}^{5}-608\,{t}^{5}{y}^{6}-32\,{t}^{4}{y}^{7}+9072\,{t}^{10}+174150\,{t }^{9}y+189534\,{t}^{8}{y}^{2}-175358\,{t}^{7}{y}^{3}-34236\,{t}^{6}{y}^ {4}-9230\,{t}^{5}{y}^{5}+941\,{t}^{4}{y}^{6}-3\,{t}^{3}{y}^{7}+15066\,{ t}^{9}+113886\,{t}^{8}y+126258\,{t}^{7}{y}^{2}-33972\,{t}^{6}{y}^{3}- 14654\,{t}^{5}{y}^{4}-5104\,{t}^{4}{y}^{5}+387\,{t}^{3}{y}^{6}+5400\,{t }^{8}+57942\,{t}^{7}y+60048\,{t}^{6}{y}^{2}+9637\,{t}^{5}{y}^{3}-2809\, {t}^{4}{y}^{4}-1812\,{t}^{3}{y}^{5}+67\,{t}^{2}{y}^{6}+1566\,{t}^{7}+ 24516\,{t}^{6}y+22470\,{t}^{5}{y}^{2}+9080\,{t}^{4}{y}^{3}+327\,{t}^{3} {y}^{4}-407\,{t}^{2}{y}^{5}+5\,t{y}^{6}+1944\,{t}^{6}+7650\,{t}^{5}y+ 6366\,{t}^{4}{y}^{2}+2910\,{t}^{3}{y}^{3}+305\,{t}^{2}{y}^{4}-52\,t{y}^ {5}+864\,{t}^{5}+1476\,{t}^{4}y+1152\,{t}^{3}{y}^{2}+470\,{t}^{2}{y}^{3 }+67\,t{y}^{4}-3\,{y}^{5}+108\,{t}^{4}+135\,{t}^{3}y+99\,{t}^{2}{y}^{2} +34\,t{y}^{3}+6\,{y}^{4} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 13 Your browser does not support the HTML5 canvas tag. 00Maplev, then u3.510.086241162929 / 914 / 144 / 45262843 / 5547 / 8932 / 5214325461{t}^{3} \left( 14\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 00Mapleu, then v 140.0978411629217 / 149 / 823 / 2592924414 / 96 / 614 / 1479911{t}^{3} \left( 14\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 01Maplev, then u87.70.53362616299139 / 2528 / 284 / 52214544346 / 3242 / 4412 / 1226576677{t}^{3} \left( t-1 \right) \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 13782528\,{t}^{14}-38406960\,{t}^ {13}-77842512\,{t}^{12}+85746312\,{t}^{11}+11011536\,{t}^{10}-19136520 \,{t}^{9}+188933\,{t}^{8}+1163673\,{t}^{7}-98884\,{t}^{6}+36476\,{t}^{5 }+12477\,{t}^{4}-4747\,{t}^{3}-870\,{t}^{2}+42\,t+12 \right) 01Mapleu, then v2451.7362616299136 / 2313 / 1237 / 402243501934 / 186 / 624 / 2419118039{t}^{3} \left( t-1 \right) \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( {t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 24\,{t}^{2}-1 \right) \left( 13782528\,{t}^{14}-38406960\,{t}^ {13}-77842512\,{t}^{12}+85746312\,{t}^{11}+11011536\,{t}^{10}-19136520 \,{t}^{9}+188933\,{t}^{8}+1163673\,{t}^{7}-98884\,{t}^{6}+36476\,{t}^{5 }+12477\,{t}^{4}-4747\,{t}^{3}-870\,{t}^{2}+42\,t+12 \right) 10Maplev, then u3.410.086341163048 / 814 / 144 / 4479343 / 1945 / 1430 / 2714532569{t}^{3} \left( 13\,{t}^{2}-2 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 10Mapleu, then v15.10.448411630432 / 8715 / 1633 / 1011212149755 / 5026 / 2720 / 16937221{t}^{3} \left( 13\,{t}^{2}-2 \right) \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 11Maplev, then u39.70.37952413225732 / 1822 / 224 / 5188212038 / 2434 / 3610 / 1021291052{t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1021248\,{t}^{13}+4416768 \,{t}^{12}-3034800\,{t}^{11}-4202781\,{t}^{10}-298284\,{t}^{9}+594729\, {t}^{8}+357600\,{t}^{7}+37999\,{t}^{6}-49192\,{t}^{5}-11299\,{t}^{4}+ 1788\,{t}^{3}+574\,{t}^{2}+16\,t-6 \right) \left( 24\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 11Mapleu, then v39009.5952413225735 / 229 / 1033 / 351927873374 / 5526 / 2732 / 2320356693{t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1021248\,{t}^{13}+4416768 \,{t}^{12}-3034800\,{t}^{11}-4202781\,{t}^{10}-298284\,{t}^{9}+594729\, {t}^{8}+357600\,{t}^{7}+37999\,{t}^{6}-49192\,{t}^{5}-11299\,{t}^{4}+ 1788\,{t}^{3}+574\,{t}^{2}+16\,t-6 \right) \left( 24\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 11Mathematicau, then v1030n.a.52413225737 / 2311 / 911 / 82215868838 / 2411 / 1011 / 1023103726{t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1021248\,{t}^{13}+4416768 \,{t}^{12}-3034800\,{t}^{11}-4202781\,{t}^{10}-298284\,{t}^{9}+594729\, {t}^{8}+357600\,{t}^{7}+37999\,{t}^{6}-49192\,{t}^{5}-11299\,{t}^{4}+ 1788\,{t}^{3}+574\,{t}^{2}+16\,t-6 \right) \left( 24\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) 11Mathematicav, then u89.1n.a.52413225737 / 2311 / 911 / 82215868838 / 2411 / 1011 / 1023103726{t}^{2} \left( t-1 \right) \left( 5\,t-1 \right) \left( 3\,t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1021248\,{t}^{13}+4416768 \,{t}^{12}-3034800\,{t}^{11}-4202781\,{t}^{10}-298284\,{t}^{9}+594729\, {t}^{8}+357600\,{t}^{7}+37999\,{t}^{6}-49192\,{t}^{5}-11299\,{t}^{4}+ 1788\,{t}^{3}+574\,{t}^{2}+16\,t-6 \right) \left( 24\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) x0Mathematicau, then v1430n.a.5169572224 / 1611 / 107 / 81554780721 / 1311 / 1010 / 1014395386{t}^{4} \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) \left( 4\,{t}^{2}{x}^{4}+4\,{t}^{2}{x}^{3}+8 \,{t}^{2}{x}^{2}+4\,{t}^{2}x+4\,{t}^{2}-{x}^{2} \right) \left( 270\,{t }^{4}{x}^{4}-148\,{t}^{4}{x}^{3}+402\,{t}^{4}{x}^{2}-29\,{t}^{2}{x}^{4} -148\,{t}^{4}x+3\,{t}^{2}{x}^{3}+270\,{t}^{4}-46\,{t}^{2}{x}^{2}+{x}^{4 }+3\,{t}^{2}x+{x}^{3}-29\,{t}^{2}+2\,{x}^{2}+x+1 \right) 0yMathematicau, then v3150n.a.626152583853 / 3814 / 1411 / 1233513083245 / 308 / 1011 / 1030916181{t}^{3} \left( 24\,{t}^{2}-1 \right) \left( 8\,{t}^{2}-1 \right) \left( {t}^{2}+1 \right) \left( -y+t \right) \left( 2\,t{y}^{2}+3\,t -y \right) \left( 2\,t{y}^{2}+t+y \right) \left( 1769472\,{t}^{14}{y} ^{9}+5667840\,{t}^{14}{y}^{7}-6144768\,{t}^{13}{y}^{8}-8114688\,{t}^{12 }{y}^{9}+7107840\,{t}^{11}{y}^{10}+5557248\,{t}^{14}{y}^{5}-16201728\,{ t}^{13}{y}^{6}-26901504\,{t}^{12}{y}^{7}+30774144\,{t}^{11}{y}^{8}- 5061888\,{t}^{10}{y}^{9}-3669120\,{t}^{9}{y}^{10}+1223424\,{t}^{14}{y}^ {3}-13578624\,{t}^{13}{y}^{4}-30155328\,{t}^{12}{y}^{5}+39205920\,{t}^{ 11}{y}^{6}-7269264\,{t}^{10}{y}^{7}-8899392\,{t}^{9}{y}^{8}+2301376\,{t }^{8}{y}^{9}+583680\,{t}^{7}{y}^{10}-435456\,{t}^{14}y-3006720\,{t}^{13 }{y}^{2}-11975040\,{t}^{12}{y}^{3}+12520992\,{t}^{11}{y}^{4}+7052688\,{ t}^{10}{y}^{5}-7156704\,{t}^{9}{y}^{6}+3250096\,{t}^{8}{y}^{7}+1028544 \,{t}^{7}{y}^{8}-265760\,{t}^{6}{y}^{9}-42880\,{t}^{5}{y}^{10}+524880\, {t}^{13}-695952\,{t}^{12}y-3272904\,{t}^{11}{y}^{2}+12458052\,{t}^{10}{ y}^{3}-274368\,{t}^{9}{y}^{4}-1537122\,{t}^{8}{y}^{5}+137016\,{t}^{7}{y }^{6}-358964\,{t}^{6}{y}^{7}-66240\,{t}^{5}{y}^{8}+8832\,{t}^{4}{y}^{9} +1280\,{t}^{3}{y}^{10}-589680\,{t}^{11}+3831948\,{t}^{10}y+939204\,{t}^ {9}{y}^{2}-2986194\,{t}^{8}{y}^{3}-514656\,{t}^{7}{y}^{4}+159930\,{t}^{ 6}{y}^{5}+47864\,{t}^{5}{y}^{6}+15210\,{t}^{4}{y}^{7}+2112\,{t}^{3}{y}^ {8}+96\,{t}^{2}{y}^{9}-76140\,{t}^{9}-839223\,{t}^{8}y-87678\,{t}^{7}{y }^{2}+294774\,{t}^{6}{y}^{3}+88594\,{t}^{5}{y}^{4}+762\,{t}^{4}{y}^{5}- 2704\,{t}^{3}{y}^{6}-208\,{t}^{2}{y}^{7}+16767\,{t}^{7}+71136\,{t}^{6}y +10164\,{t}^{5}{y}^{2}-9384\,{t}^{4}{y}^{3}-4610\,{t}^{3}{y}^{4}-648\,{ t}^{2}{y}^{5}+2\,{y}^{7}-1026\,{t}^{5}-2943\,{t}^{4}y-852\,{t}^{3}{y}^{ 2}-164\,{t}^{2}{y}^{3}+24\,t{y}^{4}+6\,{y}^{5}+27\,{t}^{3}+54\,{t}^{2}y +18\,t{y}^{2}+4\,{y}^{3} \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
14 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$5.250.0808412657212 / 914 / 144 / 46732143 / 17848 / 13818 / 3314462421${t}^{3} \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 12\,{t}^{3}+20\,{t}^{2}-3\,t- 2 \right)$
00Maple$u$, then $v$28.90.351412657217 / 149 / 823 / 25106110615 / 96 / 614 / 14822211${t}^{3} \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 12\,{t}^{3}+20\,{t}^{2}-3\,t- 2 \right)$
01Maple$v$, then $u$593010.962615304542 / 2238 / 3741 / 52137971653 / 244100 / 20425 / 51292237103${t}^{3} \left( t-1 \right) \left( 7\,t-1 \right) \left( 5\,t+1 \right) \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 819200\,{t}^{14}+ 820800\,{t}^{13}-4159888\,{t}^{12}-2894800\,{t}^{11}+8830560\,{t}^{10}+ 7001852\,{t}^{9}-6123915\,{t}^{8}-8131545\,{t}^{7}-3582534\,{t}^{6}- 811538\,{t}^{5}-118344\,{t}^{4}-16058\,{t}^{3}-1268\,{t}^{2}+108\,t+16 \right)$
