$\operatorname{LMOpSolve}(L, x, M, b)$
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
with(dcfun):
Let us consider the following linear Mahler operator.
b := 3:
$$$$
L := -36*x^6-24*x^4-4*x^2-16*x^3+(-216*x^272-216*x^271-300*x^270-336*x^269-504*x^268-560*x^267-572*x^266-612*x^265-740*x^264-634*x^263-632*x^262-618*x^261-666*x^260-624*x^259-542*x^258-587*x^257-608*x^256-620*x^255-1791*x^254-1871*x^253-2358*x^252-2202*x^251-3065*x^250-3337*x^249-3843*x^248-3690*x^247-4537*x^246-4001*x^245-4505*x^244-4026*x^243-980*x^242-209*x^241+463*x^240+5556*x^239+5006*x^238+1207*x^237+566*x^236+2154*x^235+1642*x^234+1930*x^233+146*x^232+510*x^231+3128*x^230+1114*x^229+26*x^228+574*x^227+2588*x^226+2786*x^225+2372*x^224+2374*x^223+3152*x^222+1230*x^221+1128*x^220+2530*x^219+2750*x^218+1842*x^217+1282*x^216-1604*x^215-916*x^214-2028*x^213-5815*x^212-5320*x^211-1232*x^210-1398*x^209-2161*x^208-1446*x^207-1281*x^206-632*x^205-1031*x^204-4611*x^203-1909*x^202-1036*x^201-313*x^200-2873*x^199-2417*x^198-3243*x^197-2139*x^196-2781*x^195+146*x^194-447*x^193-225*x^192-691*x^191+1744*x^190+2129*x^189+3112*x^188+2029*x^187+3150*x^186+1879*x^185+2672*x^184+2347*x^183+3474*x^182+2307*x^181+2018*x^180+1287*x^179+2606*x^178+2459*x^177+3490*x^176+2631*x^175+2934*x^174+2699*x^173+3298*x^172+3081*x^171+4330*x^170+4047*x^169+4156*x^168+3591*x^167+4206*x^166+3189*x^165+3026*x^164+1819*x^163+1512*x^162+113*x^161-218*x^160-969*x^159-1032*x^158-1911*x^157-1706*x^156-2201*x^155-1792*x^154-1707*x^153-1310*x^152-1563*x^151-1452*x^150-1490*x^149-1260*x^148-1325*x^147-1169*x^146-1142*x^145-1090*x^144-1257*x^143-1217*x^142-1190*x^141-1124*x^140-1197*x^139-957*x^138-868*x^137-684*x^136-597*x^135-305*x^134-182*x^133-56*x^132-16*x^131+165*x^130+124*x^129+193*x^128+124*x^127+111*x^126+40*x^125+67*x^124+56*x^123+70*x^122+32*x^121+21*x^120-2*x^117)*M^4+(216*x^380+216*x^379+300*x^378+336*x^377+504*x^376+560*x^375+572*x^374+612*x^373+740*x^372+634*x^371+632*x^370+618*x^369+666*x^368+624*x^367+542*x^366+587*x^365+608*x^364+620*x^363+495*x^362+575*x^361+558*x^360+618*x^359+473*x^358+577*x^357+579*x^356+666*x^355+505*x^354+377*x^353+353*x^352+366*x^351+164*x^350+89*x^349+9*x^348+88*x^347-122*x^346-155*x^345-68*x^344+30*x^343-128*x^342-80*x^341-58*x^340+120*x^339-97*x^338-22*x^337-54*x^336+167*x^335-85*x^334+28*x^333-52*x^332+189*x^331-87*x^330+7*x^329-100*x^328+157*x^327-103*x^326+17*x^325-100*x^324+162*x^323-103*x^322+17*x^321-94*x^320+172*x^319-95*x^318+20*x^317-96*x^316+172*x^315-96*x^314+20*x^313-96*x^312+172*x^311-96*x^310+20*x^309-7872*x^308-7604*x^307-10896*x^306-9484*x^305-15648*x^304-16388*x^303-19680*x^302-18124*x^301-24288*x^300-20060*x^299-23496*x^298-19840*x^297-3504*x^296+2116*x^295+5456*x^294+37552*x^293+32196*x^292+10848*x^291+490*x^290+11788*x^289+4218*x^288+934*x^287-16128*x^286-14654*x^285-12949*x^284-22644*x^283-26596*x^282-29197*x^281-24289*x^280-23702*x^279-20262*x^278-21059*x^277-19343*x^276-19697*x^275-18774*x^274-19587*x^273-16519*x^272-16755*x^271-14418*x^270-7256*x^269-3175*x^268-1243*x^267+10664*x^266+9594*x^265+2453*x^264-2288*x^263+1726*x^262-1908*x^261-5144*x^260-12414*x^259-12464*x^258-16273*x^257-19134*x^256-19146*x^255-17889*x^254-18413*x^253-17100*x^252-14332*x^251-11707*x^250-11367*x^249-6473*x^248-6132*x^247-6291*x^246-6835*x^245-3767*x^244-2816*x^243-1410*x^242-2959*x^241-1771*x^240-3912*x^239-2680*x^238-3607*x^237+232*x^236-1710*x^235-824*x^234+142*x^233+4320*x^232+4994*x^231+11244*x^230+9294*x^229+8576*x^228+7602*x^227+10716*x^226+9546*x^225+9616*x^224+7426*x^223+7616*x^222+1930*x^221+2848*x^220+3654*x^219+5192*x^218+1186*x^217+1320*x^216+726*x^215+3244*x^214+1766*x^213+4750*x^212+4206*x^211+4876*x^210+1258*x^209+3674*x^208+3782*x^207+3570*x^206-202*x^205-326*x^204-3888*x^203-2538*x^202-2718*x^201-2152*x^200-3632*x^199-3382*x^198-4546*x^197-3308*x^196-2740*x^195+100*x^194-1086*x^193-1476*x^192-1838*x^191+228*x^190-328*x^189+172*x^188-580*x^187-30*x^186-2091*x^185-1704*x^184-1404*x^183+844*x^182-953*x^181-836*x^180+449*x^179+2624*x^178+2443*x^177+5142*x^176+5085*x^175+4636*x^174+3717*x^173+4770*x^172+5243*x^171+5122*x^170+3673*x^169+3216*x^168+1397*x^167+1642*x^166+1723*x^165+1756*x^164+829*x^163+578*x^162+5*x^161+566*x^160+875*x^159+2061*x^158+1525*x^157+1158*x^156+1023*x^155+1911*x^154+1957*x^153+1759*x^152+1477*x^151+1375*x^150+342*x^149+345*x^148+1059*x^147+894*x^146+286*x^145-307*x^144-159*x^143-162*x^142-232*x^141-601*x^140-359*x^139-1060*x^138-1324*x^137-1929*x^136-1865*x^135-2558*x^134-2882*x^133-3537*x^132-3400*x^131-3844*x^130-3552*x^129-4054*x^128-3616*x^127-3670*x^126-3358*x^125-3810*x^124-3480*x^123-3624*x^122-3392*x^121-3758*x^120-3383*x^119-3474*x^118-3324*x^117-3819*x^116-3527*x^115-3618*x^114-3400*x^113-3639*x^112-2747*x^111-2652*x^110-2080*x^109-1839*x^108-791*x^107-594*x^106-196*x^105-96*x^104+619*x^103+324*x^102+551*x^101+324*x^100+457*x^99+72*x^98+173*x^97+120*x^96+334*x^95+48*x^94+35*x^93-48*x^92+124*x^91-54*x^90-28*x^89-48*x^88+124*x^87-48*x^86-28*x^85-48*x^84+124*x^83-48*x^82-28*x^81-48*x^80+124*x^79-48*x^78-28*x^77-48*x^76+124*x^75-48*x^74-28*x^73-48*x^72+124*x^71-48*x^70-28*x^69-54*x^68+114*x^67-56*x^66-31*x^65-52*x^64+114*x^63-91*x^62-79*x^61-100*x^60+90*x^59-31*x^58+181*x^57+222*x^56+530*x^55+569*x^54+833*x^53+908*x^52+1158*x^51+1150*x^50+1303*x^49+1214*x^48+1407*x^47+1290*x^46+1249*x^45+1130*x^44+1281*x^43+1222*x^42+1214*x^41+1132*x^40+1243*x^39+1169*x^38+1142*x^37+1098*x^36+1257*x^35+1217*x^34+1190*x^33+1124*x^32+1197*x^31+957*x^30+868*x^29+684*x^28+597*x^27+305*x^26+182*x^25+56*x^24+16*x^23-165*x^22-124*x^21-193*x^20-124*x^19-111*x^18-40*x^17-67*x^16-56*x^15-70*x^14-32*x^13-21*x^12+2*x^9)*M^3+(-2592*x^401-2592*x^400-3600*x^399-4464*x^398-6912*x^397-7248*x^396-9552*x^395-10368*x^394-13320*x^393-15816*x^392-18048*x^391-19704*x^390-22584*x^389-24744*x^388-27200*x^387-29504*x^386-32280*x^385-34776*x^384-36656*x^383-38912*x^382-41464*x^381-43672*x^380-45584*x^379-47728*x^378-49848*x^377-52048*x^376-53816*x^375-53644*x^374-55824*x^373-57104*x^372-58236*x^371-58192*x^370-60104*x^369-60322*x^368-61552*x^367-61044*x^366-60458*x^365-60682*x^364-60964*x^363-60368*x^362