$\operatorname{LMOpChange}(L, c, x, M, b)$
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
with(dcfun):
Let us consider the following linear Mahler operator.
b := 2;
$$2$$
L := 1 - M + x^2*M^2 - x^10*M^3 + x^34*M^4;
$$x^{34} M^{4}-x^{10} M^{3}+x^{2} M^{2}-M +1$$
We look at the characteristic polynomials of the operator.
CH := LMOpConvexHull(L, x, M, b, 'direction' = 'lower');
$$[\textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}]$$
[seq(CH[i]:-slope, i = 1..nops(CH))];
$$[0, 1, 2, 3, \infty]$$
[seq(CH[i]:-charpoly, i = 1..nops(CH))];
$$[1-\lambda, -1+\lambda, 1-\lambda, -1+\lambda, 0]$$
The rightmost edge of the lower Newton polygon of $L$ provides us with a slope $+3$ and a characteristic polynomial $-1 + \lambda$. (The last element, with infinite slope, is not taken into account.) This tells us that a possible valuation for Laurent series solutions of the equation $L y = 0$ is $-3$. (Laurent series or more generally Puiseux series correspond to $\lambda = 1$. See LMOpSolve.) We change the operator to force the corresponding valuation to be $0$.
newL := LMOpChange(L,{x = x, y(x) = x^(-3)*y(x)}, x, M, b);
$$x^{11}-x^{8} M +x^{4} M^{2}+M^{4}-M^{3}$$
newCH := LMOpConvexHull(newL, x, M, b, 'direction' = 'lower');
$$[\textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}, \textbf{module}() \,\textbf{export} \,abscissa,\,ordinate,\,slope,\,intercept,\,charpoly; \, \textbf{end}]$$
[seq(newCH[i]:-slope, i = 1..nops(newCH))];
$$[-3, -2, -1, 0, \infty]$$
[seq(newCH[i]:-charpoly, i = 1..nops(newCH))];
$$[1-\lambda, -1+\lambda, 1-\lambda, -1+\lambda, 0]$$
As a matter of fact, there is no solution with valuation $-3$, but the change has multiplied the solutions by $x^3$.
Order := 20;
$$20$$
LMOpSolve(L, x, M, b, free = K);
$$K_{1,1}-K_{1,1} x^{2}-K_{1,1} x^{4}-K_{1,1} x^{8}+2 K_{1,1} x^{10}-K_{1,1} x^{16}+K_{1,1} x^{18}+2 K_{1,1} x^{20}+\mathrm{O}\! \left(x^{21}\right)$$
LMOpSolve(newL, x, M, b, free = K);
$$K_{1,1} x^{3}-K_{1,1} x^{5}-K_{1,1} x^{7}-K_{1,1} x^{11}+2 K_{1,1} x^{13}-K_{1,1} x^{19}+\mathrm{O}\! \left(x^{21}\right)$$