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1 Wronskiens et systèmes de Tchebychev

Soit 𝐼 ⊆ ℝ un intervalle ouvert non vide. Soit C𝑟 (𝐼 ) le ℝ-espace vectoriel des fonctions sur 𝐼
à valeurs réelles continument dérivables 𝑟 fois. Pour toutes fonctions 𝑓1, . . . , 𝑓𝑟 ∈ C𝑟−1(𝐼 ) on
définit une fonction 𝐼 → ℝ

W[𝑓1, . . . , 𝑓𝑟 ] (𝑥) =

���������
𝑓1 · · · 𝑓𝑟
𝑓 ′
1

· · · 𝑓 ′𝑟
...

...

𝑓
(𝑟−1)

1
· · · 𝑓

(𝑟−1)
𝑟

��������� .
1. Montrer que pour toute fonctions 𝑔, 𝑓1, . . . , 𝑓𝑟 ∈ 𝐶𝑟−1(𝐼 ),

W[𝑔𝑓1, . . . , 𝑔𝑓𝑟 ] (𝑥) = 𝑔(𝑥)𝑟W[𝑓1, . . . , 𝑓𝑟 ] (𝑥) .

2. Soit 𝑓1, . . . , 𝑓𝑟 ∈ 𝐶𝑟−1(𝐼 ) telles queW[𝑓1, . . . , 𝑓𝑘 ] est strictement positif sur 𝐼 , pour tout 1 ⩽
𝑘 ⩽ 𝑟 . Montrer que pour tout 𝑎1, . . . , 𝑎𝑟 ∈ ℝ non tous nuls, la fonction 𝑎1 𝑓1 + · · · + 𝑎𝑟 𝑓𝑟
admet au plus 𝑟 − 1 zéros sur 𝐼 .

Pour la seconde question, le cas 𝑟 = 2 est instructif. C’est un théorème classique qui admet aussi

une réciproque (Karlin & Studden, 1966, Chap. XI, Théorème 1.2)
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2 Une propriété de divisibilité du cardinal des matrices inversibles modulo 𝑝

Soit 𝑝 un entier premier impair, et 𝑛 ⩾ 3 un entier. Montrer que 𝑛 divise le cardinal du groupe

GL𝑛−1(ℤ/𝑝ℤ) des matrices inversibles de taille 𝑛 − 1 à coefficients dans ℤ/𝑝ℤ.

La restriction à 𝑝 impair n’est pas nécessaire, mais elle peut simplifier certains calculs. La formule

du cardinal n’est pas au programme mais c’est un classique. Pour ceux qui ne la connaissait pas,

l’exercice est intéressant. On pouvait aussi s’en passer (voir la solution algébrique).

3 Minimisation locale sur un graphe

Soit 𝐸 un ensemble fini et𝑉 : 𝐸 → P(𝐸) une fonction de 𝐸 vers les parties de 𝐸. Soit 𝑓 : 𝐸 → ℝ

une fonction. Un point 𝑎 ∈ 𝐸 est un minimum local si 𝑓 (𝑎) ⩽ 𝑓 (𝑏) pour tout 𝑏 ∈ 𝑉 (𝑎).

Soit𝑀 un entier tel que𝑀 ⩾
√

#𝐸. Soient 𝑏1, . . . , 𝑏𝑀 des variables aléatoires indépendantes et

uniformément distribuées dans 𝐸. Soit 𝑘 tel que 𝑓 (𝑏𝑘 ) = min1⩽𝑖⩽𝑀 𝑓 (𝑏𝑖).

Soit (𝑢𝑛)𝑛⩾0 une suite de 𝐸 telle que 𝑢0 = 𝑏𝑘 et pour tout 𝑛 ⩾ 0 :

— si 𝑢𝑛 est un minimum local, alors 𝑢𝑛+1 = 𝑢𝑛 ;

— sinon, 𝑢𝑛+1 ∈ 𝑉 (𝑢𝑛) et 𝑓 (𝑢𝑛+1) < 𝑓 (𝑢𝑛).
Montrer que 𝑢𝑀 est un minimum local avec probabilité au moins 1/2.

Inspiré par Aldous (1983), même s’il considère cet énoncé précis comme trivial.

4 Espace des translatées d’une fonction

Soit 𝑔 ∈ C(ℝ) une fonction intégrable. Pour𝐴 ⊆ ℤ, on noteS𝐴 le sous-espace vectoriel de C(ℝ)
engendré par les fonctions 𝑥 ↦→ 𝑔(𝑥 − 𝑎), avec 𝑎 ∈ 𝐴. On suppose que pour toute 𝑓 ∈ C(ℝ)
intégrable et tout 𝜀 > 0, il existe ℎ ∈ Sℤ telle que∫

ℝ

|𝑓 (𝑥) − ℎ(𝑥) |d𝑥 < 𝜀.