-60170*x^361-60098*x^360-59524*x^359-58996*x^358-58414*x^357-58828*x^356-58352*x^355-58000*x^354-57608*x^353-57938*x^352-57584*x^351-57623*x^350-57270*x^349-57706*x^348-72647*x^347-72579*x^346-78214*x^345-83700*x^344-97857*x^343-99723*x^342-112943*x^341-118066*x^340-135237*x^339-145202*x^338-158087*x^337-166326*x^336-181505*x^335-189674*x^334-203311*x^333-213050*x^332-227749*x^331-236966*x^330-251561*x^329-261102*x^328-276185*x^327-285536*x^326-300147*x^325-309678*x^324-324814*x^323-334134*x^322-348787*x^321-350521*x^320-365710*x^319-371974*x^318-384339*x^317-386569*x^316-400766*x^315-403230*x^314-415815*x^313-416497*x^312-394856*x^311-397498*x^310-396159*x^309-379479*x^308-357906*x^307-356058*x^306-335500*x^305-318797*x^304-290514*x^303-195637*x^302-176044*x^301-123165*x^300-65758*x^299+23963*x^298+54868*x^297+120287*x^296+134582*x^295+153171*x^294+175710*x^293+188635*x^292+180070*x^291+178261*x^290+165296*x^289+134467*x^288+114219*x^287+86799*x^286+59540*x^285+79784*x^284+52623*x^283+46051*x^282+41022*x^281+59594*x^280+39303*x^279+48724*x^278+27040*x^277+21710*x^276+58352*x^275+46848*x^274+39676*x^273+40608*x^272+58486*x^271+37360*x^270+47355*x^269+29798*x^268+38542*x^267+24803*x^266+22223*x^265+4630*x^264+820*x^263-22823*x^262-32361*x^261-47067*x^260-47042*x^259-53035*x^258-41884*x^257-46731*x^256-34118*x^255-30579*x^254-12664*x^253-5795*x^252+9060*x^251+7197*x^250+8484*x^249-20115*x^248-17120*x^247-38079*x^246-52894*x^245-88765*x^244-101328*x^243-131220*x^242-138236*x^241-154773*x^240-168543*x^239-182620*x^238-183324*x^237-194393*x^236-196331*x^235-196196*x^234-195146*x^233-198345*x^232-197799*x^231-211764*x^230-209390*x^229-218693*x^228-221465*x^227-234526*x^226-234806*x^225-244930*x^224-240091*x^223-239778*x^222-216415*x^221-216998*x^220-199303*x^219-187472*x^218-158601*x^217-148262*x^216-125128*x^215-119242*x^214-105553*x^213-99827*x^212-88596*x^211-89554*x^210-80955*x^209-83525*x^208-83628*x^207-86607*x^206-81769*x^205-82565*x^204-74363*x^203-75455*x^202-66017*x^201-63813*x^200-54371*x^199-51511*x^198-42069*x^197-44117*x^196-44515*x^195-62919*x^194-60221*x^193-73357*x^192-82899*x^191-105043*x^190-110949*x^189-129095*x^188-133363*x^187-143339*x^186-147853*x^185-156187*x^184-155803*x^183-161625*x^182-158995*x^181-158371*x^180-157810*x^179-161383*x^178-162431*x^177-174194*x^176-176110*x^175-186067*x^174-193013*x^173-206768*x^172-213430*x^171-226578*x^170-230687*x^169-237900*x^168-240819*x^167-248666*x^166-249011*x^165-254144*x^164-253651*x^163-256250*x^162-252211*x^161-252248*x^160-244203*x^159-243798*x^158-236043*x^157-233840*x^156-225535*x^155-223522*x^154-213015*x^153-206782*x^152-192755*x^151-180246*x^150-163125*x^149-151038*x^148-132483*x^147-116298*x^146-95737*x^145-78434*x^144-58653*x^143-42498*x^142-25325*x^141-10522*x^140+6735*x^139+20470*x^138+36609*x^137+49468*x^136+63687*x^135+74413*x^134+87087*x^133+94012*x^132+105222*x^131+112809*x^130+123463*x^129+130382*x^128+140552*x^127+145661*x^126+152516*x^125+154188*x^124+154860*x^123+154536*x^122+156276*x^121+153972*x^120+152232*x^119+148836*x^118+145968*x^117+142434*x^116+139964*x^115+137784*x^114+136222*x^113+133794*x^112+132732*x^111+131840*x^110+131682*x^109+130962*x^108+130394*x^107+129520*x^106+128610*x^105+127114*x^104+126006*x^103+124368*x^102+122708*x^101+120428*x^100+118486*x^99+116837*x^98+115566*x^97+114460*x^96+113395*x^95+112473*x^94+111950*x^93+111582*x^92+111241*x^91+111177*x^90+111217*x^89+111272*x^88+111353*x^87+111390*x^86+111601*x^85+111656*x^84+112041*x^83+112142*x^82+112369*x^81+111648*x^80+110945*x^79+108574*x^78+107373*x^77+105240*x^76+103441*x^75+100754*x^74+98817*x^73+95360*x^72+92435*x^71+88334*x^70+84217*x^69+79606*x^68+75587*x^67+70702*x^66+65969*x^65+60726*x^64+55827*x^63+50726*x^62+45917*x^61+41110*x^60+36569*x^59+31802*x^58+27341*x^57+22548*x^56+18239*x^55+13906*x^54+10324*x^53+6658*x^52+4607*x^51+1521*x^50-800*x^49-3558*x^48-5455*x^47-7989*x^46-9196*x^45-10821*x^44-11209*x^43-11265*x^42-11101*x^41-11445*x^40-10865*x^39-10389*x^38-9505*x^37-8753*x^36-7907*x^35-7277*x^34-6725*x^33-6305*x^32-5751*x^31-5469*x^30-5251*x^29-5179*x^28-5055*x^27-4898*x^26-4689*x^25-4427*x^24-4110*x^23-3818*x^22-3417*x^21-2959*x^20-2442*x^19-1942*x^18-1535*x^17-1175*x^16-950*x^15-670*x^14-443*x^13-271*x^12-176*x^11-60*x^10-47*x^9+2*x^8-2*x^7+8*x^6-4*x^5+2*x^4-2*x^3+4*x^2+2)*M+136218*x^302-31644*x^299-150502*x^296-175884*x^295+2592*x^399+3456*x^398+4752*x^397+5184*x^396+7776*x^395+8640*x^394+10944*x^393+11712*x^392+14808*x^391+16272*x^390+18720*x^389+19704*x^388+22296*x^387+23568*x^386+25728*x^385+27288*x^384+30104*x^383+31712*x^382+33120*x^381+34392*x^380+36776*x^379+38288*x^378+39712*x^377+41008*x^376+42920*x^375+44272*x^374+45992*x^371+46280*x^368+182546*x^304+154308*x^303-160530*x^294+47640*x^365+46028*x^362+45892*x^359+44004*x^356+43608*x^353+43032*x^350+196734*x^329+218168*x^326+247778*x^323-10820*x^251+201936*x^305+266076*x^308+283768*x^309+318934*x^310+321434*x^311+303186*x^314+293712*x^317+272052*x^320+166120*x^332+145486*x^335+111496*x^338+87746*x^341+42296*x^347+62350*x^344-28260*x^274-50536*x^273-64136*x^272-60934*x^271-37368*x^270-50544*x^269-50494*x^268-50446*x^267-29448*x^266-46476*x^265-30558*x^263-3146*x^262+3782*x^260+11940*x^259+19678*x^258+5472*x^257+9146*x^256+8078*x^254-11180*x^253-5022*x^250+3890*x^248+7972*x^247+49204*x^245+72596*x^244+110334*x^242+115390*x^241+120160*x^239+144750*x^238+152212*x^236+150996*x^235+161078*x^233+160628*x^232+173166*x^230+172214*x^229+178436*x^227+194216*x^226+187264*x^224+174346*x^221+45456*x^373+44728*x^372+46372*x^370+47064*x^369+47460*x^367+47164*x^366+46532*x^364+46644*x^363+46024*x^361+45524*x^360+45660*x^358+44824*x^357+43892*x^355+44208*x^354+43142*x^352+42824*x^351+42270*x^349+42398*x^348+42828*x^346+57210*x^345+69766*x^343+73224*x^342+93096*x^340+106174*x^339+128814*x^337+133080*x^336+149800*x^334+163086*x^333+176678*x^331+182680*x^330+200920*x^328+212090*x^327+232336*x^325+236596*x^324+253874*x^322+267856*x^321+283138*x^319+282098*x^318+294356*x^316+304234*x^315+314788*x^313+312524*x^312+251844*x^307+238234*x^306+93200*x^301+15338*x^300-77850*x^298