01Maple$u$, then $v$4893.4662615304544 / 3826 / 2447 / 6228158871434 / 166 / 624 / 2420128037${t}^{3} \left( t-1 \right) \left( 7\,t-1 \right) \left( 5\,t+1 \right) \left( {t}^{2}+t+1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 819200\,{t}^{14}+ 820800\,{t}^{13}-4159888\,{t}^{12}-2894800\,{t}^{11}+8830560\,{t}^{10}+ 7001852\,{t}^{9}-6123915\,{t}^{8}-8131545\,{t}^{7}-3582534\,{t}^{6}- 811538\,{t}^{5}-118344\,{t}^{4}-16058\,{t}^{3}-1268\,{t}^{2}+108\,t+16 \right)$
10Maple$v$, then $u$6.650.439412657313 / 914 / 144 / 46779817 / 1322 / 249 / 8959655${t}^{3} \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 8\,{t}^{3}+40\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+ t+1 \right)$
10Maple$u$, then $v$26.80.0978412657321 / 177 / 825 / 27128057418 / 125 / 619 / 161040713${t}^{3} \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 8\,{t}^{3}+40\,{t}^{2}+4\,t-1 \right) \left( {t}^{2}+ t+1 \right)$
11Maple$v$, then $u$ 830.91252414239614 / 1816 / 3024 / 576925440 / 2740 / 4217 / 1723686048${t}^{2} \left( t-1 \right) \left( 5\,t+1 \right) \left( 7\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 643520\,{t}^{13}-4876736\,{t }^{12}-1882848\,{t}^{11}+12036464\,{t}^{10}+4658084\,{t}^{9}-6348144\,{ t}^{8}-5177466\,{t}^{7}-1301230\,{t}^{6}+32550\,{t}^{5}+113956\,{t}^{4} +33223\,{t}^{3}+3780\,{t}^{2}+37\,t-15 \right)$
11Maple$u$, then $v$1450011.552414239634 / 219 / 1032 / 352027739431 / 145 / 619 / 191890009${t}^{2} \left( t-1 \right) \left( 5\,t+1 \right) \left( 7\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 643520\,{t}^{13}-4876736\,{t }^{12}-1882848\,{t}^{11}+12036464\,{t}^{10}+4658084\,{t}^{9}-6348144\,{ t}^{8}-5177466\,{t}^{7}-1301230\,{t}^{6}+32550\,{t}^{5}+113956\,{t}^{4} +33223\,{t}^{3}+3780\,{t}^{2}+37\,t-15 \right)$
11Mathematica$u$, then $v$1160n.a.52414239637 / 2311 / 911 / 82617576238 / 2411 / 1011 / 1026111199${t}^{2} \left( t-1 \right) \left( 5\,t+1 \right) \left( 7\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 643520\,{t}^{13}-4876736\,{t }^{12}-1882848\,{t}^{11}+12036464\,{t}^{10}+4658084\,{t}^{9}-6348144\,{ t}^{8}-5177466\,{t}^{7}-1301230\,{t}^{6}+32550\,{t}^{5}+113956\,{t}^{4} +33223\,{t}^{3}+3780\,{t}^{2}+37\,t-15 \right)$
11Mathematica$v$, then $u$106n.a.52414239637 / 2311 / 911 / 82617576238 / 2411 / 1011 / 1026111199$-{t}^{2} \left( t-1 \right) \left( 5\,t+1 \right) \left( 7\,t-1 \right) \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 643520\,{t}^{13}-4876736\,{t }^{12}-1882848\,{t}^{11}+12036464\,{t}^{10}+4658084\,{t}^{9}-6348144\,{ t}^{8}-5177466\,{t}^{7}-1301230\,{t}^{6}+32550\,{t}^{5}+113956\,{t}^{4} +33223\,{t}^{3}+3780\,{t}^{2}+37\,t-15 \right)$
x0Mathematica$u$, then $v$2370n.a.520101534130 / 2011 / 107 / 818144832627 / 1711 / 1010 / 10161106811${t}^{3} \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( 3\,{t}^{2}{x}^{4}+4\,{t}^{2} {x}^{3}+6\,{t}^{2}{x}^{2}+2\,t{x}^{3}+4\,{t}^{2}x+3\,{t}^{2}+2\,tx-{x}^ {2} \right) \left( 720\,{t}^{9}{x}^{4}-480\,{t}^{9}{x}^{3}+4896\,{t}^{ 8}{x}^{4}+1440\,{t}^{9}{x}^{2}+288\,{t}^{8}{x}^{3}+7272\,{t}^{7}{x}^{4} -480\,{t}^{9}x+9792\,{t}^{8}{x}^{2}+864\,{t}^{7}{x}^{3}+3420\,{t}^{6}{x }^{4}+720\,{t}^{9}+288\,{t}^{8}x+14064\,{t}^{7}{x}^{2}+336\,{t}^{6}{x}^ {3}-207\,{t}^{5}{x}^{4}+4896\,{t}^{8}+864\,{t}^{7}x+6088\,{t}^{6}{x}^{2 }+834\,{t}^{5}{x}^{3}-225\,{t}^{4}{x}^{4}+7272\,{t}^{7}+336\,{t}^{6}x- 174\,{t}^{5}{x}^{2}+1182\,{t}^{4}{x}^{3}+18\,{t}^{3}{x}^{4}+3420\,{t}^{ 6}+834\,{t}^{5}x+234\,{t}^{4}{x}^{2}+315\,{t}^{3}{x}^{3}+9\,{t}^{2}{x}^ {4}-207\,{t}^{5}+1182\,{t}^{4}x+222\,{t}^{3}{x}^{2}+3\,{t}^{2}{x}^{3}- 225\,{t}^{4}+315\,{t}^{3}x+6\,{t}^{2}{x}^{2}-3\,t{x}^{3}+18\,{t}^{3}+3 \,{t}^{2}x-9\,t{x}^{2}+9\,{t}^{2}-3\,tx-{x}^{2} \right)$
