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1 Wronskiens et systémes de Tchebychev

Soit I € R un intervalle ouvert non vide. Soit C"(I) le R-espace vectoriel des fonctions sur I
a valeurs réelles continument dérivables r fois. Pour toutes fonctions fi, ..., f, € C" ~1(I) on
définit une fonction I — R

]j;i, ]]:;;
W, 1) =| ) !

f(r'—l) . f(r‘—l)

1 r

1. Montrer que pour toute fonctions g, fi, . . ., fy € C"71(I),
Wlgh,....gf1(x) = g(x) W[fi,.... fr](x).

2. Soit fi,..., fr € C"71(I) telles que W[ fi, ..., fi] est strictement positif sur I, pour tout 1 <
k < r. Montrer que pour tout ay, ..., a, € R non tous nuls, la fonction a; f; + - - - + a, f;
admet au plus r — 1 zéros sur I.

Pour la seconde question, le casr = 2 est instructif. C’est un théoréme classique qui admet aussi
une réciproque (KARLIN & STUDDEN, 1966, Chap. XI, Théoréme 1.2)
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2 Une propriété de divisibilité du cardinal des matrices inversibles modulo p

Soit p un entier premier impair, et n > 3 un entier. Montrer que n divise le cardinal du groupe
GL,—1(Z/pZ) des matrices inversibles de taille n — 1 a coefficients dans Z/pZ.

La restriction a p impair n’est pas nécessaire, mais elle peut simplifier certains calculs. La formule
du cardinal n’est pas au programme mais c’est un classique. Pour ceux qui ne la connaissait pas,
Pexercice est intéressant. On pouvait aussi s’en passer (voir la solution algébrique).

3 Minimisation locale sur un graphe

Soit E un ensemble fini et V : E — P (E) une fonction de E vers les parties de E. Soit f : E — R
une fonction. Un point a € E est un minimum local si f(a) < f(b) pour tout b € V(a).

Soit M un entier tel que M > V#E. Soient by, ..., by des variables aléatoires indépendantes et
uniformément distribuées dans E. Soit k tel que f(bx) = minj<;<p f(b;).

Soit (up)n>0 une suite de E telle que ug = by et pour toutn > 0 :
— si u, est un minimum local, alors u,4+1 = un;
— sinon, up+1 € V(uy) et f(upt1) < f(up).

Montrer que uys est un minimum local avec probabilité au moins 1/2.

Inspiré par ALDoUSs (1983), méme s’il considére cet énoncé précis comme trivial.

4 Espace des translatées d’une fonction

Soit g € C(R) une fonction intégrable. Pour A C Z, on note Sy le sous-espace vectoriel de C(R)
engendré par les fonctions x — g(x — a), avec a € A. On suppose que pour toute f € C(R)
intégrable et tout € > 0, il existe h € Sz telle que

/ |f(x) — h(x)|dx < ¢.
R

Montrer que pour toute f € C(R) intégrable et tout ¢ > 0, il existe L > 0 tel que pour tout
y € R, il existe A C Z et h € Sy tels que

#A < Let ‘/R|f(x—y)—h(x)|dx<£.

L’énoncé est correct, mais ’hypothése est vide, nous avons abusivement simplifié un énoncé vérita-
blement intéressant en replacant une famille de fonctions par une seule. Il y a donc deux méthodes
assez différentes pour résoudre l’exercice : montrer U'implication, ou bien montrer que I’hypothése
est vide.



5 Limite d’une série alternée

Soit f € C!(R) décroissante et tendant vers 0 en +co. Montrer que la fonction

g(x) = > (-1)"f (nx)

est bien définie pour x > 0. Donner sa limite en 0.

6 Unions de fermés

Montrer que |0, 1[ n’est pas 'union d’un nombre dénombrable d’intervalles fermés disjoints
d’intérieur non vide.

Montrer que le carré ouvert ]0,1[? n’est pas 'union d’un numbre dénombrable de disques
fermés.