-87040*x^297-151600*x^293-187882*x^292-190392*x^291-170434*x^290-154598*x^289-146686*x^288-135232*x^287-94328*x^286-72614*x^285-65070*x^284-54168*x^283-63452*x^282-58406*x^281-75864*x^280-58812*x^279-63268*x^278-50980*x^277-52296*x^276-30668*x^275+119662*x^179+181100*x^170+151740*x^173+189002*x^167+183826*x^223+171000*x^220+124408*x^178+164888*x^172+183226*x^169+201520*x^166-126340*x^125-125432*x^124-119596*x^119-114124*x^118-109200*x^116-107708*x^115-105944*x^113-102192*x^112-99724*x^110-101528*x^109-100252*x^107-98448*x^106-96168*x^104-95944*x^103-93552*x^101-90790*x^100-85484*x^95-83608*x^94-34882*x^264-10368*x^261+3708*x^255-104716*x^114-102332*x^111-98720*x^105-93420*x^102-86330*x^85-84772*x^86-85330*x^87-84944*x^88-85178*x^89-84178*x^91-83982*x^92-86982*x^97-87156*x^98+145672*x^218+124152*x^217+98614*x^215+97378*x^214+90740*x^212+75618*x^211+72400*x^209+74514*x^208+70758*x^206+66858*x^205+55806*x^203+59286*x^202+50162*x^200+38342*x^199+40154*x^197+40834*x^196+49974*x^194+48770*x^193+68918*x^191+87078*x^190+101058*x^188+102706*x^187+104586*x^185+115270*x^184+121582*x^182+115900*x^181+131970*x^176+132726*x^175+204336*x^164+201138*x^163+201482*x^161+203884*x^160+196408*x^158+188198*x^157+175482*x^155+177436*x^154+159236*x^152+144562*x^151+118358*x^149+110504*x^148+80788*x^146+60842*x^145+30026*x^143+19664*x^142-4304*x^140-22610*x^139-44462*x^137-51810*x^136-70380*x^134-82576*x^133-84642*x^132-96158*x^131-99492*x^130-108556*x^129-109826*x^128-120148*x^127-121288*x^122-124280*x^121-85822*x^96-84786*x^93+4146*x^29+4570*x^31+5406*x^32+5902*x^34+6318*x^35+7674*x^37+8842*x^38+10662*x^43+10930*x^44-85904*x^84-86226*x^83-85572*x^82-85200*x^80-84970*x^79-81732*x^78-81354*x^77-79360*x^76-77986*x^75-74500*x^74-73750*x^73-68370*x^71-64176*x^70-57096*x^68-54290*x^67-46038*x^65-41552*x^64-32960*x^62-29642*x^61-22698*x^59-17772*x^58-11464*x^56-8660*x^55-2966*x^53+38*x^52+3496*x^50+4706*x^49+7084*x^47+9586*x^46+9630*x^41+10022*x^40-6334*x^252-6668*x^249+42294*x^246+77248*x^243+121172*x^240+146566*x^237+163326*x^234+159972*x^231+177368*x^228+185114*x^225+187112*x^222+148222*x^219+89856*x^213+79102*x^210+66162*x^204+51834*x^201+39158*x^195+65698*x^192+109950*x^186+114550*x^183+123964*x^177+148756*x^174+190208*x^168+198682*x^165+193194*x^159+187012*x^156+136324*x^150+90346*x^147+4226*x^141-29812*x^138-125788*x^123-119888*x^120+65406*x^207+120516*x^216-61270*x^69-70216*x^72-83620*x^90-114392*x^117+50720*x^144+165642*x^171+85178*x^189+46038*x^198-85994*x^81-89884*x^99-99576*x^108-118728*x^126-64814*x^135+162518*x^153+206488*x^162+121906*x^180+4594*x^30+9006*x^39+6698*x^48-15134*x^57-38234*x^63-49152*x^66+5346*x^33+7502*x^36+10618*x^42+9374*x^45+652*x^51-5160*x^54-25784*x^60+4368*x^28+3982*x^27+4138*x^26+3888*x^25+3720*x^24+3182*x^23+3110*x^22+(1296*x^398+1296*x^397+1800*x^396+1584*x^395+2592*x^394+2760*x^393+3264*x^392+3024*x^391+4032*x^390+4704*x^389+5232*x^388+5160*x^387+5952*x^386+6528*x^385+7056*x^384+7128*x^383+7896*x^382+8552*x^381+9020*x^380+9136*x^379+9844*x^378+10732*x^377+11168*x^376+11388*x^375+11942*x^374+12868*x^373+13208*x^372+12224*x^371+12730*x^370+13216*x^369+13610*x^368+12948*x^367+13210*x^366+13778*x^365+14166*x^364+13560*x^363+13268*x^362+13842*x^361+14028*x^360+13756*x^359+13542*x^358+14168*x^357+14133*x^356+13904*x^355+13562*x^354+14294*x^353+14191*x^352+14054*x^351+13435*x^350+14216*x^349+13985*x^348+14025*x^347+13369*x^346+14248*x^345+21682*x^344+21761*x^343+24069*x^342+23812*x^341+29486*x^340+30649*x^339+32857*x^338+32474*x^337+38098*x^336+42350*x^335+44687*x^334+45340*x^333+50417*x^332+54108*x^331+56729*x^330+57459*x^329+62469*x^328+66208*x^327+68927*x^326+69729*x^325+74707*x^324+78491*x^323+81193*x^322+82019*x^321+86968*x^320+90747*x^319+93449*x^318+105963*x^317+110926*x^316+119235*x^315+119996*x^314+129915*x^313+136390*x^312+144723*x^311+145284*x^310+155195*x^309+135082*x^308+143611*x^307+133596*x^306+101527*x^305+82282*x^304+75243*x^303+8060*x^302+19711*x^301+54242*x^300+37135*x^299+11172*x^298+13091*x^297+9374*x^296+11307*x^295+24*x^294-11145*x^293+15824*x^292+35803*x^291+23991*x^290+24865*x^289+45460*x^288+31688*x^287+21091*x^286+22305*x^285+16220*x^284+29426*x^283+45703*x^282+27028*x^281+41246*x^280+42076*x^279+10020*x^278+98*x^277+11496*x^276-32381*x^275-20000*x^274+14926*x^273+18898*x^272+8569*x^271+11042*x^270+19141*x^269+39160*x^268+41679*x^267+33855*x^266+56467*x^265+66504*x^264+58408*x^263+48819*x^262+54063*x^261+42706*x^260+34692*x^259+23611*x^258+10163*x^257+14024*x^256+16568*x^255+12800*x^254+9609*x^253+10538*x^252+13463*x^251+13918*x^250+20955*x^249+36121*x^248+34691*x^247+22986*x^246+33205*x^245+38591*x^244+38301*x^243+35161*x^242+40499*x^241+42717*x^240+47916*x^239+36209*x^238+35851*x^237+45977*x^236+47142*x^235+39989*x^234+49800*x^233+57357*x^232+59662*x^231+61151*x^230+61884*x^229+60337*x^228+60204*x^227+54599*x^226+55122*x^225+51793*x^224+48846*x^223+38565*x^222+33091*x^221+32093*x^220+35298*x^219+23295*x^218+23301*x^217+22551*x^216+22519*x^215+12861*x^214+14211*x^213+10108*x^212+15201*x^211+10813*x^210+7622*x^209+6228*x^208+9145*x^207-1119*x^206-2630*x^205-4612*x^204-5467*x^203-10753*x^202-6914*x^201-5259*x^200-1653*x^199-4497*x^198+4541*x^197+7701*x^196+14143*x^195+18443*x^194+22341*x^193+18305*x^192+26395*x^191+24171*x^190+27713*x^189+27725*x^188+32739*x^187+29163*x^186+35811*x^185+31427*x^184+33203*x^183+32352*x^182+37293*x^181+35775*x^180+43464*x^179+41940*x^178+46885*x^177+49431*x^176+52366*x^175+46536*x^174+52138*x^173+50765*x^172+53404*x^171+49967*x^170+53960*x^169+52307*x^168+56859*x^167+51243*x^166+53392*x^165+51837*x^164+55761*x^163+51753*x^162+56363*x^161+54927*x^160+57959*x^159+52854*x^158+55367*x^157+50419*x^156+52957*x^155+46132*x^154+46583*x^153+41262*x^152+43431*x^151+36656*x^150+37240*x^149+31622*x^148+32417*x^147+25780*x^146+26406*x^145+21636*x^144+22838*x^143+16186*x^142+15614*x^141+10377*x^140+11114*x^139+5068*x^138+4224*x^137-1405*x^136-2164*x^135-9345*x^134-10760*x^133-15513*x^132-15636*x^131-21015*x^130-19244*x^129-23170*x^128-21538*x^127-24343*x^126-22375*x^125-25736*x^124-24422*x^123-27168*x^122-24965*x^121-26806*x^120-25