0yMathematica$u$, then $v$5290n.a.626155373353 / 3914 / 1411 / 12351084141945 / 318 / 1011 / 10311903731${t}^{3} \left( {t}^{2}+t+1 \right) \left( 4\,{t}^{2}-4\,t-1 \right) \left( 20\,{t}^{2}+4\,t-1 \right) \left( -y+t \right) \left( 2\,t{y} ^{2}+2\,yt+t+y \right) \left( 2\,t{y}^{2}+2\,yt+3\,t-y \right) \left( 1228800\,{t}^{14}{y}^{10}+2248704\,{t}^{14}{y}^{9}+3219456\,{t} ^{13}{y}^{10}+4761600\,{t}^{14}{y}^{8}+2617344\,{t}^{13}{y}^{9}-2955264 \,{t}^{12}{y}^{10}+3624960\,{t}^{14}{y}^{7}+8343552\,{t}^{13}{y}^{8}- 14321664\,{t}^{12}{y}^{9}-13025280\,{t}^{11}{y}^{10}+1707008\,{t}^{14}{ y}^{6}-1155072\,{t}^{13}{y}^{7}-23910912\,{t}^{12}{y}^{8}-28941312\,{t} ^{11}{y}^{9}-5724672\,{t}^{10}{y}^{10}-3413504\,{t}^{14}{y}^{5}-790528 \,{t}^{13}{y}^{6}-33748992\,{t}^{12}{y}^{7}-47809024\,{t}^{11}{y}^{8}- 4146432\,{t}^{10}{y}^{9}+6741504\,{t}^{9}{y}^{10}-4950016\,{t}^{14}{y}^ {4}-10191872\,{t}^{13}{y}^{5}-13732480\,{t}^{12}{y}^{6}-26180864\,{t}^{ 11}{y}^{7}-2355328\,{t}^{10}{y}^{8}+18496512\,{t}^{9}{y}^{9}+4237824\,{ t}^{8}{y}^{10}-3383552\,{t}^{14}{y}^{3}-3514624\,{t}^{13}{y}^{4}+ 12618112\,{t}^{12}{y}^{5}+11229696\,{t}^{11}{y}^{6}+28202944\,{t}^{10}{ y}^{7}+33091712\,{t}^{9}{y}^{8}+8653440\,{t}^{8}{y}^{9}-66432\,{t}^{7}{ y}^{10}-470016\,{t}^{14}{y}^{2}-700928\,{t}^{13}{y}^{3}+36684224\,{t}^{ 12}{y}^{4}+53643264\,{t}^{11}{y}^{5}+46059264\,{t}^{10}{y}^{6}+39746176 \,{t}^{9}{y}^{7}+18144896\,{t}^{8}{y}^{8}+675456\,{t}^{7}{y}^{9}-328512 \,{t}^{6}{y}^{10}+868608\,{t}^{14}y+3025152\,{t}^{13}{y}^{2}+26896384\, {t}^{12}{y}^{3}+51610816\,{t}^{11}{y}^{4}+43753824\,{t}^{10}{y}^{5}+ 31586688\,{t}^{9}{y}^{6}+15886144\,{t}^{8}{y}^{7}+4514720\,{t}^{7}{y}^{ 8}+362112\,{t}^{6}{y}^{9}+12288\,{t}^{5}{y}^{10}+235008\,{t}^{14}+ 2251008\,{t}^{13}y+7293600\,{t}^{12}{y}^{2}+19818848\,{t}^{11}{y}^{3}+ 4197088\,{t}^{10}{y}^{4}+4607136\,{t}^{9}{y}^{5}+6283352\,{t}^{8}{y}^{6 }+3547984\,{t}^{7}{y}^{7}+1686872\,{t}^{6}{y}^{8}+443520\,{t}^{5}{y}^{9 }+28608\,{t}^{4}{y}^{10}-641088\,{t}^{13}-3391776\,{t}^{12}y-9665280\,{ t}^{11}{y}^{2}-29279584\,{t}^{10}{y}^{3}-29837984\,{t}^{9}{y}^{4}- 13281896\,{t}^{8}{y}^{5}-2291968\,{t}^{7}{y}^{6}+1296052\,{t}^{6}{y}^{7 }+785776\,{t}^{5}{y}^{8}+145344\,{t}^{4}{y}^{9}+4608\,{t}^{3}{y}^{10}- 3910896\,{t}^{12}-14268528\,{t}^{11}y-33072912\,{t}^{10}{y}^{2}- 42415024\,{t}^{9}{y}^{3}-24716196\,{t}^{8}{y}^{4}-11934152\,{t}^{7}{y}^ {5}-2047840\,{t}^{6}{y}^{6}+551840\,{t}^{5}{y}^{7}+192508\,{t}^{4}{y}^{ 8}+18816\,{t}^{3}{y}^{9}+192\,{t}^{2}{y}^{10}-5096736\,{t}^{11}- 18224352\,{t}^{10}y-30027456\,{t}^{9}{y}^{2}-21676008\,{t}^{8}{y}^{3}- 12033636\,{t}^{7}{y}^{4}-5595776\,{t}^{6}{y}^{5}-713988\,{t}^{5}{y}^{6} +115544\,{t}^{4}{y}^{7}+19456\,{t}^{3}{y}^{8}+768\,{t}^{2}{y}^{9}- 2918160\,{t}^{10}-10332576\,{t}^{9}y-10671462\,{t}^{8}{y}^{2}-6656010\, {t}^{7}{y}^{3}-4666536\,{t}^{6}{y}^{4}-1594380\,{t}^{5}{y}^{5}-156024\, {t}^{4}{y}^{6}+6416\,{t}^{3}{y}^{7}+400\,{t}^{2}{y}^{8}-651132\,{t}^{9} -1365138\,{t}^{8}y-908604\,{t}^{7}{y}^{2}-1797279\,{t}^{6}{y}^{3}- 1365595\,{t}^{5}{y}^{4}-290553\,{t}^{4}{y}^{5}-24957\,{t}^{3}{y}^{6}- 520\,{t}^{2}{y}^{7}+16\,t{y}^{8}+133299\,{t}^{8}+686835\,{t}^{7}y+ 169038\,{t}^{6}{y}^{2}-487070\,{t}^{5}{y}^{3}-261862\,{t}^{4}{y}^{4}- 33594\,{t}^{3}{y}^{5}-2248\,{t}^{2}{y}^{6}+32\,t{y}^{7}+4\,{y}^{8}+ 71172\,{t}^{7}+173322\,{t}^{6}y-48402\,{t}^{5}{y}^{2}-98726\,{t}^{4}{y} ^{3}-28846\,{t}^{3}{y}^{4}-1604\,{t}^{2}{y}^{5}-4\,t{y}^{6}+8\,{y}^{7}+ 945\,{t}^{6}-16875\,{t}^{5}y-25038\,{t}^{4}{y}^{2}-10262\,{t}^{3}{y}^{3 }-1394\,{t}^{2}{y}^{4}+130\,t{y}^{5}+8\,{y}^{6}-1728\,{t}^{5}-4968\,{t} ^{4}y-432\,{t}^{3}{y}^{2}-28\,{t}^{2}{y}^{3}+16\,t{y}^{4}+16\,{y}^{5}+ 135\,{t}^{4}+567\,{t}^{3}y+522\,{t}^{2}{y}^{2}+98\,t{y}^{3}+4\,{y}^{4}+ 54\,{t}^{3}+108\,{t}^{2}y+36\,t{y}^{2}+8\,{y}^{3} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 15 Your browser does not support the HTML5 canvas tag. 00Maplev, then u1.030.0434364974 / 58 / 64 / 423527 / 812 / 117 / 641456{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 00Mapleu, then v1.830.0433364978 / 97 / 613 / 155222741 / 2038 / 389 / 2154531{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 01Maplev, then u24.80.521516911067 / 7511 / 