$\operatorname{RiccatiSolve}(L, x, M, b)$
libname := libname, FileTools:-JoinPath(["maple","lib","dcfun.mla"],base=homedir):
with(dcfun):
b := 3;
$$3$$
We tinker an example using a least common left multiple of first order operators.
L1 := RamRatPolyToLMOp(1/(1 + 2*x), x, M, b);
$$1+2 x -\left(2 x^{3}+1\right) M$$
L2 := RamRatPolyToLMOp(x^(1/2)/(1 + x), x, M, b);
$$\left(-x^{2}+x -1\right) M +x$$
L := LMOpLCLM([L1, L2], x, M, b);
$$\left(4 x^{18}+2 x^{16}-2 x^{15}-2 x^{13}+2 x^{12}+2 x^{10}+4 x^{9}+x^{7}-x^{6}-x^{4}+x^{3}+x +1\right) M^{2}+\left(-4 x^{15}-4 x^{14}-4 x^{13}-6 x^{12}-2 x^{11}-4 x^{10}-2 x^{9}-2 x^{8}-x^{7}-4 x^{6}-3 x^{5}-4 x^{4}-4 x^{3}-x^{2}-2 x -1\right) M +4 x^{13}+6 x^{12}+6 x^{11}+2 x^{10}+2 x^{7}+3 x^{6}+3 x^{5}+3 x^{4}+3 x^{3}+3 x^{2}+x$$
L := collect(L, M, factor);
$$\left(2 x^{3}+x +1\right) \left(2 x^{9}+1\right) \left(x^{6}-x^{3}+1\right) M^{2}-\left(x^{2}+1\right) \left(2 x^{3}+1\right) \left(2 x^{10}+2 x^{9}+x^{5}+2 x +1\right) M +x \left(1+2 x \right) \left(2 x^{9}+x^{3}+1\right) \left(x^{2}+x +1\right)$$
r, d := degree(L, M), degree(L, x);
$$2, 18$$
We use each of the available methods in turn.
RiccatiSolve(L, x, M, b, 'free' = K, 'method' = 'basic_petkovsek');
$$\left\{\frac{\left(2 K_{2} x^{\frac{9}{2}}+2 x^{3} K_{1}+K_{2} x^{\frac{3}{2}}+2 K_{1}\right) \left(1+2 x \right)}{\left(x^{2}-x +1\right) \left(2 x^{3}+1\right) \left(2 K_{2} x^{\frac{3}{2}}+2 K_{1} x +K_{2} \sqrt{x}+2 K_{1}\right)}\right\}$$
RiccatiSolve(L, x, M, b, 'free' = K, 'method' = 'improved_petkovsek');
$$\left\{\frac{\left(2 x^{\frac{9}{2}} K_{1}+K_{2} x^{3}+x^{\frac{3}{2}} K_{1}+K_{2}\right) \left(1+2 x \right)}{2 \left(x^{2}-x +1\right) \left(2 x^{\frac{3}{2}} K_{1}+\sqrt{x}\, K_{1}+K_{2} \left(1+x \right)\right) \left(x^{3}+\frac{1}{2}\right)}\right\}$$
RiccatiSolve(L, x, M, b, 'free' = K, 'method' = 'hermite_pade_approximants');
$$\left\{\frac{\left(1+2 x \right) \left(2 K_{2} x^{\frac{9}{2}}+x^{3} K_{1}+K_{2} x^{\frac{3}{2}}+K_{1}\right)}{\left(2 x^{3}+1\right) \left(x^{2}-x +1\right) \left(2 K_{2} x^{\frac{3}{2}}+K_{1} x +K_{2} \sqrt{x}+K_{1}\right)}\right\}$$
The computation with the basic method à la Petkovšek is a little bit slow, perhaps $10$ s, because there are $16 \times 8 = 128$ pairs $(A, B)$ of divisors respectively of the coefficients $\ell_0$ and $\ell_r$ to consider. The improved method runs slightly better, $5$ s say, and the Hermite-Padé approach is seriously better on this example.
The result shows that the set of solutions is the image of a projective line.