$\operatorname{MOp}(f, x, b)$
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
with(dcfun):
$\operatorname{MOp}$ is expected to mimic $\operatorname{M}_b$ the substitution Mahler operator which replaces $x$ by $x^b$. The Mahler operator may be applied to rational functions.
MOp((1+x)/(1-x), x, 3);
$$-\frac{x^{3}+1}{x^{3}-1}$$
It can be applied to Laurent series
y := series(sin(x)/x^3, x, 10);
$$x^{-2}-\frac{1}{6}+\frac{1}{120} x^{2}-\frac{1}{5040} x^{4}+\frac{1}{362880} x^{6}+\mathrm{O}\! \left(x^{8}\right)$$
My := MOp(y, x, 3);
$$x^{-6}-\frac{1}{6}+\frac{1}{120} x^{6}-\frac{1}{5040} x^{12}+\frac{1}{362880} x^{18}+\mathrm{O}\! \left(x^{24}\right)$$
or Puiseux series.
y := PuiseuxSeries(2, series(sin(x), x));
$$\sqrt{x}-\frac{x^{\frac{3}{2}}}{6}+\frac{x^{\frac{5}{2}}}{120}+O\! \left(x^{\frac{7}{2}}\right)$$
My := MOp(y, x, 3);
$$x^{\frac{3}{2}}-\frac{x^{\frac{9}{2}}}{6}+\frac{x^{\frac{15}{2}}}{120}+O\! \left(x^{\frac{21}{2}}\right)$$
Purely logarithmic Mahler hypergeometric functions appear as eigenvectors for the Mahler operator.
y := MHypergeom(5,x,3);
$$\ln \! \left(\frac{1}{x}\right)^{\frac{\ln \left(5\right)}{\ln \left(3\right)}}$$
My := MOp(y, x, 3);
$$5 \ln \! \left(\frac{1}{x}\right)^{\frac{\ln \left(5\right)}{\ln \left(3\right)}}$$
It is equivalent to use $\operatorname{MOp}$ or $\operatorname{LMOpEval}$ with the operator $M$ as first argument.
y := x/(1 + 3*x);
$$\frac{x}{1+3 x}$$
My1 := MOp(y, x, 2);
$$\frac{x^{2}}{3 x^{2}+1}$$
My2 := LMOpEval(M, y, x, M, 2);
$$\frac{x^{2}}{3 x^{2}+1}$$