3212 / 8255534 / 2635 / 3317 / 1715308008{t}^{3} \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 2688\,{t}^{7}+768\,{t}^{6 }+960\,{t}^{5}+344\,{t}^{4}-424\,{t}^{3}+4\,{t}^{2}+8\,t-5 \right) 01Mapleu, then v 451.075169110620 / 8819 / 6129 / 661014302216 / 536 / 10416 / 49921897{t}^{3} \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 2688\,{t}^{7}+768\,{t}^{6 }+960\,{t}^{5}+344\,{t}^{4}-424\,{t}^{3}+4\,{t}^{2}+8\,t-5 \right) 10Maplev, then u1.010.04373641194 / 57 / 64 / 4242215 / 123 / 1419 / 25812541{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 10Mapleu, then v2.350.043636411912 / 136 / 615 / 16571578 / 95 / 59 / 842655{t}^{2} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) 11Maplev, then u18.20.1285169111121 / 1616 / 164 / 5102711541 / 3240 / 2625 / 2519640214{t}^{3} \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1536\,{t}^{7}-1536\,{t}^{6}-584\,{t}^{4}-472\,{t}^{3}- 90\,{t}^{2}-22\,t-3 \right) \left( 8\,{t}^{2}+1 \right) 11Mapleu, then v38.21.345169111122 / 8718 / 6130 / 651218168352 / 5345 / 10419 / 49982806{t}^{3} \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1536\,{t}^{7}-1536\,{t}^{6}-584\,{t}^{4}-472\,{t}^{3}- 90\,{t}^{2}-22\,t-3 \right) \left( 8\,{t}^{2}+1 \right) 11Mathematicau, then v258n.a.5169111123 / 1610 / 119 / 10185548921 / 1410 / 89 / 81623164{t}^{3} \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1536\,{t}^{7}-1536\,{t}^{6}-584\,{t}^{4}-472\,{t}^{3}- 90\,{t}^{2}-22\,t-3 \right) \left( 8\,{t}^{2}+1 \right) 11Mathematicav, then u31.9n.a.5169111123 / 1610 / 119 / 10185548921 / 1410 / 89 / 81623164{t}^{3} \left( 3\,t-1 \right) \left( t+1 \right) \left( 8\,{t}^{2}-1 \right) \left( 1536\,{t}^{7}-1536\,{t}^{6}-584\,{t}^{4}-472\,{t}^{3}- 90\,{t}^{2}-22\,t-3 \right) \left( 8\,{t}^{2}+1 \right) x0Mathematicau, then v171n.a.4953727 / 58 / 86 / 65104978 / 68 / 89 / 859446{t}^{3} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) \left( 4\,{t}^{2}{x}^{2}+4\,{t}^{2}-x \right) 0yMathematicau, then v351n.a.5169386725 / 1712 / 129 / 101515770719 / 1110 / 87 / 61335627{t}^{3} \left( 8\,{t}^{2}-1 \right) \left( 8\,{t}^{2}+1 \right) \left( t{y}^{2}+2\,t-y \right) \left( t{y}^{2}-2\,t-y \right) \left( 128\,{t}^{7}{y}^{7}-256\,{t}^{6}{y}^{6}+40\,{t}^{4}{y}^{8}+2560 \,{t}^{7}{y}^{3}+448\,{t}^{5}{y}^{5}-104\,{t}^{3}{y}^{7}+1024\,{t}^{6}{ y}^{2}+240\,{t}^{4}{y}^{4}+60\,{t}^{2}{y}^{6}+512\,{t}^{5}y-320\,{t}^{3 }{y}^{3}+8\,t{y}^{5}+64\,{t}^{4}-56\,{t}^{2}{y}^{2}-5\,{y}^{4} \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
16 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$4.170.0885410544711 / 1614 / 919 / 224935844 / 1338 / 2827 / 1211326650${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t+3 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right)$
00Maple$u$, then $v$21.40.508410544713 / 129 / 819 / 218277218 / 74 / 412 / 1254585${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t+3 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right)$
01Maple$v$, then $u$1411.2862213214729 / 2028 / 284 / 5158109835 / 2641 / 4212 / 1219326700${t}^{4} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 17664\,{t}^{11}-130176\,{t}^{10}-134208\,{t}^{9}-40160 \,{t}^{8}+47536\,{t}^{7}+16824\,{t}^{6}+1808\,{t}^{5}-1342\,{t}^{4}- 1323\,{t}^{3}-173\,{t}^{2}+t-3 \right)$
01Maple$u$, then $v$22200 1262213214728 / 1913 / 1232 / 341620766221 / 124 / 420 / 201227861${t}^{4} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 17664\,{t}^{11}-130176\,{t}^{10}-134208\,{t}^{9}-40160 \,{t}^{8}+47536\,{t}^{7}+16824\,{t}^{6}+1808\,{t}^{5}-1342\,{t}^{4}- 1323\,{t}^{3}-173\,{t}^{2}+t-3 \right)$
10Maple$v$, then $u$4.990.374411650610 / 813 / 124 / 45469144 / 11337 / 7027 / 10010326487${t}^{3} \left( 1+2\,t \right) \left( t+1 \right) \left( 4\,{t}^{2}+4 \,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+2\, t+1 \right)$