Le premier énoncé est un cas particulier d’un théoréme plus général de SIERPINSKI (1918). Le second
découle du premier assez directement, mais on note aussi la généralisation due a DIJKSTRA (1984).

7 Une inégalité isopérimétrique discréte

Soient n et d des entiers strictement positifs et G = (Z/nZ)%. Soit S = {ze1,...,xeq}, 0l e =
0,...,0,1,0,...,0) € G, avec le 1 en i® position. Soient X une variable aléatoire uniformément
distribuée dans G et f : G — R une fonction. Montrer que

E[1£00 ~ ELFCOI] < T maxE [1£(0) ~ F(X+9)1].

Soit X 'ensemble des sommets de ’hypercube [0, 1]%. Soit A C X un sous-ensemble strict non
vide. Soit n4 le nombre d’arrétes de X ayant une et une seule extrémité dans A. Donner un
majorant de

card(A) card(X \ A)

na

8 Une caractérisation des matrices antisymétriques

Soit n entier positif impair. Soit A € M,,(R) telle pour toute matrice antisymétrique M € M, (R),
det(A + M) = 0. Montrer que A est antisymétrique.



9 Etude des sous-groupes des isométries affines

Soit G un sous-groupe du groupe des isométries du plan affine R?. On suppose que pour
tout x € R?, il existe g € G tel que g(x) # x. Montrer que G contient une translation non
triviale.

Si de plus G ne stabilise aucune droite, montrer que G contient une deuxiéme translation non
parallele a la premiere.

La classification des isométries affines est hors programme (et de fait peu de candidats la connaissait),
mais ce n’est pas un prérequis pour Uexercice, surtout si on pense au formalisme complexe pour les
similitudes (qui lui est au programme). On s’en sort aussi trés bien en s’appuyant sur la classification
des isométries vectorielles du plan (au programme). Un raisonnement purement géométrique est
aussi possible. On peut aussi supposer que G ne contient que des isométries directes pour simplifier.

10 Résultant

Soient A,B € C[X] deux polyndmes unitaires, de degrés respectifs a et b. Soit My p l'en-
domorphisme de C[X]/(A) défini par Mag([P]) = [BP]. Soit pap = detMap. Montrer
que pap = (=1)®upa.

Soit F4 g 'unique endomorphisme de C[X]445-1 tel que pour tout U € C[X],-; et tout V €
C[X]p-1, Fap(U + X?V) = BU + AV. Montrer que det(Fap) = piaB

Le nombre i g est le résultant de A et de B.

11 Composantes connexes d’ensembles de polynomes

Soit d > 1 un entier. Soit P ’ensemble des polyndmes unitaires de degré d a coeflicients réels.

Décrire les composantes connexes par arcs de
{(f,x) € PXR| f(x) = 0t f'(x) # 0}

Décrire les composantes connexes par arcs de

{feP|VxeR, f(x)#0ouf'(x)#0}.



12 Impossibilité de la densité d’un certain espace de translations

Soit B(R) l’espace vectoriel des fonctions bornées sur R muni de la norme uniforme. Soit
g : R — R une fonction a support compact. On note W(g) C B(R) 'espace engendré par les
translatés x — g(x — n) pour n € Z. Etudier 'ensemble ¢t € R tels que Wg) est invariant par
translation par ¢.

Il s’agit de montrer que si g est non nulle, alors ’ensemble en question est un sous-groupe discret
de R. L’énoncé est inspiré par I’hypothése vide de I’exercice[4

13 Valuation p-adique d’un produit

Soit p et q deux entier premiers distincts. Montrer qu’il existe une constante ¢ > 0 (que 'on
estimera) tel que pour tout entier m > 0, la valuation p-adique du produit

N(m)=(qg-1)(¢"-1)...(¢" - 1),
est majorée par cmlog m.

On peut seulement supposer que q est premier avec p. Il est aussi possible d’obtenir une borne
linéaire en m, avec une analyse un peu plus fine.