Montrer que pour toute 𝑓 ∈ C(ℝ) intégrable et tout 𝜀 > 0, il existe 𝐿 > 0 tel que pour tout

𝑦 ∈ ℝ, il existe 𝐴 ⊂ ℤ et ℎ ∈ S𝐴 tels que

#𝐴 ⩽ 𝐿 et

∫
ℝ

|𝑓 (𝑥 − 𝑦) − ℎ(𝑥) |d𝑥 < 𝜀.

L’énoncé est correct, mais l’hypothèse est vide, nous avons abusivement simplifié un énoncé vérita-

blement intéressant en replaçant une famille de fonctions par une seule. Il y a donc deux méthodes

assez différentes pour résoudre l’exercice : montrer l’implication, ou bien montrer que l’hypothèse

est vide.
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5 Limite d’une série alternée

Soit 𝑓 ∈ C1(ℝ) décroissante et tendant vers 0 en +∞. Montrer que la fonction

𝑔(𝑥) =
∞∑︁
𝑛=0

(−1)𝑛 𝑓 (𝑛𝑥)

est bien définie pour 𝑥 > 0. Donner sa limite en 0.

6 Unions de fermés

Montrer que ]0, 1[ n’est pas l’union d’un nombre dénombrable d’intervalles fermés disjoints

d’intérieur non vide.

Montrer que le carré ouvert ]0, 1[2
n’est pas l’union d’un numbre dénombrable de disques

fermés.

Le premier énoncé est un cas particulier d’un théorème plus général de Sierpiński (1918). Le second

découle du premier assez directement, mais on note aussi la généralisation due à Dijkstra (1984).

7 Une inégalité isopérimétrique discrète

Soient 𝑛 et 𝑑 des entiers strictement positifs et 𝐺 = (ℤ/𝑛ℤ)𝑑 . Soit 𝑆 = {±𝑒1, . . . ,±𝑒𝑑 }, où 𝑒𝑖 =

(0, . . . , 0, 1, 0, . . . , 0) ∈ 𝐺 , avec le 1 en 𝑖e position. Soient 𝑋 une variable aléatoire uniformément

distribuée dans 𝐺 et 𝑓 : 𝐺 → ℝ une fonction. Montrer que

𝔼 [|𝑓 (𝑋 ) − 𝔼[𝑓 (𝑋 )] |] ⩽ 𝑑𝑛

2

max

𝑠∈𝑆
𝔼 [|𝑓 (𝑋 ) − 𝑓 (𝑋 + 𝑠) |] .

Soit 𝑋 l’ensemble des sommets de l’hypercube [0, 1]𝑑 . Soit 𝐴 ⊂ 𝑋 un sous-ensemble strict non

vide. Soit 𝑛𝐴 le nombre d’arrêtes de 𝑋 ayant une et une seule extrémité dans 𝐴. Donner un

majorant de

card(𝐴) card(𝑋 \𝐴)
𝑛𝐴

.

8 Une caractérisation des matrices antisymétriques

Soit𝑛 entier positif impair. Soit𝐴 ∈ M𝑛 (ℝ) telle pour toutematrice antisymétrique𝑀 ∈ M𝑛 (ℝ),
det(𝐴 +𝑀) = 0. Montrer que 𝐴 est antisymétrique.
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9 Étude des sous-groupes des isométries affines

Soit 𝐺 un sous-groupe du groupe des isométries du plan affine ℝ2
. On suppose que pour

tout 𝑥 ∈ ℝ2
, il existe 𝑔 ∈ 𝐺 tel que 𝑔(𝑥) ≠ 𝑥 . Montrer que 𝐺 contient une translation non

triviale.

Si de plus 𝐺 ne stabilise aucune droite, montrer que 𝐺 contient une deuxième translation non

parallèle à la première.

La classification des isométries affines est hors programme (et de fait peu de candidats la connaissait),

mais ce n’est pas un prérequis pour l’exercice, surtout si on pense au formalisme complexe pour les

similitudes (qui lui est au programme). On s’en sort aussi très bien en s’appuyant sur la classification

des isométries vectorielles du plan (au programme). Un raisonnement purement géométrique est

aussi possible. On peut aussi supposer que𝐺 ne contient que des isométries directes pour simplifier.