10Maple$u$, then $v$13.40.445411650615 / 137 / 822 / 2493652410 / 83 / 412 / 1265787${t}^{3} \left( 1+2\,t \right) \left( t+1 \right) \left( 4\,{t}^{2}+4 \,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 4\,{t}^{2}+2\, t+1 \right)$
11Maple$v$, then $u$2173.1251911152423 / 1522 / 224 / 5124703329 / 2136 / 389 / 1016214354${t}^{3} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 7872\,{t}^{9}+8512\,{t}^{8}+4656\,{t}^{7}-3376\,{t}^{6 }-4604\,{t}^{5}-3324\,{t}^{4}-1219\,{t}^{3}-315\,{t}^{2}-27\,t-3 \right)$
11Maple$u$, then $v$3774.2351911152425 / 179 / 1029 / 311412646142 / 18039 / 9515 / 2012155447${t}^{3} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 7872\,{t}^{9}+8512\,{t}^{8}+4656\,{t}^{7}-3376\,{t}^{6 }-4604\,{t}^{5}-3324\,{t}^{4}-1219\,{t}^{3}-315\,{t}^{2}-27\,t-3 \right)$
11Mathematica$u$, then $v$352n.a.51911152426 / 1711 / 119 / 10176923023 / 148 / 89 / 81519185${t}^{3} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 7872\,{t}^{9}+8512\,{t}^{8}+4656\,{t}^{7}-3376\,{t}^{6 }-4604\,{t}^{5}-3324\,{t}^{4}-1219\,{t}^{3}-315\,{t}^{2}-27\,t-3 \right)$
11Mathematica$v$, then $u$59.3n.a.51911152426 / 1711 / 119 / 10176923023 / 148 / 89 / 81519185${t}^{3} \left( 3\,t+1 \right) \left( 5\,t-1 \right) \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12\,{t}^{2}+4\,t+1 \right) \left( 7872\,{t}^{9}+8512\,{t}^{8}+4656\,{t}^{7}-3376\,{t}^{6 }-4604\,{t}^{5}-3324\,{t}^{4}-1219\,{t}^{3}-315\,{t}^{2}-27\,t-3 \right)$
x0Mathematica$u$, then $v$914n.a.51791109026 / 1610 / 107 / 81592693524 / 1410 / 1010 / 1013621949${t}^{3} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( {t}^{2}{x}^{4}-4\,{t}^{2}{x}^{3}+2\,{t }^{2}{x}^{2}-2\,t{x}^{3}-4\,{t}^{2}x+{t}^{2}-2\,tx+{x}^{2} \right) \left( 16\,{t}^{7}{x}^{4}+96\,{t}^{7}{x}^{3}-16\,{t}^{6}{x}^{4}+32\,{t }^{7}{x}^{2}+352\,{t}^{6}{x}^{3}-8\,{t}^{5}{x}^{4}+96\,{t}^{7}x-32\,{t} ^{6}{x}^{2}+336\,{t}^{5}{x}^{3}+4\,{t}^{4}{x}^{4}+16\,{t}^{7}+352\,{t}^ {6}x+80\,{t}^{5}{x}^{2}+96\,{t}^{4}{x}^{3}+{t}^{3}{x}^{4}-16\,{t}^{6}+ 336\,{t}^{5}x+200\,{t}^{4}{x}^{2}-18\,{t}^{3}{x}^{3}-8\,{t}^{5}+96\,{t} ^{4}x+146\,{t}^{3}{x}^{2}-14\,{t}^{2}{x}^{3}+4\,{t}^{4}-18\,{t}^{3}x+68 \,{t}^{2}{x}^{2}-4\,t{x}^{3}+{t}^{3}-14\,{t}^{2}x+26\,t{x}^{2}-4\,tx+3 \,{x}^{2} \right)$
0yMathematica$u$, then $v$1550n.a.622132900533 / 2313 / 1410 / 1220295904630 / 209 / 109 / 818720682${t}^{4} \left( t+1 \right) \left( 4\,{t}^{2}+4\,t-1 \right) \left( 12 \,{t}^{2}+4\,t+1 \right) \left( t{y}^{2}-2\,ty-2\,t-y \right) \left( t{y}^{2}+2\,ty+2\,t-y \right) \left( 768\,{t}^{11}{y}^{7}+3840\,{t}^{ 10}{y}^{8}+4864\,{t}^{11}{y}^{6}+1536\,{t}^{10}{y}^{7}+1920\,{t}^{9}{y} ^{8}-2048\,{t}^{11}{y}^{5}-8960\,{t}^{10}{y}^{6}+768\,{t}^{9}{y}^{7}+ 1600\,{t}^{8}{y}^{8}-46080\,{t}^{11}{y}^{4}+14080\,{t}^{10}{y}^{5}+ 26112\,{t}^{9}{y}^{6}-2560\,{t}^{8}{y}^{7}+1120\,{t}^{7}{y}^{8}+8192\,{ t}^{11}{y}^{3}-98304\,{t}^{10}{y}^{4}-3840\,{t}^{9}{y}^{5}+39552\,{t}^{ 8}{y}^{6}-4672\,{t}^{7}{y}^{7}+240\,{t}^{6}{y}^{8}+105472\,{t}^{11}{y}^ {2}-133120\,{t}^{10}{y}^{3}-203520\,{t}^{9}{y}^{4}-17664\,{t}^{8}{y}^{5 }+20544\,{t}^{7}{y}^{6}-5472\,{t}^{6}{y}^{7}-80\,{t}^{5}{y}^{8}-24576\, {t}^{11}y+231424\,{t}^{10}{y}^{2}-96768\,{t}^{9}{y}^{3}-207104\,{t}^{8} {y}^{4}-5184\,{t}^{7}{y}^{5}+1728\,{t}^{6}{y}^{6}-1664\,{t}^{5}{y}^{7}- 20\,{t}^{4}{y}^{8}-81920\,{t}^{11}+245760\,{t}^{10}y+282624\,{t}^{9}{y} ^{2}-20736\,{t}^{8}{y}^{3}-104960\,{t}^{7}{y}^{4}+1536\,{t}^{6}{y}^{5}- 896\,{t}^{5}{y}^{6}+232\,{t}^{4}{y}^{7}+4096\,{t}^{10}+227328\,{t}^{9}y +199168\,{t}^{8}{y}^{2}-28032\,{t}^{7}{y}^{3}-33984\,{t}^{6}{y}^{4}- 4704\,{t}^{5}{y}^{5}-248\,{t}^{4}{y}^{6}+213\,{t}^{3}{y}^{7}+33792\,{t} ^{9}+71680\,{t}^{8}y+48640\,{t}^{7}{y}^{2}-16512\,{t}^{6}{y}^{3}-11344 \,{t}^{5}{y}^{4}-3600\,{t}^{4}{y}^{5}-243\,{t}^{3}{y}^{6}+30\,{t}^{2}{y }^{7}+16384\,{t}^{8}-17408\,{t}^{7}y+22656\,{t}^{6}{y}^{2}-3872\,{t}^{5 }{y}^{3}-1600\,{t}^{4}{y}^{4}-900\,{t}^{3}{y}^{5}-157\,{t}^{2}{y}^{6}- 