$\operatorname{RamificationOrder}(f, v)$
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
with(dcfun):
We consider a ramified polynomial.
f := x + sqrt(x) + x^(1/3);
$$x +\sqrt{x}+x^{\frac{1}{3}}$$
RamificationOrder(f, x);
$$6$$
The following expression is not a ramified rational function because of the exponential term.
f := x + sqrt(x) + x^(1/3) + exp(x);
$$x +\sqrt{x}+x^{\frac{1}{3}}+{\mathrm e}^{x}$$
RamificationOrder(f, x);
$$\mathit{FAIL}$$
But note that $\operatorname{RamificationOrder}$ only considers the expression in relation to the variable(s) given as the second argument.
f := x + sqrt(x) + y^(1/3);
$$x +\sqrt{x}+y^{\frac{1}{3}}$$
RamificationOrder(f, x);
$$2$$
f := x + sqrt(x) + y^(1/3) + exp(y);
$$x +\sqrt{x}+y^{\frac{1}{3}}+{\mathrm e}^{y}$$
RamificationOrder(f, x);
$$2$$
f := x + sqrt(x) + y^(1/3);
$$x +\sqrt{x}+y^{\frac{1}{3}}$$
RamificationOrder(f, {x, y});
$$6$$
If a list of variables is given as second argument, a list of corresponding ramification orders is returned.
f := x + sqrt(x) + y^(1/3);
$$x +\sqrt{x}+y^{\frac{1}{3}}$$
RamificationOrder(f, [x, y]);
$$[2, 3]$$