$\operatorname{LMOpEval}(L, f, x, M, b)$
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
with(dcfun):
A linear Mahler operator generalizes the Mahler operator as a linear differential operator generalizes the differentiation.
b := 3;
$$3$$
f := g(x);
$$g \! \left(x \right)$$
LMOpEval(x + (1-x)*M, f, x, M, b);
$$-g \! \left(x^{3}\right) x +x g \! \left(x \right)+g \! \left(x^{3}\right)$$
It can be applied to an object of type series.
f := series(1/(1-x), x, 10);
$$1+x +x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+\mathrm{O}\! \left(x^{10}\right)$$
LMOpEval(x + (1-x)*M, f, x, M, b);
$$1+x^{2}+2 x^{3}+x^{5}+2 x^{6}+x^{8}+2 x^{9}+\mathrm{O}\! \left(x^{11}\right)$$
Equally it applies to a rational function.
f := 1/(1-x);
$$\frac{1}{1-x}$$
LMOpEval(x + (1-x)*M, 1/(1-x), x, M, b);
$$-\frac{x^{3}+x^{2}+1}{x^{3}-1}$$
Here we consider a linear Mahler operator.
L := (x^6+x^3+1)*M^2+(-x^6-x^5-x^4-x^3)*M+x^5;
$$\left(x^{6}+x^{3}+1\right) M^{2}+\left(-x^{6}-x^{5}-x^{4}-x^{3}\right) M +x^{5}$$
It annihilates on the following function.
f := x^(1/2)/(1+x^(1/2));
$$\frac{\sqrt{x}}{1+\sqrt{x}}$$
It is further factorized into $L = AB$ as follows.
A := (x^6+x^3+1)*M-x^(9/2)-x^5-x^4;
$$\left(x^{6}+x^{3}+1\right) M -x^{\frac{9}{2}}-x^{5}-x^{4}$$
B := M-x*(1+x^(3/2))/(x^(5/2)+x^2+x^(3/2)+x+x^(1/2)+1);
$$M -\frac{x \left(1+x^{\frac{3}{2}}\right)}{x^{\frac{5}{2}}+x^{2}+x^{\frac{3}{2}}+x +\sqrt{x}+1}$$
We can verify this assertion.
collect(L - LMOpMul(A, B, x, M, b), M, normal);
$$0$$
If we define $g = Bf$, we must have $Ag = 0$ since $Lf = 0$.
g := LMOpEval(B, f, x, M, b);
$$\frac{2 x^{2}}{\left(x +\sqrt{x}+1\right) \left(1+x^{\frac{3}{2}}\right)}$$
LMOpEval(A, g, x, M, b);
$$0$$