671*x^119-28316*x^118-26803*x^117-28822*x^116-27729*x^115-29336*x^114-27582*x^113-29210*x^112-28659*x^111-30058*x^110-28124*x^109-28728*x^108-27888*x^107-28986*x^106-27580*x^105-28248*x^104-27610*x^103-28434*x^102-27167*x^101-27958*x^100-27834*x^99-28817*x^98-27703*x^97-28230*x^96-28096*x^95-28983*x^94-28007*x^93-28395*x^92-28122*x^91-28623*x^90-27548*x^89-27859*x^88-27850*x^87-28411*x^86-27436*x^85-27611*x^84-27602*x^83-28147*x^82-27300*x^81-27751*x^80-27890*x^79-28435*x^78-27452*x^77-27415*x^76-26330*x^75-26659*x^74-25148*x^73-24559*x^72-23498*x^71-23731*x^70-22172*x^69-21535*x^68-20322*x^67-20139*x^66-18560*x^65-17807*x^64-16546*x^63-16363*x^62-14748*x^61-13847*x^60-12552*x^59-12315*x^58-10776*x^57-9823*x^56-8476*x^55-8039*x^54-6238*x^53-5171*x^52-3956*x^51-3687*x^50-2416*x^49-2503*x^48-1535*x^47-1821*x^46-1232*x^45-1334*x^44-501*x^43-769*x^42-221*x^41-448*x^40-67*x^39-324*x^38+139*x^37-38*x^36+367*x^35+94*x^34+343*x^33+117*x^32+443*x^31+280*x^30+477*x^29+203*x^28+297*x^27+73*x^26+209*x^25+67*x^24+177*x^23+x^22+69*x^21-37*x^20+105*x^19+57*x^18+165*x^17+97*x^16+173*x^15+124*x^14+209*x^13+175*x^12+215*x^11+130*x^10+119*x^9+60*x^8+81*x^7+62*x^6+66*x^5+32*x^4+19*x^3-2)*M^2+1096*x^17-36*x^10+2*x^11-40*x^7-24*x^8+2664*x^21+2456*x^20+1858*x^19+494*x^14-44*x^5+208*x^13+1598*x^18+610*x^15+804*x^16+144*x^12-44*x^9;
$$-6334 x^{252}+42294 x^{246}+121172 x^{240}+152212 x^{236}+163326 x^{234}+160628 x^{232}+173166 x^{230}+177368 x^{228}+194216 x^{226}+187264 x^{224}+187112 x^{222}+171000 x^{220}+145672 x^{218}+120516 x^{216}+97378 x^{214}+90740 x^{212}+79102 x^{210}+74514 x^{208}+70758 x^{206}+59286 x^{202}+46038 x^{198}+49974 x^{194}+87078 x^{190}+109950 x^{186}+121582 x^{182}+124408 x^{178}+148756 x^{174}+181100 x^{170}+201520 x^{166}+206488 x^{162}+196408 x^{158}+177436 x^{154}+136324 x^{150}+80788 x^{146}+19664 x^{142}-29812 x^{138}-70380 x^{134}-99492 x^{130}-118728 x^{126}-121288 x^{122}-114124 x^{118}-104716 x^{114}-99724 x^{110}-98448 x^{106}-125788 x^{123}-114392 x^{117}-107708 x^{115}-105944 x^{113}-102332 x^{111}-101528 x^{109}-100252 x^{107}-98720 x^{105}-95944 x^{103}-93552 x^{101}-89884 x^{99}-86982 x^{97}-85484 x^{95}-84786 x^{93}-84178 x^{91}-85178 x^{89}-85330 x^{87}-86330 x^{85}-86226 x^{83}-84970 x^{79}-81354 x^{77}-77986 x^{75}-73750 x^{73}-68370 x^{71}-61270 x^{69}-54290 x^{67}-38234 x^{63}-29642 x^{61}-22698 x^{59}-8660 x^{55}-2966 x^{53}+\left(-216 x^{272}-216 x^{271}-300 x^{270}-336 x^{269}-504 x^{268}-560 x^{267}-572 x^{266}-612 x^{265}-740 x^{264}-634 x^{263}-632 x^{262}-618 x^{261}-666 x^{260}-624 x^{259}-542 x^{258}-587 x^{257}-608 x^{256}-620 x^{255}-1791 x^{254}-1871 x^{253}-2358 x^{252}-2202 x^{251}-3065 x^{250}-3337 x^{249}-3843 x^{248}-3690 x^{247}-4537 x^{246}-4001 x^{245}-4505 x^{244}-4026 x^{243}-980 x^{242}-209 x^{241}+463 x^{240}+5556 x^{239}+5006 x^{238}+1207 x^{237}+566 x^{236}+2154 x^{235}+1642 x^{234}+1930 x^{233}+146 x^{232}+510 x^{231}+3128 x^{230}+1114 x^{229}+26 x^{228}+574 x^{227}+2588 x^{226}+2786 x^{225}+2372 x^{224}+2374 x^{223}+3152 x^{222}+1230 x^{221}+1128 x^{220}+2530 x^{219}+2750 x^{218}+1842 x^{217}+1282 x^{216}-1604 x^{215}-916 x^{214}-2028 x^{213}-5815 x^{212}-5320 x^{211}-1232 x^{210}-1398 x^{209}-2161 x^{208}-1446 x^{207}-1281 x^{206}-632 x^{205}-1031 x^{204}-4611 x^{203}-1909 x^{202}-1036 x^{201}-313 x^{200}-2873 x^{199}-2417 x^{198}-3243 x^{197}-2139 x^{196}-2781 x^{195}+146 x^{194}-447 x^{193}-225 x^{192}-691 x^{191}+1744 x^{190}+2129 x^{189}+3112 x^{188}+2029 x^{187}+3150 x^{186}+1879 x^{185}+2672 x^{184}+2347 x^{183}+3474 x^{182}+2307 x^{181}+2018 x^{180}+1287 x^{179}+2606 x^{178}+2459 x^{177}+3490 x^{176}+2631 x^{175}+2934 x^{174}+2699 x^{173}+3298 x^{172}+3081 x^{171}+4330 x^{170}+4047 x^{169}+4156 x^{168}+3591 x^{167}+4206 x^{166}+3189 x^{165}+3026 x^{164}+1819 x^{163}+1512 x^{162}+113 x^{161}-218 x^{160}-969 x^{159}-1032 x^{158}-1911 x^{157}-1706 x^{156}-2201 x^{155}-1792 x^{154}-1707 x^{153}-1310 x^{152}-1563 x^{151}-1452 x^{150}-1490 x^{149}-1260 x^{148}-1325 x^{147}-1169 x^{146}-1142 x^{145}-1090 x^{144}-1257 x^{143}-1217 x^{142}-1190 x^{141}-1124 x^{140}-1197 x^{139}-957 x^{138}-868 x^{137}-684 x^{136}-597 x^{135}-305 x^{134}-182 x^{133}-56 x^{132}-16 x^{131}+165 x^{130}+124 x^{129}+193 x^{128}+124 x^{127}+111 x^{126}+40 x^{125}+67 x^{124}+56 x^{123}+70 x^{122}+32 x^{121}+21 x^{120}-2 x^{117}\right) M^{4}-44 x^{5}-46038 x^{65}+38 x^{52}-5160 x^{54}+3110 x^{22}+6698 x^{48}-32960 x^{62}-17772 x^{58}+9586 x^{46}+10618 x^{42}+4594 x^{30}+4368 x^{28}+494 x^{14}+7502 x^{36}+5346 x^{33}+3888 x^{25}+8842 x^{38}+3720 x^{24}+4138 x^{26}+1096 x^{17}-15134 x^{57}+10930 x^{44}+4706 x^{49}+9630 x^{41}+128814 x^{337}+133080 x^{336}+145486 x^{335}+149800 x^{334}+163086 x^{333}+166120 x^{332}+176678 x^{331}+182680 x^{330}+196734 x^{329}+200920 x^{328}+212090 x^{327}+218168 x^{326}+232336 x^{325}+236596 x^{324}+247778 x^{323}+253874 x^{322}+267856 x^{321}+272052 x^{320}+283138 x^{319}+282098 x^{318}+293712 x^{317}+294356 x^{316}+304234 x^{315}+303186 x^{314}+314788 x^{313}+312524 x^{312}+321434 x^{311}+318934 x^{310}+283768 x^{309}+266076 x^{308}+251844 x^{307}+201936 x^{305}+154308 x^{303}+93200 x^{301}-31644 x^{299}-87040 x^{297}-175884 x^{295}-151600 x^{293}-190392 x^{291}-154598 x^{289}-135232 x^{287}-72614 x^{285}-54168 x^{283}+23568 x^{386}+27288 x^{384}+30104 x^{383}+31712 x^{382}+33120 x^{381}+34392 x^{380}+36776 x^{379}+38288 x^{378}+39712 x^{377}+41008 x^{376}+42920 x^{375}+44272 x^{374}+45456 x^{373}+44728 x^{372}+45992 x^{371}+46372 x^{370}+47064 x^{369}+46280 x^{368}+47460 x^{367}+47164 x^{366}+47640 x^{365}+46532 x^{364}+46644 x^{363}+46028 x^{362}+46024 x^{361}+45524 x^{360}+45892 x^{359}+45660 x^{358}+44824 x^{357}+44004 x^{356}+43892 x^{355}+44208 x^{354}+43608 x^{353}+43142 x^{352}+42824 x^{351}+43032 x^{350}+42270 x^{349}+42398 x^{348}+42296 x^{347}+42828 x^{346}+57210 x^{345}+62350 x^{344}+69766 x^{343}+73224 x^{342}+87746 x^{341}+93096 x^{340}+106174 x^{339}+111496 x^{338}+10022 x^{40}+5406 x^{32}+2456 x^{20}+804 x^{16}-58406 x^{281}-58812 x^{279}-50980 x^{277}-30668 x^{275}-50536 x^{273}-60934 x^{271}-50544 