10 Résultant

Soient 𝐴, 𝐵 ∈ ℂ[𝑋 ] deux polynômes unitaires, de degrés respectifs 𝑎 et 𝑏. Soit 𝑀𝐴,𝐵 l’en-

domorphisme de ℂ[𝑋 ]/(𝐴) défini par 𝑀𝐴,𝐵 ( [𝑃]) = [𝐵𝑃]. Soit 𝜇𝐴,𝐵 = det𝑀𝐴,𝐵 . Montrer

que 𝜇𝐴,𝐵 = (−1)𝑎𝑏𝜇𝐵,𝐴.

Soit 𝐹𝐴,𝐵 l’unique endomorphisme de ℂ[𝑋 ]𝑎+𝑏−1 tel que pour tout 𝑈 ∈ ℂ[𝑋 ]𝑎−1 et tout 𝑉 ∈
ℂ[𝑋 ]𝑏−1, 𝐹𝐴,𝐵 (𝑈 + 𝑋𝑎𝑉 ) = 𝐵𝑈 +𝐴𝑉 . Montrer que det(𝐹𝐴,𝐵) = 𝜇𝐴,𝐵

Le nombre 𝜇𝐴,𝐵 est le résultant de 𝐴 et de 𝐵.

11 Composantes connexes d’ensembles de polynômes

Soit 𝑑 ⩾ 1 un entier. Soit 𝑃 l’ensemble des polynômes unitaires de degré 𝑑 à coefficients réels.

Décrire les composantes connexes par arcs de

{(𝑓 , 𝑥) ∈ 𝑃 ×ℝ | 𝑓 (𝑥) = 0 et 𝑓 ′(𝑥) ≠ 0} .

Décrire les composantes connexes par arcs de

{𝑓 ∈ 𝑃 | ∀𝑥 ∈ ℝ, 𝑓 (𝑥) ≠ 0 ou 𝑓 ′(𝑥) ≠ 0} .
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12 Impossibilité de la densité d’un certain espace de translations

Soit 𝐵(ℝ) l’espace vectoriel des fonctions bornées sur ℝ muni de la norme uniforme. Soit

𝑔 : ℝ → ℝ une fonction à support compact. On note𝑊 (𝑔) ⊆ 𝐵(ℝ) l’espace engendré par les
translatés 𝑥 ↦→ 𝑔(𝑥 − 𝑛) pour 𝑛 ∈ ℤ. Etudier l’ensemble 𝑡 ∈ ℝ tels que𝑊 (𝑔) est invariant par
translation par 𝑡 .

Il s’agit de montrer que si 𝑔 est non nulle, alors l’ensemble en question est un sous-groupe discret

de ℝ. L’énoncé est inspiré par l’hypothèse vide de l’exercice 4.

13 Valuation 𝑝-adique d’un produit

Soit 𝑝 et 𝑞 deux entier premiers distincts. Montrer qu’il existe une constante 𝑐 > 0 (que l’on

estimera) tel que pour tout entier𝑚 > 0, la valuation 𝑝-adique du produit

𝑁 (𝑚) = (𝑞 − 1) (𝑞2 − 1) . . . (𝑞𝑚 − 1),

est majorée par 𝑐𝑚 log𝑚.

On peut seulement supposer que 𝑞 est premier avec 𝑝 . Il est aussi possible d’obtenir une borne

linéaire en𝑚, avec une analyse un peu plus fine.

14 Générateurs d’un groupe de matrices

Soit 𝐺 le sous-ensemble de GL2(ℤ) des matrices à coefficients entiers

(
𝑎 𝑏
𝑐 𝑑

)
telles que 𝑎 ≡ 𝑑 ≡

1 − 𝑐 ≡ 1 (mod 3) et 𝑎𝑑 − 𝑏𝑐 = 1.

Montrer que 𝐺 est un sous-groupe engendré par 𝐴 =
(

1 1

0 1

)
et 𝐵 =

(
1 0

3 1

)
.

C’est une variante, à peine plus subtile, d’un résultat analogue sur SL2(ℤ).

15 Angles d’un pavage

Soit𝐺 = {𝑧 → 𝑎𝑧 + 𝑏 | 𝑎, 𝑏 ∈ ℂ, |𝑎 | = 1}. C’est un sous-groupe du groupe des bijections ℂ → ℂ

muni de la composition. Soit 𝐻 ⊆ 𝐺 un sous-groupe contenant deux translations selon des

vecteurs 𝑏1, 𝑏2 ∈ ℂ formant une famille libre sur ℝ. On suppose de plus que pour tout ℎ ∈ 𝐻 ,

soit ℎ(0) = 0, soit |ℎ(0) | ⩾ 1. Montrer que l’ensemble {ℎ′(0) | ℎ ∈ 𝐻 } est fini.