14 Générateurs d’un groupe de matrices

Soit G le sous-ensemble de GL,(Z) des matrices a coefficients entiers (‘Cz Z) tellesquea=d =
1-c¢c=1 (mod 3) etad — bc = 1.

Montrer que G est un sous-groupe engendré par A = (§ 1) et B=(19).

C’est une variante, a peine plus subtile, d’un résultat analogue sur SLy(Z).

15 Angles d’un pavage

Soit G={z > az+b|abeC,|al =1}. Cest un sous-groupe du groupe des bijections C — C
muni de la composition. Soit H € G un sous-groupe contenant deux translations selon des
vecteurs by, b, € C formant une famille libre sur R. On suppose de plus que pour tout h € H,
soit h(0) = 0, soit |h(0)| > 1. Montrer que 'ensemble {h’(0) | h € H} est fini.

Montrer que le cardinal de cet ensemble divise 6.

C’est I’un des ingrédients de la classification des pavages du plan. L’existence de deux translations
n’est pas nécessaire, une seule suffit, mais en donner deux pouvait rendre I’énoncé plus accessible.



16 Valeurs rationnelles du cosinus

Décrire 'ensemble des nombres rationels r tels que cos(rx) est rationel.

C’est plus classique que ce qui nous aurions aimé. La plupart des candidats ont pensé a approche
utilisant la réduction cos(2x) = 2 cos(x)? — 1. Nous avions en téte une autre approche utilisant le
lemme suivant, que l'on peut montrer sans la machinerie des entiers algébriques. Soit u € Z|X]
un polynéme unitaire, et soit « € C une racine de pi. Pour tout g € Z[X], g(@) est racine d’un
polyndme unitaire a coefficients entiers.

17 Théoréme de Peano

Soit I € R un intervalle ouvert non vide. Soit C"(I) le R-espace vectoriel des fonctions sur I a
valeurs réelles continument dérivables r fois. Pour toutes fonctions fi,. .., fr € C"(I) on définit
une fonction I — R

o
WIfA,....frl(x)=] . .

f1<r'—1> ﬁ<?—1>
Soient fi,..., f, € C"(I).Onnote W = W(f,..., ful et, pour 1 < i <r,
Vi= (“)'WIA, ... fi-t firrs - fr]-

Montrer que si V, ne s’annule pas sur [ et si W = 0, alors les f3, ... ., f, forment une famille liée.

On essaie ensuite de donner une démonstration directe, sans utiliser le théoréme de Cauchy.
On pourra montrer que si W = 0, alors pour tout 0 < k < r,

S @@ =0 @ Y=o
i=1 i=1

C’est un théoréme dii a PEANO (1889) mais, pour la derniére partie de I’énoncé, nous suivons la
démonstration de BOCHER (1900).

18 Une distance sur les matrices symétriques

On note S;* I'ensemble des matrices réelles symétriques de taille n définies positives. Montrer
que pour toute paire A, B € S;*, il existe G € GL,(R) tel que B = GAG".

Pour toute fonction f : R} — R et A € S}*, donner un sens a f(A). A laide de cette définition,
on pose
d(A, B) = || log(A™'/*BA™Y/?)],



ou || — || est la norme d’opérateur relative a la norme euclidienne sur R”. Montrer que
d(GAG'!,GBG") = d(A, B)

pour tout G € GL,(R), puis que d définit une distance sur S;™.

19 Norme de Uinverse d’une matrice a lignes unitaires

Soit A une matrice réelle carrée de taille n > 1 donc les lignes Ly, ..., L, sont des vecteurs
unitaires. Soit ¢ > 0 tel que, pour tout 1 < i < n, la distance euclidienne de L; au sous espace
engendré par les L;, avec j # i, est minorée par e.

Montrer que A est inversible et que ||A™!x||, < e7!||x]||;, pour tout x € R™, ot ||x||; = 3, |x;| et
Il = X x7.