x^{269}-50446 x^{267}-46476 x^{265}-30558 x^{263}-10368 x^{261}+11940 x^{259}+5472 x^{257}+3708 x^{255}-11180 x^{253}-10820 x^{251}-6668 x^{249}+7972 x^{247}+49204 x^{245}+77248 x^{243}+115390 x^{241}+120160 x^{239}+146566 x^{237}+150996 x^{235}+161078 x^{233}+159972 x^{231}+172214 x^{229}+178436 x^{227}+185114 x^{225}+183826 x^{223}+174346 x^{221}+148222 x^{219}+124152 x^{217}+98614 x^{215}+89856 x^{213}+75618 x^{211}+72400 x^{209}+65406 x^{207}+66858 x^{205}+55806 x^{203}+51834 x^{201}+38342 x^{199}+40154 x^{197}+48770 x^{193}+68918 x^{191}-85994 x^{81}+\left(1296 x^{398}+1296 x^{397}+1800 x^{396}+1584 x^{395}+2592 x^{394}+2760 x^{393}+3264 x^{392}+3024 x^{391}+4032 x^{390}+4704 x^{389}+5232 x^{388}+5160 x^{387}+5952 x^{386}+6528 x^{385}+7056 x^{384}+7128 x^{383}+7896 x^{382}+8552 x^{381}+9020 x^{380}+9136 x^{379}+9844 x^{378}+10732 x^{377}+11168 x^{376}+11388 x^{375}+11942 x^{374}+12868 x^{373}+13208 x^{372}+12224 x^{371}+12730 x^{370}+13216 x^{369}+13610 x^{368}+12948 x^{367}+13210 x^{366}+13778 x^{365}+14166 x^{364}+13560 x^{363}+13268 x^{362}+13842 x^{361}+14028 x^{360}+13756 x^{359}+13542 x^{358}+14168 x^{357}+14133 x^{356}+13904 x^{355}+13562 x^{354}+14294 x^{353}+14191 x^{352}+14054 x^{351}+13435 x^{350}+14216 x^{349}+13985 x^{348}+14025 x^{347}+13369 x^{346}+14248 x^{345}+21682 x^{344}+21761 x^{343}+24069 x^{342}+23812 x^{341}+29486 x^{340}+30649 x^{339}+32857 x^{338}+32474 x^{337}+38098 x^{336}+42350 x^{335}+44687 x^{334}+45340 x^{333}+50417 x^{332}+54108 x^{331}+56729 x^{330}+57459 x^{329}+62469 x^{328}+66208 x^{327}+68927 x^{326}+69729 x^{325}+74707 x^{324}+78491 x^{323}+81193 x^{322}+82019 x^{321}+86968 x^{320}+90747 x^{319}+93449 x^{318}+105963 x^{317}+110926 x^{316}+119235 x^{315}+119996 x^{314}+129915 x^{313}+136390 x^{312}+144723 x^{311}+145284 x^{310}+155195 x^{309}+135082 x^{308}+143611 x^{307}+133596 x^{306}+101527 x^{305}+82282 x^{304}+75243 x^{303}+8060 x^{302}+19711 x^{301}+54242 x^{300}+37135 x^{299}+11172 x^{298}+13091 x^{297}+9374 x^{296}+11307 x^{295}+24 x^{294}-11145 x^{293}+15824 x^{292}+35803 x^{291}+23991 x^{290}+24865 x^{289}+45460 x^{288}+31688 x^{287}+21091 x^{286}+22305 x^{285}+16220 x^{284}+29426 x^{283}+45703 x^{282}+27028 x^{281}+41246 x^{280}+42076 x^{279}+10020 x^{278}+98 x^{277}+11496 x^{276}-32381 x^{275}-20000 x^{274}+14926 x^{273}+18898 x^{272}+8569 x^{271}+11042 x^{270}+19141 x^{269}+39160 x^{268}+41679 x^{267}+33855 x^{266}+56467 x^{265}+66504 x^{264}+58408 x^{263}+48819 x^{262}+54063 x^{261}+42706 x^{260}+34692 x^{259}+23611 x^{258}+10163 x^{257}+14024 x^{256}+16568 x^{255}+12800 x^{254}+9609 x^{253}+10538 x^{252}+13463 x^{251}+13918 x^{250}+20955 x^{249}+36121 x^{248}+34691 x^{247}+22986 x^{246}+33205 x^{245}+38591 x^{244}+38301 x^{243}+35161 x^{242}+40499 x^{241}+42717 x^{240}+47916 x^{239}+36209 x^{238}+35851 x^{237}+45977 x^{236}+47142 x^{235}+39989 x^{234}+49800 x^{233}+57357 x^{232}+59662 x^{231}+61151 x^{230}+61884 x^{229}+60337 x^{228}+60204 x^{227}+54599 x^{226}+55122 x^{225}+51793 x^{224}+48846 x^{223}+38565 x^{222}+33091 x^{221}+32093 x^{220}+35298 x^{219}+23295 x^{218}+23301 x^{217}+22551 x^{216}+22519 x^{215}+12861 x^{214}+14211 x^{213}+10108 x^{212}+15201 x^{211}+10813 x^{210}+7622 x^{209}+6228 x^{208}+9145 x^{207}-1119 x^{206}-2630 x^{205}-4612 x^{204}-5467 x^{203}-10753 x^{202}-6914 x^{201}-5259 x^{200}-1653 x^{199}-4497 x^{198}+4541 x^{197}+7701 x^{196}+14143 x^{195}+18443 x^{194}+22341 x^{193}+18305 x^{192}+26395 x^{191}+24171 x^{190}+27713 x^{189}+27725 x^{188}+32739 x^{187}+29163 x^{186}+35811 x^{185}+31427 x^{184}+33203 x^{183}+32352 x^{182}+37293 x^{181}+35775 x^{180}+43464 x^{179}+41940 x^{178}+46885 x^{177}+49431 x^{176}+52366 x^{175}+46536 x^{174}+52138 x^{173}+50765 x^{172}+53404 x^{171}+49967 x^{170}+53960 x^{169}+52307 x^{168}+56859 x^{167}+51243 x^{166}+53392 x^{165}+51837 x^{164}+55761 x^{163}+51753 x^{162}+56363 x^{161}+54927 x^{160}+57959 x^{159}+52854 x^{158}+55367 x^{157}+50419 x^{156}+52957 x^{155}+46132 x^{154}+46583 x^{153}+41262 x^{152}+43431 x^{151}+36656 x^{150}+37240 x^{149}+31622 x^{148}+32417 x^{147}+25780 x^{146}+26406 x^{145}+21636 x^{144}+22838 x^{143}+16186 x^{142}+15614 x^{141}+10377 x^{140}+11114 x^{139}+5068 x^{138}+4224 x^{137}-1405 x^{136}-2164 x^{135}-9345 x^{134}-10760 x^{133}-15513 x^{132}-15636 x^{131}-21015 x^{130}-19244 x^{129}-23170 x^{128}-21538 x^{127}-24343 x^{126}-22375 x^{125}-25736 x^{124}-24422 x^{123}-27168 x^{122}-24965 x^{121}-26806 x^{120}-25671 x^{119}-28316 x^{118}-26803 x^{117}-28822 x^{116}-27729 x^{115}-29336 x^{114}-27582 x^{113}-29210 x^{112}-28659 x^{111}-30058 x^{110}-28124 x^{109}-28728 x^{108}-27888 x^{107}-28986 x^{106}-27580 x^{105}-28248 x^{104}-27610 x^{103}-28434 x^{102}-27167 x^{101}-27958 x^{100}-27834 x^{99}-28817 x^{98}-27703 x^{97}-28230 x^{96}-28096 x^{95}-28983 x^{94}-28007 x^{93}-28395 x^{92}-28122 x^{91}-28623 x^{90}-27548 x^{89}-27859 x^{88}-27850 x^{87}-28411 x^{86}-27436 x^{85}-27611 x^{84}-27602 x^{83}-28147 x^{82}-27300 x^{81}-27751 x^{80}-27890 x^{79}-28435 x^{78}-27452 x^{77}-27415 x^{76}-26330 x^{75}-26659 x^{74}-25148 x^{73}-24559 x^{72}-23498 x^{71}-23731 x^{70}-22172 x^{69}-21535 x^{68}-20322 x^{67}-20139 x^{66}-18560 x^{65}-17807 x^{64}-16546 x^{63}-16363 x^{62}-14748 x^{61}-13847 x^{60}-12552 x^{59}-12315 x^{58}-10776 x^{57}-9823 x^{56}-8476 x^{55}-8039 x^{54}-6238 x^{53}-5171 x^{52}-3956 x^{51}-3687 x^{50}-2416 x^{49}-2503 x^{48}-1535 x^{47}-1821 x^{46}-1232 x^{45}-1334 x^{44}-501 x^{43}-769 x^{42}-221 x^{41}-448 x^{40}-67 x^{39}-324 x^{38}+139 x^{37}-38 x^{36}+367 x^{35}+94 x^{34}+343 x^{33}+117 x^{32}+443 x^{31}+280 x^{30}+477 x^{29}+203 x^{28}+297 x^{27}+73 x^{26}+209 x^{25}+67 x^{24}+177 x^{23}+x^{22}+69 x^{21}-37 x^{20}+105 x^{19}+57 x^{18}+165 x^{17}+97 x^{16}+173 x^{15}+124 x^{14}+209 x^{13}+175 x^{12}+215 x^{11}+130 x^{10}+119 x^{9}+60 x^{8}+81 x^{7}+62 x^{6}+66 x^{5}+32 x^{4}+19 x^{3}-2\right) M^{2}+3982 x^{27}+238234 x^{306}+182546 x^{304}+136218 x^{302}+15338 x^{300}-77850 x^{298}-150502 x^{296}-160530 x^{294}-187882 x^{292}-170434 x^{290}-146686 x^{288}-94328 x^{286}-65070 x^{284}-63452 x^{282}-75864 x^{280}-63268 