type/ramratpoly¶

ramified rational function type¶

Calling sequence:¶

$\operatorname{type}(f, {\mathit ramratpoly})$ or $\operatorname{type}(f, {\mathit ramratpoly}(K))$ or $\operatorname{type}(f, {\mathit ramratpoly}(K, v))$

Parameters:¶

  • $f$, a Maple algebraic expression
  • $K$, type name for the coefficient domain
  • $v$, variables, that is one variable or a list / set of variables

Description:¶

  • $\operatorname{type}(f, {\mathit ramratpoly}(K, v))$ checks to see if $f$ is a ramified rational function in the variables $v$ with coefficients in the domain $K$.

Example:¶

In [1]:
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
In [2]:
 with(dcfun):
Out[2]:

We test the ramified rational character of the following expression by varying the request slightly.

In [3]:
 f := x/(1 - 2*x^(1/2) + y^(1/5));
Out[3]:

$$\frac{x}{1-2 \sqrt{x}+y^{\frac{1}{5}}}$$

In [4]:
 [type(f, ramratpoly(anything, x)), type(f, ramratpoly(rational, x)), type(f, ramratpoly(rational, {x, y}))]
Out[4]:

$$[\mathit{true}, \mathit{false}, \mathit{true}]$$