GOp¶

Gräffe operator¶

Calling sequence:¶

$\operatorname{GOp}(p, x, b)$

Parameters:¶

  • $p$ a polynomial in $x$
  • $x$, a name
  • $b$, a positive integer

Description:¶

  • The Gräffe operator, here implemeted by the procedure $\operatorname{GOp}$, is defined by the formula $\operatorname{GOp}(p(x), x, b) = \operatorname{Res}_y( y^b - x, p(y))$, where $\operatorname{Res}_y$ is the resultant wrt $y$.
  • It appears as a quasi-inverse of the Mahler operator in view of the relations
    • $\operatorname{GOp}(\operatorname{MOp}(p(x), x, b), x, b) = p(x)^b$,
    • $p(x)$ divides $\operatorname{MOp}(\operatorname{GOp}(p(x), x, b), x, b)$.
  • If $p(x)$ is an irreducible polynomial, the irreducible factors of $\operatorname{GOp}(p(x), x, b)$ are the irreducible polynomials whose images by $\operatorname{MOp}$ are $p(x)$.

References:¶

  • Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba (2018). Computing solutions of linear Mahler equations. Mathematics of Computation 87.314, pp. 2977–3021.

Example:¶

In [1]:
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
In [2]:
 with(dcfun):
Out[2]:

We illustrate the formula $p \mid \operatorname{MOp}(\operatorname{GOp}(p, x, b), x, b)$.

In [3]:
 p := 8*x - 1;
Out[3]:

$$8 x -1$$

In [4]:
 MG := MOp(GOp(p, x, 3), x, 3);
Out[4]:

$$512 x^{3}-1$$

In [5]:
 factor(MG);
Out[5]:

$$\left(8 x -1\right) \left(64 x^{2}+8 x +1\right)$$

We illustrate the formula $\operatorname{GOp}(\operatorname{MOp}(p, x, b), x, b) = p^b$.

In [6]:
 GM := GOp(MOp(p, x, 3), x, 3);
Out[6]:

$$512 x^{3}-192 x^{2}+24 x -1$$

In [7]:
 factor(GM);
Out[7]:

$$\left(8 x -1\right)^{3}$$