x^{278}-52296 x^{276}-28260 x^{274}-64136 x^{272}-37368 x^{270}-50494 x^{268}-29448 x^{266}-34882 x^{264}-3146 x^{262}+3782 x^{260}+19678 x^{258}+9146 x^{256}+8078 x^{254}-5022 x^{250}+3890 x^{248}+72596 x^{244}+110334 x^{242}+144750 x^{238}+1598 x^{18}+610 x^{15}+1858 x^{19}-24 x^{4}+5902 x^{34}-36 x^{6}+2 x^{11}+208 x^{13}-40 x^{7}+39158 x^{195}+85178 x^{189}+102706 x^{187}+104586 x^{185}+114550 x^{183}+115900 x^{181}+119662 x^{179}+123964 x^{177}+132726 x^{175}+151740 x^{173}+165642 x^{171}+183226 x^{169}+189002 x^{167}+198682 x^{165}+201138 x^{163}+201482 x^{161}+193194 x^{159}+188198 x^{157}+175482 x^{155}+162518 x^{153}+144562 x^{151}+118358 x^{149}+90346 x^{147}+60842 x^{145}+30026 x^{143}+4226 x^{141}-22610 x^{139}-44462 x^{137}-64814 x^{135}-82576 x^{133}-96158 x^{131}-108556 x^{129}-120148 x^{127}-126340 x^{125}-124280 x^{121}-119596 x^{119}-4 x^{2}-16 x^{3}+159236 x^{152}+203884 x^{160}+164888 x^{172}+131970 x^{176}+121906 x^{180}+115270 x^{184}+101058 x^{188}+65698 x^{192}+40834 x^{196}+50162 x^{200}+66162 x^{204}-24 x^{8}-44 x^{9}-36 x^{10}+144 x^{12}-4304 x^{140}+110504 x^{148}+204336 x^{164}+\left(216 x^{380}+216 x^{379}+300 x^{378}+336 x^{377}+504 x^{376}+560 x^{375}+572 x^{374}+612 x^{373}+740 x^{372}+634 x^{371}+632 x^{370}+618 x^{369}+666 x^{368}+624 x^{367}+542 x^{366}+587 x^{365}+608 x^{364}+620 x^{363}+495 x^{362}+575 x^{361}+558 x^{360}+618 x^{359}+473 x^{358}+577 x^{357}+579 x^{356}+666 x^{355}+505 x^{354}+377 x^{353}+353 x^{352}+366 x^{351}+164 x^{350}+89 x^{349}+9 x^{348}+88 x^{347}-122 x^{346}-155 x^{345}-68 x^{344}+30 x^{343}-128 x^{342}-80 x^{341}-58 x^{340}+120 x^{339}-97 x^{338}-22 x^{337}-54 x^{336}+167 x^{335}-85 x^{334}+28 x^{333}-52 x^{332}+189 x^{331}-87 x^{330}+7 x^{329}-100 x^{328}+157 x^{327}-103 x^{326}+17 x^{325}-100 x^{324}+162 x^{323}-103 x^{322}+17 x^{321}-94 x^{320}+172 x^{319}-95 x^{318}+20 x^{317}-96 x^{316}+172 x^{315}-96 x^{314}+20 x^{313}-96 x^{312}+172 x^{311}-96 x^{310}+20 x^{309}-7872 x^{308}-7604 x^{307}-10896 x^{306}-9484 x^{305}-15648 x^{304}-16388 x^{303}-19680 x^{302}-18124 x^{301}-24288 x^{300}-20060 x^{299}-23496 x^{298}-19840 x^{297}-3504 x^{296}+2116 x^{295}+5456 x^{294}+37552 x^{293}+32196 x^{292}+10848 x^{291}+490 x^{290}+11788 x^{289}+4218 x^{288}+934 x^{287}-16128 x^{286}-14654 x^{285}-12949 x^{284}-22644 x^{283}-26596 x^{282}-29197 x^{281}-24289 x^{280}-23702 x^{279}-20262 x^{278}-21059 x^{277}-19343 x^{276}-19697 x^{275}-18774 x^{274}-19587 x^{273}-16519 x^{272}-16755 x^{271}-14418 x^{270}-7256 x^{269}-3175 x^{268}-1243 x^{267}+10664 x^{266}+9594 x^{265}+2453 x^{264}-2288 x^{263}+1726 x^{262}-1908 x^{261}-5144 x^{260}-12414 x^{259}-12464 x^{258}-16273 x^{257}-19134 x^{256}-19146 x^{255}-17889 x^{254}-18413 x^{253}-17100 x^{252}-14332 x^{251}-11707 x^{250}-11367 x^{249}-6473 x^{248}-6132 x^{247}-6291 x^{246}-6835 x^{245}-3767 x^{244}-2816 x^{243}-1410 x^{242}-2959 x^{241}-1771 x^{240}-3912 x^{239}-2680 x^{238}-3607 x^{237}+232 x^{236}-1710 x^{235}-824 x^{234}+142 x^{233}+4320 x^{232}+4994 x^{231}+11244 x^{230}+9294 x^{229}+8576 x^{228}+7602 x^{227}+10716 x^{226}+9546 x^{225}+9616 x^{224}+7426 x^{223}+7616 x^{222}+1930 x^{221}+2848 x^{220}+3654 x^{219}+5192 x^{218}+1186 x^{217}+1320 x^{216}+726 x^{215}+3244 x^{214}+1766 x^{213}+4750 x^{212}+4206 x^{211}+4876 x^{210}+1258 x^{209}+3674 x^{208}+3782 x^{207}+3570 x^{206}-202 x^{205}-326 x^{204}-3888 x^{203}-2538 x^{202}-2718 x^{201}-2152 x^{200}-3632 x^{199}-3382 x^{198}-4546 x^{197}-3308 x^{196}-2740 x^{195}+100 x^{194}-1086 x^{193}-1476 x^{192}-1838 x^{191}+228 x^{190}-328 x^{189}+172 x^{188}-580 x^{187}-30 x^{186}-2091 x^{185}-1704 x^{184}-1404 x^{183}+844 x^{182}-953 x^{181}-836 x^{180}+449 x^{179}+2624 x^{178}+2443 x^{177}+5142 x^{176}+5085 x^{175}+4636 x^{174}+3717 x^{173}+4770 x^{172}+5243 x^{171}+5122 x^{170}+3673 x^{169}+3216 x^{168}+1397 x^{167}+1642 x^{166}+1723 x^{165}+1756 x^{164}+829 x^{163}+578 x^{162}+5 x^{161}+566 x^{160}+875 x^{159}+2061 x^{158}+1525 x^{157}+1158 x^{156}+1023 x^{155}+1911 x^{154}+1957 x^{153}+1759 x^{152}+1477 x^{151}+1375 x^{150}+342 x^{149}+345 x^{148}+1059 x^{147}+894 x^{146}+286 x^{145}-307 x^{144}-159 x^{143}-162 x^{142}-232 x^{141}-601 x^{140}-359 x^{139}-1060 x^{138}-1324 x^{137}-1929 x^{136}-1865 x^{135}-2558 x^{134}-2882 x^{133}-3537 x^{132}-3400 x^{131}-3844 x^{130}-3552 x^{129}-4054 x^{128}-3616 x^{127}-3670 x^{126}-3358 x^{125}-3810 x^{124}-3480 x^{123}-3624 x^{122}-3392 x^{121}-3758 x^{120}-3383 x^{119}-3474 x^{118}-3324 x^{117}-3819 x^{116}-3527 x^{115}-3618 x^{114}-3400 x^{113}-3639 x^{112}-2747 x^{111}-2652 x^{110}-2080 x^{109}-1839 x^{108}-791 x^{107}-594 x^{106}-196 x^{105}-96 x^{104}+619 x^{103}+324 x^{102}+551 x^{101}+324 x^{100}+457 x^{99}+72 x^{98}+173 x^{97}+120 x^{96}+334 x^{95}+48 x^{94}+35 x^{93}-48 x^{92}+124 x^{91}-54 x^{90}-28 x^{89}-48 x^{88}+124 x^{87}-48 x^{86}-28 x^{85}-48 x^{84}+124 x^{83}-48 x^{82}-28 x^{81}-48 x^{80}+124 x^{79}-48 x^{78}-28 x^{77}-48 x^{76}+124 x^{75}-48 x^{74}-28 x^{73}-48 x^{72}+124 x^{71}-48 x^{70}-28 x^{69}-54 x^{68}+114 x^{67}-56 x^{66}-31 x^{65}-52 x^{64}+114 x^{63}-91 x^{62}-79 x^{61}-100 x^{60}+90 x^{59}-31 x^{58}+181 x^{57}+222 x^{56}+530 x^{55}+569 x^{54}+833 x^{53}+908 x^{52}+1158 x^{51}+1150 x^{50}+1303 x^{49}+1214 x^{48}+1407 x^{47}+1290 x^{46}+1249 x^{45}+1130 x^{44}+1281 x^{43}+1222 x^{42}+1214 x^{41}+1132 x^{40}+1243 x^{39}+1169 x^{38}+1142 x^{37}+1098 x^{36}+1257 x^{35}+1217 x^{34}+1190 x^{33}+1124 x^{32}+1197 x^{31}+957 x^{30}+868 x^{29}+684 x^{28}+597 x^{27}+305 x^{26}+182 x^{25}+56 x^{24}+16 x^{23}-165 x^{22}-124 x^{21}-193 x^{20}-124 x^{19}-111 x^{18}-40 x^{17}-67 x^{16}-56 x^{15}-70 x^{14}-32 x^{13}-21 x^{12}+2 x^{9}\right) M^{3}-84772 x^{86}-83620 x^{90}-83608 x^{94}-87156 x^{98}-93420 x^{102}-64176 x^{70}-74500 x^{74}-85572 x^{82}+4570 x^{31}+4146 x^{29}+3182 x^{23}+652 x^{51}+3496 x^{50}+7084 x^{47}+2664 x^{21}+9374 x^{45}+10662 x^{43}+9006 x^{39}+7674 x^{37}+6318 x^{35}-70216 x^{72}-49152 x^{66}-41552 x^{64}-25784 x^{60}-11464 x^{56}-85904 x^{84}-81732 x^{78}-57096 x^{68}+50720 x^{144}-84642 x^{132}-109826 x^{128}-125432 x^{124}-119888 x^{120}-109200 