20 Disques et carrés

Soit D le disque fermé de centre 0 et rayon 1 dans R?. Montrer qu’il existe une suite Cy, Cy, ...
de carrés de R? tels que :
(i) Vi >0,C; C D;
(i) Vi, j20:i# j=CNC) = o;
(ili) X j»o Aire(Cy) = 7.
Soit C = [—1, 1]%. Montrer qu’il existe une suite Dy, Dy, ... de disques de R? tels que :
(i) Vi>0,D; CC;
(i) Vi,j>0:i# j=D;ND, = o;
(iil) 3,50 Aire(D;) = 4.

21 Certification de racines

Soit f : R® — R™ une application C!. Soit x € R", soit B la boule unité fermée. On suppose

que pour tout u,v € B,
—f(x)+v—df(x+u)-v e B

Montrer que f admet un unique zéro dans la boule x + B.

C’est un critére dii a Krawczyk (1969), voir aussi Rump (1983). L approche usuelle pour la démons-
tration utilise un argument de point fixe, mais la constante % permet d’autres approches.



22 Médiane de moyennes

Soient n,m > 1 des entiers et soient X; j, pour 1 < i < net1 < j < m, des variables aléatoires
discrétes i.i.d. de variance o et de moyenne p. Pour 1 < i < n, soit ¥; = % L1 Xi . Soit Z une
médiane de ’ensemble {Y3,...,Y,}.

2 3\?
P[|Z—p|<—0]>1—(—) .

Montrer que

23 Sous-espace stable

Soit V un espace vectoriel normé de dimension finie. On considére deux endomorphismes
de V, notés hy et h,, préservant la norme, et tels que h; et h, commutent avec leur commu-
tateur hihyh; lhz_ 1. Montrer que le sous-espace des vecteurs invariants par h; et h, admet un
supplémentaire également stable par h; et hs.

24 Théoréme d’Hermite—Kakeya

Soient P et Q € R[X] des polynémes non constants. On dit que P et Q s’entrelacent si : (1) leurs
racines sont réelles et simples, (2) ils n’ont pas de racines réelles communes et (3) entre deux
racines consécutives de Q (resp. P), il y a une et une seule racine de P (resp. Q).

Montre que si pour tout (4, ) € R?\ {(0,0)}, les racines de AP + pQ sont toutes réelles et
simples, alors P et Q s’entrelacent.

Montrer la réciproque.

RAHMAN et SCHMEISSER (2002) donnent une démonstration, mais on peut faire plus élémentaire
(surtout pour la réciproque).

25 Un groupe de polynémes

Soit p un nombre premier. On considere I’anneau A des fractions rationnelles en X a coefficients
dans Z/p*Z de la forme X *P(X), avec P un polynéme. Décrire le groupe A* des éléments
inversibles (pour la multiplication) et montrer qu’il n’est pas engendré par un nombre fini
d’éléments.



26 Matrices de traces nulles et sommes de deux carrés

Soient A, B € SL;(Z) (le groupes des matrices 2 X 2 a coefficients entiers et déterminant 1).
Montrer que si Tr(A) = Tr(B) = 0, alors A est conjuguée a B ou —B.

Montrer que si n > 1 et x sont des entiers tels que x> = =1 (mod n), alors il existe des entiers a
et b tels que n = a* + b°.

27 Théoréme d’Hermite-Sylvester

Soit P € R[X] un polynoéme de degré n > 1. Soit A4,..., 4, € C ses racines, avec multiplicité.
Soit H € C™" la matrice définie par

n

i+j

Hi,j = Z/lk].
k=1

Montrer que H est une matrice symétrique réelle. Montrer que le rang de H est égal au nombre
de racines distincte, et que H est positive si et seulement si toutes les racines sont réelles.

Il faudrait parler de la signature d’une forme quadratique pour énoncer le théoréme de maniére plus
précise, mais c’est hors programme. Cette version se passe de la théorie des formes quadratiques.
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