5120\,{t}^{7}-1536\,{t}^{6}y+12608\,{t}^{5}{y}^{2}+2512\,{t}^{4}{y}^{3} +684\,{t}^{3}{y}^{4}-91\,{t}^{2}{y}^{5}-25\,t{y}^{6}-2304\,{t}^{6}+5632 \,{t}^{5}y+3872\,{t}^{4}{y}^{2}+1848\,{t}^{3}{y}^{3}+164\,{t}^{2}{y}^{4 }+5\,t{y}^{5}+704\,{t}^{5}+1408\,{t}^{4}y+852\,{t}^{3}{y}^{2}+304\,{t}^ {2}{y}^{3}+14\,t{y}^{4}+3\,{y}^{5}+128\,{t}^{4}+192\,{t}^{3}y+96\,{t}^{ 2}{y}^{2}+4\,t{y}^{3}+3\,{y}^{4} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vVheight of Vlength of Vleading coefficient of P 17 Your browser does not support the HTML5 canvas tag. 00Maplev, then u3.270.0461353975 / 615 / 136 / 55262326 / 8246 / 7720 / 40757236{t}^{2} \left( 3\,t-1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) 00Mapleu, then v4.790.04583539727 / 3210 / 845 / 39111966758 / 96 / 516 / 1453956{t}^{2} \left( 3\,t-1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) 01Maplev, then unot available 01Mapleu, then v64909.686118686262 / 25562 / 42133 / 121232022077213 / 136 / 523 / 23727570{t}^{4} \left( t+1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) \left( 9 \,{t}^{2}+48\,t-10 \right) \left( 3\,t-1 \right) ^{2} 10Maplev, then u1300010.7611868615 / 1524 / 246 / 5103269646 / 14852 / 21426 / 62231063392{t}^{4} \left( t+1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) \left( 9 \,{t}^{2}+48\,t-10 \right) \left( 3\,t-1 \right) ^{2} 10Mapleu, then v11700022.5611868643 / 4226 / 25134 / 13630410107717 / 198 / 832 / 321070738{t}^{4} \left( t+1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) \left( 9 \,{t}^{2}+48\,t-10 \right) \left( 3\,t-1 \right) ^{2} 11Maplev, then u4761.8834211338 / 4121 / 1733 / 3345054032 / 11752 / 11317 / 5616421351{t}^{2} \left( t+1 \right) \left( 3\,t-1 \right) 11Mapleu, then v4382.173421138 / 117 / 626 / 285179195 / 88 / 817 / 1737780{t}^{2} \left( t+1 \right) \left( 3\,t-1 \right) 11Mathematicau, then v94.9n.a.3421137 / 67 / 76 / 6446447 / 66 / 57 / 653480{t}^{2} \left( t+1 \right) \left( 3\,t-1 \right) 11Mathematicav, then u487n.a.3421137 / 67 / 76 / 6446447 / 66 / 57 / 653480{t}^{2} \left( t+1 \right) \left( 3\,t-1 \right) x0Mathematicau, then v708n.a.6128230718 / 169 / 97 / 10115545120 / 189 / 1412 / 1413139427{t}^{4} \left( 3\,t-1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) \left( 4\,{t}^{2}{x}^{3}-{t}^{2}+2\,tx-{x}^{2} \right) \left( 27\,{t} ^{3}{x}^{2}+129\,{t}^{2}{x}^{3}-60\,t{x}^{4}+6\,{t}^{2}-18\,tx+10\,{x}^ {2} \right) 0yMathematicau, then v800n.a.6128230327 / 2512 / 1310 / 122377566727 / 2512 / 1110 / 1223419427{t}^{4} \left( 3\,t-1 \right) \left( 9\,{t}^{2}+3\,t+1 \right) \left( {t}^{2}{y}^{3}-2\,t{y}^{2}-4\,{t}^{2}+y \right) \left( 6\,{t}^ {2}{y}^{4}+27\,{t}^{3}{y}^{2}-18\,t{y}^{3}+129\,{t}^{2}y+10\,{y}^{2}-60 \,t \right) ssvxvyCAS usedintegratetime (sec)memory (GB)\operatorname{ord}P$$\deg_tP$height of $P$length of $P$$\deg_tU$$\deg_uU$$\deg_vUheight of Ulength of U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
18 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$30.40.4834642096 / 920 / 195 / 44930944 / 12947 / 9334 / 7613415456${t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 3\,t+1 \right)$
00Maple$u$, then $v$31.80.50446420929 / 1832 / 1226 / 401723456410 / 96 / 520 / 19514300${t}^{3} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 3\,t+1 \right)$
01Maple$v$, then $u$10803.194541649 / 1325 / 247 / 762146823 / 2784 / 849 / 820419564${t}^{3} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
01Maple$u$, then $v$39.60.81945416414 / 1810 / 836 / 369774877 / 115 / 419 / 19410265${t}^{3} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
10Maple$v$, then $u$38.70.8194541647 / 1119 / 195 / 441026555 / 163156 / 20024 / 78212376326${t}^{3} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
10Maple$u$, then $v$12402.9745416437 / 2937 / 2196 / 9722162315718 / 1324 / 830 / 27998244${t}^{3} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