x^{116}-102192 x^{112}-99576 x^{108}-96168 x^{104}-90790 x^{100}-85822 x^{96}-83982 x^{92}-84944 x^{88}-85200 x^{80}-79360 x^{76}+190208 x^{168}+187012 x^{156}-51810 x^{136}+\left(-2592 x^{401}-2592 x^{400}-3600 x^{399}-4464 x^{398}-6912 x^{397}-7248 x^{396}-9552 x^{395}-10368 x^{394}-13320 x^{393}-15816 x^{392}-18048 x^{391}-19704 x^{390}-22584 x^{389}-24744 x^{388}-27200 x^{387}-29504 x^{386}-32280 x^{385}-34776 x^{384}-36656 x^{383}-38912 x^{382}-41464 x^{381}-43672 x^{380}-45584 x^{379}-47728 x^{378}-49848 x^{377}-52048 x^{376}-53816 x^{375}-53644 x^{374}-55824 x^{373}-57104 x^{372}-58236 x^{371}-58192 x^{370}-60104 x^{369}-60322 x^{368}-61552 x^{367}-61044 x^{366}-60458 x^{365}-60682 x^{364}-60964 x^{363}-60368 x^{362}-60170 x^{361}-60098 x^{360}-59524 x^{359}-58996 x^{358}-58414 x^{357}-58828 x^{356}-58352 x^{355}-58000 x^{354}-57608 x^{353}-57938 x^{352}-57584 x^{351}-57623 x^{350}-57270 x^{349}-57706 x^{348}-72647 x^{347}-72579 x^{346}-78214 x^{345}-83700 x^{344}-97857 x^{343}-99723 x^{342}-112943 x^{341}-118066 x^{340}-135237 x^{339}-145202 x^{338}-158087 x^{337}-166326 x^{336}-181505 x^{335}-189674 x^{334}-203311 x^{333}-213050 x^{332}-227749 x^{331}-236966 x^{330}-251561 x^{329}-261102 x^{328}-276185 x^{327}-285536 x^{326}-300147 x^{325}-309678 x^{324}-324814 x^{323}-334134 x^{322}-348787 x^{321}-350521 x^{320}-365710 x^{319}-371974 x^{318}-384339 x^{317}-386569 x^{316}-400766 x^{315}-403230 x^{314}-415815 x^{313}-416497 x^{312}-394856 x^{311}-397498 x^{310}-396159 x^{309}-379479 x^{308}-357906 x^{307}-356058 x^{306}-335500 x^{305}-318797 x^{304}-290514 x^{303}-195637 x^{302}-176044 x^{301}-123165 x^{300}-65758 x^{299}+23963 x^{298}+54868 x^{297}+120287 x^{296}+134582 x^{295}+153171 x^{294}+175710 x^{293}+188635 x^{292}+180070 x^{291}+178261 x^{290}+165296 x^{289}+134467 x^{288}+114219 x^{287}+86799 x^{286}+59540 x^{285}+79784 x^{284}+52623 x^{283}+46051 x^{282}+41022 x^{281}+59594 x^{280}+39303 x^{279}+48724 x^{278}+27040 x^{277}+21710 x^{276}+58352 x^{275}+46848 x^{274}+39676 x^{273}+40608 x^{272}+58486 x^{271}+37360 x^{270}+47355 x^{269}+29798 x^{268}+38542 x^{267}+24803 x^{266}+22223 x^{265}+4630 x^{264}+820 x^{263}-22823 x^{262}-32361 x^{261}-47067 x^{260}-47042 x^{259}-53035 x^{258}-41884 x^{257}-46731 x^{256}-34118 x^{255}-30579 x^{254}-12664 x^{253}-5795 x^{252}+9060 x^{251}+7197 x^{250}+8484 x^{249}-20115 x^{248}-17120 x^{247}-38079 x^{246}-52894 x^{245}-88765 x^{244}-101328 x^{243}-131220 x^{242}-138236 x^{241}-154773 x^{240}-168543 x^{239}-182620 x^{238}-183324 x^{237}-194393 x^{236}-196331 x^{235}-196196 x^{234}-195146 x^{233}-198345 x^{232}-197799 x^{231}-211764 x^{230}-209390 x^{229}-218693 x^{228}-221465 x^{227}-234526 x^{226}-234806 x^{225}-244930 x^{224}-240091 x^{223}-239778 x^{222}-216415 x^{221}-216998 x^{220}-199303 x^{219}-187472 x^{218}-158601 x^{217}-148262 x^{216}-125128 x^{215}-119242 x^{214}-105553 x^{213}-99827 x^{212}-88596 x^{211}-89554 x^{210}-80955 x^{209}-83525 x^{208}-83628 x^{207}-86607 x^{206}-81769 x^{205}-82565 x^{204}-74363 x^{203}-75455 x^{202}-66017 x^{201}-63813 x^{200}-54371 x^{199}-51511 x^{198}-42069 x^{197}-44117 x^{196}-44515 x^{195}-62919 x^{194}-60221 x^{193}-73357 x^{192}-82899 x^{191}-105043 x^{190}-110949 x^{189}-129095 x^{188}-133363 x^{187}-143339 x^{186}-147853 x^{185}-156187 x^{184}-155803 x^{183}-161625 x^{182}-158995 x^{181}-158371 x^{180}-157810 x^{179}-161383 x^{178}-162431 x^{177}-174194 x^{176}-176110 x^{175}-186067 x^{174}-193013 x^{173}-206768 x^{172}-213430 x^{171}-226578 x^{170}-230687 x^{169}-237900 x^{168}-240819 x^{167}-248666 x^{166}-249011 x^{165}-254144 x^{164}-253651 x^{163}-256250 x^{162}-252211 x^{161}-252248 x^{160}-244203 x^{159}-243798 x^{158}-236043 x^{157}-233840 x^{156}-225535 x^{155}-223522 x^{154}-213015 x^{153}-206782 x^{152}-192755 x^{151}-180246 x^{150}-163125 x^{149}-151038 x^{148}-132483 x^{147}-116298 x^{146}-95737 x^{145}-78434 x^{144}-58653 x^{143}-42498 x^{142}-25325 x^{141}-10522 x^{140}+6735 x^{139}+20470 x^{138}+36609 x^{137}+49468 x^{136}+63687 x^{135}+74413 x^{134}+87087 x^{133}+94012 x^{132}+105222 x^{131}+112809 x^{130}+123463 x^{129}+130382 x^{128}+140552 x^{127}+145661 x^{126}+152516 x^{125}+154188 x^{124}+154860 x^{123}+154536 x^{122}+156276 x^{121}+153972 x^{120}+152232 x^{119}+148836 x^{118}+145968 x^{117}+142434 x^{116}+139964 x^{115}+137784 x^{114}+136222 x^{113}+133794 x^{112}+132732 x^{111}+131840 x^{110}+131682 x^{109}+130962 x^{108}+130394 x^{107}+129520 x^{106}+128610 x^{105}+127114 x^{104}+126006 x^{103}+124368 x^{102}+122708 x^{101}+120428 x^{100}+118486 x^{99}+116837 x^{98}+115566 x^{97}+114460 x^{96}+113395 x^{95}+112473 x^{94}+111950 x^{93}+111582 x^{92}+111241 x^{91}+111177 x^{90}+111217 x^{89}+111272 x^{88}+111353 x^{87}+111390 x^{86}+111601 x^{85}+111656 x^{84}+112041 x^{83}+112142 x^{82}+112369 x^{81}+111648 x^{80}+110945 x^{79}+108574 x^{78}+107373 x^{77}+105240 x^{76}+103441 x^{75}+100754 x^{74}+98817 x^{73}+95360 x^{72}+92435 x^{71}+88334 x^{70}+84217 x^{69}+79606 x^{68}+75587 x^{67}+70702 x^{66}+65969 x^{65}+60726 x^{64}+55827 x^{63}+50726 x^{62}+45917 x^{61}+41110 x^{60}+36569 x^{59}+31802 x^{58}+27341 x^{57}+22548 x^{56}+18239 x^{55}+13906 x^{54}+10324 x^{53}+6658 x^{52}+4607 x^{51}+1521 x^{50}-800 x^{49}-3558 x^{48}-5455 x^{47}-7989 x^{46}-9196 x^{45}-10821 x^{44}-11209 x^{43}-11265 x^{42}-11101 x^{41}-11445 x^{40}-10865 x^{39}-10389 x^{38}-9505 x^{37}-8753 x^{36}-7907 x^{35}-7277 x^{34}-6725 x^{33}-6305 x^{32}-5751 x^{31}-5469 x^{30}-5251 x^{29}-5179 x^{28}-5055 x^{27}-4898 x^{26}-4689 x^{25}-4427 x^{24}-4110 x^{23}-3818 x^{22}-3417 x^{21}-2959 x^{20}-2442 x^{19}-1942 x^{18}-1535 x^{17}-1175 x^{16}-950 x^{15}-670 x^{14}-443 x^{13}-271 x^{12}-176 x^{11}-60 x^{10}-47 x^{9}+2 x^{8}-2 x^{7}+8 x^{6}-4 x^{5}+2 x^{4}-2 x^{3}+4 x^{2}+2\right) M +2592 x^{399}+3456 x^{398}+4752 x^{397}+5184 x^{396}+7776 x^{395}+8640 x^{394}+10944 x^{393}+11712 x^{392}+14808 x^{391}+16272 x^{390}+18720 x^{389}+19704 x^{388}+22296 x^{387}+25728 x^{385}$$
r, d := degree(L, M), degree(L, x);
$$4, 401$$
First, let us find the polynomial solutions of the equation $Ly = 0$.