Montrer que le cardinal de cet ensemble divise 6.

C’est l’un des ingrédients de la classification des pavages du plan. L’existence de deux translations

n’est pas nécessaire, une seule suffit, mais en donner deux pouvait rendre l’énoncé plus accessible.
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16 Valeurs rationnelles du cosinus

Décrire l’ensemble des nombres rationels 𝑟 tels que cos(𝑟𝜋) est rationel.

C’est plus classique que ce qui nous aurions aimé. La plupart des candidats ont pensé à l’approche

utilisant la réduction cos(2𝑥) = 2 cos(𝑥)2 − 1. Nous avions en tête une autre approche utilisant le

lemme suivant, que l’on peut montrer sans la machinerie des entiers algébriques. Soit 𝜇 ∈ ℤ[𝑋 ]
un polynôme unitaire, et soit 𝛼 ∈ ℂ une racine de 𝜇. Pour tout 𝑔 ∈ ℤ[𝑋 ], 𝑔(𝛼) est racine d’un
polynôme unitaire à coefficients entiers.

17 Théorème de Peano

Soit 𝐼 ⊆ ℝ un intervalle ouvert non vide. Soit C𝑟 (𝐼 ) le ℝ-espace vectoriel des fonctions sur 𝐼 à
valeurs réelles continument dérivables 𝑟 fois. Pour toutes fonctions 𝑓1, . . . , 𝑓𝑟 ∈ C𝑟 (𝐼 ) on définit

une fonction 𝐼 → ℝ

W[𝑓1, . . . , 𝑓𝑟 ] (𝑥) =

���������
𝑓1 · · · 𝑓𝑟
𝑓 ′
1

· · · 𝑓 ′𝑟
...

...

𝑓
(𝑟−1)

1
· · · 𝑓

(𝑟−1)
𝑟

��������� .
Soient 𝑓1, . . . , 𝑓𝑟 ∈ C𝑟 (𝐼 ). On note𝑊 = W[𝑓1, . . . , 𝑓𝑛] et, pour 1 ⩽ 𝑖 ⩽ 𝑟 ,

𝑉𝑖 = (−1)𝑖W[𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑟 ] .

Montrer que si 𝑉𝑟 ne s’annule pas sur 𝐼 et si𝑊 ≡ 0, alors les 𝑓1, . . . , 𝑓𝑟 forment une famille liée.

On essaie ensuite de donner une démonstration directe, sans utiliser le théorème de Cauchy.

On pourra montrer que si𝑊 ≡ 0, alors pour tout 0 ⩽ 𝑘 < 𝑟 ,

𝑟∑︁
𝑖=1

𝑉𝑖 (𝑥) 𝑓 (𝑘 )𝑖
(𝑥) = 0 et

𝑟∑︁
𝑖=1

𝑉 ′
𝑖 (𝑥) 𝑓

(𝑘 )
𝑖

(𝑥) = 0.

C’est un théorème dû à Peano (1889) mais, pour la dernière partie de l’énoncé, nous suivons la

démonstration de Bôcher (1900).

18 Une distance sur les matrices symétriques

On note S++
𝑛 l’ensemble des matrices réelles symétriques de taille 𝑛 définies positives. Montrer

que pour toute paire 𝐴, 𝐵 ∈ S++
𝑛 , il existe 𝐺 ∈ GL𝑛 (ℝ) tel que 𝐵 = 𝐺𝐴𝐺𝑡

.

Pour toute fonction 𝑓 : ℝ∗
+ → ℝ et 𝐴 ∈ S++

𝑛 , donner un sens à 𝑓 (𝐴). À l’aide de cette définition,

on pose

𝑑 (𝐴, 𝐵) = ∥ log(𝐴−1/2𝐵𝐴−1/2)∥,
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où ∥ − ∥ est la norme d’opérateur relative à la norme euclidienne sur ℝ𝑛
. Montrer que

𝑑 (𝐺𝐴𝐺𝑡 ,𝐺𝐵𝐺𝑡 ) = 𝑑 (𝐴, 𝐵)

pour tout 𝐺 ∈ GL𝑛 (ℝ), puis que 𝑑 définit une distance sur S++
𝑛 .

