LMOpMul¶

multiplication of linear Mahler operators¶

Calling sequence:¶

$\operatorname{LMOpMul}(L_1, L_2, x, M, b)$

Parameters:¶

  • $L_1$, a linear Mahler operator with rational functions coefficients
  • $L_2$, a linear Mahler operator with rational functions coefficients
  • $x$, a name
  • $M$, the name of the Mahler operator
  • $b$, the radix of the Mahler operator

Description:¶

  • $\operatorname{LMOpMul}(L_1, L_2, x, M, b)$ computes the product of the linear Mahler operators $L_1$ and $L_2$.

References:¶

  • Alin Bostan, Frédéric Chyzak, Bruno Le Roux (2008). Products of Ordinary Differential Operators by Evaluation and Interpolation. ISSAC '08.

Example:¶

In [1]:
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
In [2]:
 with(dcfun):
Out[2]:

We multiply two linear Mahler operators. Note that $L = (x - M)\times M$ is equivalent to $L = \operatorname{LMOpMul}(L, M, x, M, b)$ in view of the operators representation mode.

In [3]:
 b := 3;
Out[3]:

$$3$$

In [4]:
 L1 := (x-M)*M;
Out[4]:

$$\left(x -M \right) M$$

In [5]:
 L2 := add(M^k, k = 0..2);
Out[5]:

$$M^{2}+M +1$$

In [6]:
 LMOpMul(L1, L2, x, M, b);
Out[6]:

$$M x +\left(-1+x \right) M^{2}+\left(-1+x \right) M^{3}-M^{4}$$