LMOpSolve(L, x, M, b, 'free' = K, 'output' = 'polynom');
$$K_{1} \left(x^{2}+x +2\right)$$
There is a line of polynomial generated by $x^2 + x + 2$.
Next, we search for the ramified rational functions and we request a basis.
LMOpSolve(L, x, M, b, 'output' = 'ramratpoly', 'output_format' = 'basis');
$$\left[\frac{1-3 x}{x^{2}}, x^{2}+x +2\right]$$
We find a plane of rational functions.
We continue with the Mahlerian hypergeometric functions.
LMOpSolve(L, x, M, b, 'output' = 'mhypergeom', 'output_format' = 'basis');
$$\left\{\left[\frac{\overset{\infty}{\underset{\textit{\_k2} =0}{\textcolor{gray}{\prod}}}\! \frac{1}{2 x^{2 \,3^{\textit{\_k2}}}+1}}{\sqrt{x}}\right], \left[\ln \! \left(\frac{1}{x}\right)^{\frac{\ln \left(2\right)}{\ln \left(3\right)}} x \left(\overset{\infty}{\underset{\textit{\_k3} =0}{\textcolor{gray}{\prod}}}\! \frac{1-x^{3^{\textit{\_k3}}}}{1+3 x^{3^{\textit{\_k3}}}}\right)\right], \left[\frac{1-3 x}{x^{2}}, \frac{1}{2} x^{2}+\frac{1}{2} x +1\right]\right\}$$
We find the union of two lines and a plane. These vector spaces are in direct sum. Obviously the rational solutions are hypergeometric solutions.
Let us now look for the formal Laurent series.
LMOpSolve(L, x, M, b, 'free = K', 'output' = 'laurentseries');
$$K_{1} x^{-2}-3 K_{1} x^{-1}+2 K_{2}+K_{2} x +K_{2} x^{2}+\mathrm{O}\! \left(x^{7}\right)$$
We obtain the series expansions corresponding to the rational solutions.
Let us search in a larger space, namely the space of Puiseux series.
LMOpSolve(L, x, M, b, 'free' = K, 'output' = 'puiseuxseries');
$$\frac{K_{1,1}}{x^{2}}-\frac{3 K_{1,1}}{x}+\frac{K_{1,2}}{\sqrt{x}}+2 K_{1,3}+K_{1,3} x -2 K_{1,2} x^{\frac{3}{2}}+K_{1,3} x^{2}+4 K_{1,2} x^{\frac{7}{2}}-10 K_{1,2} x^{\frac{11}{2}}+O\! \left(x^{\frac{13}{2}}\right)$$
As there are three 'constants' $K_{1,1}$, $K_{1,2}$ and $K_{1,3}$, the space of Puiseux series solutions has dimension $3$.
Note that even if we reduce the accuracy of the expansions, we always obtain three constants.
Order := 0;
$$0$$
LMOpSolve(L, x, M, b, 'free' = K, 'output' = 'puiseuxseries');
$$\frac{K_{1,1}}{x^{2}}-\frac{3 K_{1,1}}{x}+\frac{K_{1,2}}{\sqrt{x}}+2 K_{1,3}+K_{1,3} x +O\! \left(x^{\frac{3}{2}}\right)$$
Order := 6:
$$$$
Now let us search for 'extended' Puiseux series solutions.
res := LMOpSolve(L, x, M, b, 'free' = K);
$$\frac{K_{1,1}}{x^{2}}-\frac{3 K_{1,1}}{x}+\frac{K_{1,2}}{\sqrt{x}}+2 K_{1,3}+K_{1,3} x -2 K_{1,2} x^{\frac{3}{2}}+K_{1,3} x^{2}+4 K_{1,2} x^{\frac{7}{2}}-10 K_{1,2} x^{\frac{11}{2}}+O\! \left(x^{\frac{13}{2}}\right)+\ln \! \left(\frac{1}{x}\right)^{\frac{\ln \left(2\right)}{\ln \left(3\right)}} \left(K_{2,1} x -4 K_{2,1} x^{2}+12 K_{2,1} x^{3}-40 K_{2,1} x^{4}+124 K_{2,1} x^{5}-372 K_{2,1} x^{6}+\mathrm{O}\! \left(x^{7}\right)\right)$$
indets(res, name);
$$\{x, K_{1,1}, K_{1,2}, K_{1,3}, K_{2,1}\}$$
Then, the space of solutions has dimension $4$.
We can consider a basis of 'extended' Puiseux series solutions.
LMOpSolve(L, x, M, b, 'output_format' = 'basis');
$$\mathrm{table}\left(\left[1=\left[2, \left[x^{-4}-3 x^{-2}+\mathrm{O}\! \left(x^{13}\right), x^{-1}-2 x^{3}+4 x^{7}-10 x^{11}+\mathrm{O}\! \left(x^{13}\right), 2+x^{2}+x^{4}+\mathrm{O}\! \left(x^{13}\right)\right], 2\right], 2=\left[1, \left[x -4 x^{2}+12 x^{3}-40 x^{4}+124 x^{5}-372 x^{6}+\mathrm{O}\! \left(x^{7}\right)\right], 1\right], \mathit{roots} =\left\{1, 2\right\}\right]\right)$$
For each $\lambda$ in the set associated to the key $\mathit roots$, the first element of the list provides a suitable ramification order. For example for $\lambda = 1$, the order of ramification is $q = 2$ and this make the link with the expression we obtained with the penultimate command.
Last let us deal with the nonlinear Riccati equation associated with the linear operator $L$.
LMOpSolve(L, x, M, b, 'output' = 'riccati', 'free' = K);
$$\left\{\frac{2 x^{2}+1}{x}, \frac{x^{12} K_{2}+K_{2} x^{9}+2 x^{6} K_{2}-3 x^{3} K_{1}+K_{1}}{x^{4} \left(x^{4} K_{2}+K_{2} x^{3}+2 K_{2} x^{2}-3 K_{1} x +K_{1}\right)}, -\frac{2 x^{2} \left(1+3 x \right)}{-1+x}\right\}$$
We find two isolated solutions $\frac{2 x^{2}+1}{x}$, $-\frac{2 x^{2} (1+3 x )}{x -1}$ and the image of a projective line by the map $$(K_1:K_2)\mapsto \frac{x^{12} K_{2}+x^{9} K_{2}+2 x^{6} K_{2}-3 x^{3} K_{1}+K_{1}}{x^{4} (x^{4} K_{2}+x^{3} K_{2}+2 x^{2} K_{2}-3 x K_{1}+K_{1})}.$$
We can verify that we have actual solutions by Euclidean division.
u := (2*x^2 + 1)/x;
$$\frac{2 x^{2}+1}{x}$$
Q, R := LMOpRightEuclideanDivision(L, M - u, x, M, b):
$$$$
R;
$$0$$