11Maple$v$, then $u$10802.973431176 / 921 / 208 / 851246734 / 14564 / 5717 / 7413339295${t}^{2} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
11Maple$u$, then $v$10803.2234311735 / 2217 / 2062 / 411351569331 / 4743 / 1223 / 24527463${t}^{2} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
11Mathematica$u$, then $v$133n.a.3431178 / 107 / 77 / 6667838 / 105 / 77 / 764737${t}^{2} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
11Mathematica$v$, then $u$1110n.a.3431178 / 107 / 77 / 6667838 / 105 / 77 / 764737${t}^{2} \left( 1+2\,t \right) \left( 6\,t-1 \right)$
x0Mathematica$u$, then $v$2140n.a.6129649121 / 219 / 97 / 101534629724 / 2410 / 1413 / 1417856805${t}^{4} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 3\,t+1 \right) \left( {t}^{2}{x}^{4}-4\,{t}^{2}{x}^{3}-6\,{t}^{2}{x}^{2}-2\, t{x}^{3}-4\,{t}^{2}x+{t}^{2}-2\,tx+{x}^{2} \right) \left( 6\,{t}^{3}{x }^{4}+18\,{t}^{3}{x}^{3}+168\,{t}^{3}{x}^{2}-16\,{t}^{2}{x}^{3}+18\,{t} ^{3}x+104\,{t}^{2}{x}^{2}-5\,t{x}^{3}+6\,{t}^{3}-16\,{t}^{2}x+28\,t{x}^ {2}-5\,tx+3\,{x}^{2} \right)$
0yMathematica$u$, then $v$4500n.a.6129649133 / 3312 / 1312 / 1232599040233 / 338 / 1112 / 12322448491${t}^{4} \left( 6\,t-1 \right) \left( 1+2\,t \right) \left( 3\,t+1 \right) \left( {t}^{2}{y}^{4}-4\,{t}^{2}{y}^{3}-6\,{t}^{2}{y}^{2}-2\, t{y}^{3}-4\,{t}^{2}y+{t}^{2}-2\,ty+{y}^{2} \right) \left( 6\,{t}^{3}{y }^{4}+18\,{t}^{3}{y}^{3}+168\,{t}^{3}{y}^{2}-16\,{t}^{2}{y}^{3}+18\,{t} ^{3}y+104\,{t}^{2}{y}^{2}-5\,t{y}^{3}+6\,{t}^{3}-16\,{t}^{2}y+28\,t{y}^ {2}-5\,ty+3\,{y}^{2} \right)$
ssvxvyCAS usedintegratetime (sec)memory (GB)$\operatorname{ord}P$$\deg_tPheight of Plength of P$$\deg_tU$$\deg_uU$$\deg_vU$height of $U$length of $U$$\deg_tV$$\deg_uV$$\deg_vV$height of $V$length of $V$leading coefficient of $P$
19 Your browser does not support the HTML5 canvas tag. 00Maple$v$, then $u$8.20.12145412811 / 1221 / 186 / 56956218 / 9637 / 11211 / 57942216${t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
00Maple$u$, then $v$26.10.43745412818 / 1912 / 929 / 28104566710 / 508 / 10117 / 15614941${t}^{3} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
01Maple$v$, then $u$2.40.0439343916 / 513 / 105 / 53255315 / 6723 / 7318 / 43820528${t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
01Maple$u$, then $v$7.390.0923439112 / 1410 / 725 / 2582151120 / 2739 / 6911 / 1239783${t}^{2} \left( 4\,t-1 \right) \left( 1+4\,t \right)$
10Maple$v$, then $u$13.70.41446421428 / 2722 / 1923 / 2752202917 / 1636 / 3312 / 101098922${t}^{3} \left( 1+4\,t \right) \left( 2\,t-1 \right) \left( 4\,t-1 \right)$
10Maple$u$, then $v$13.60.16146421423 / 8822 / 8629 / 32111133547 / 447 / 7014 / 1268880${t}^{3} \left( 1+4\,t \right) \left( 2\,t-1 \right) \left( 4\,t-1 \right)$
11Maple$v$, then $u$5.050.0844642166 / 712 / 124 / 43346645 / 9183 / 9327 / 7518296204${t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right)$
11Maple$u$, then $v$16.60.47946421624 / 8826 / 8126 / 231110690710 / 447 / 7015 / 12512635${t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right)$
11Mathematica$u$, then $v$122n.a.4642167 / 76 / 75 / 6627529 / 98 / 108 / 975181${t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right)$
11Mathematica$v$, then $u$7.93n.a.4642167 / 76 / 75 / 6627529 / 98 / 108 / 975181${t}^{3} \left( 1+4\,t \right) \left( 4\,t+3 \right) \left( 4\,t-1 \right)$
x0Mathematica$u$, then $v$2220n.a.6107248036 / 3411 / 1211 / 102794210138 / 3611 / 1412 / 14281011969${t}^{4} \left( 4\,t-1 \right) \left( 1+4\,t \right) \left( t{x}^{2}+2 \,tx+t-x \right) \left( t{x}^{2}-2\,tx+t-x \right) \left( 3\,{t}^{2}{ x}^{4}+34\,{t}^{2}{x}^{2}-9\,t{x}^{3}+3\,{t}^{2}-9\,tx+5\,{x}^{2} \right)$
0yMathematica$u$, then $v$1710n.a.58556030 / 3014 / 1310 / 1027199862630 / 3011 / 910 / 10261205581${t}^{4} \left( 4\,t-1 \right) \left( 1+4\,t \right) \left( 4\,{t}^{2} {y}^{2}+8\,{t}^{2}y+4\,{t}^{2}-y \right)$