19 Norme de l’inverse d’une matrice à lignes unitaires

Soit 𝐴 une matrice réelle carrée de taille 𝑛 ⩾ 1 donc les lignes 𝐿1, . . . , 𝐿𝑛 sont des vecteurs

unitaires. Soit 𝜀 > 0 tel que, pour tout 1 ⩽ 𝑖 ⩽ 𝑛, la distance euclidienne de 𝐿𝑖 au sous espace

engendré par les 𝐿 𝑗 , avec 𝑗 ≠ 𝑖 , est minorée par 𝜀.

Montrer que 𝐴 est inversible et que ∥𝐴−1𝑥 ∥2 ⩽ 𝜀−1∥𝑥 ∥1, pour tout 𝑥 ∈ ℝ𝑛
, où ∥𝑥 ∥1 =

∑
𝑖 |𝑥𝑖 | et

∥𝑥 ∥2

2
=
∑

𝑖 𝑥
2

𝑖 .

20 Disques et carrés

Soit 𝐷 le disque fermé de centre 0 et rayon 1 dans ℝ2
. Montrer qu’il existe une suite 𝐶0,𝐶1, . . .

de carrés de ℝ2
tels que :

(i) ∀𝑖 ⩾ 0,𝐶𝑖 ⊆ 𝐷 ;

(ii) ∀𝑖, 𝑗 ⩾ 0 : 𝑖 ≠ 𝑗 ⇒ 𝐶𝑖 ∩𝐶 𝑗 = ∅ ;

(iii)

∑
𝑖⩾0

Aire(𝐶𝑖) = 𝜋 .

Soit 𝐶 = [−1, 1]2
. Montrer qu’il existe une suite 𝐷0, 𝐷1, . . . de disques de ℝ

2
tels que :

(i) ∀𝑖 ⩾ 0, 𝐷𝑖 ⊆ 𝐶 ;

(ii) ∀𝑖, 𝑗 ⩾ 0 : 𝑖 ≠ 𝑗 ⇒ 𝐷̊𝑖 ∩ 𝐷̊ 𝑗 = ∅ ;

(iii)

∑
𝑖⩾0

Aire(𝐷𝑖) = 4.

21 Certification de racines

Soit 𝑓 : ℝ𝑛 → ℝ𝑛
une application C1

. Soit 𝑥 ∈ ℝ𝑛
, soit 𝐵 la boule unité fermée. On suppose

que pour tout 𝑢, 𝑣 ∈ 𝐵,

−𝑓 (𝑥) + 𝑣 − d𝑓 (𝑥 + 𝑢) · 𝑣 ∈ 1

2
𝐵.

Montrer que 𝑓 admet un unique zéro dans la boule 𝑥 + 𝐵.

C’est un critère dû à Krawczyk (1969), voir aussi Rump (1983). L’approche usuelle pour la démons-

tration utilise un argument de point fixe, mais la constante
1

2
permet d’autres approches.
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22 Médiane de moyennes

Soient 𝑛,𝑚 ⩾ 1 des entiers et soient 𝑋𝑖, 𝑗 , pour 1 ⩽ 𝑖 ⩽ 𝑛 et 1 ⩽ 𝑗 ⩽ 𝑚, des variables aléatoires

discrètes i.i.d. de variance 𝜎2
et de moyenne 𝜇. Pour 1 ⩽ 𝑖 ⩽ 𝑛, soit 𝑌𝑖 =

1

𝑚

∑𝑚
𝑗=1

𝑋𝑖, 𝑗 . Soit 𝑍 une

médiane de l’ensemble {𝑌1, . . . , 𝑌𝑛}.

Montrer que

ℙ

[
|𝑍 − 𝜇 | ⩽ 2𝜎

√
𝑚

]
⩾ 1 −

(
3

4

) 𝑛
2

.

23 Sous-espace stable

Soit 𝑉 un espace vectoriel normé de dimension finie. On considère deux endomorphismes

de 𝑉 , notés ℎ1 et ℎ2, préservant la norme, et tels que ℎ1 et ℎ2 commutent avec leur commu-

tateur ℎ1ℎ2ℎ
−1

1
ℎ−1

2
. Montrer que le sous-espace des vecteurs invariants par ℎ1 et ℎ2 admet un

supplémentaire également stable par ℎ1 et ℎ2.

24 Théorème d’Hermite–Kakeya

Soient 𝑃 et 𝑄 ∈ ℝ[𝑋 ] des polynômes non constants. On dit que 𝑃 et 𝑄 s’entrelacent si : (1) leurs

racines sont réelles et simples, (2) ils n’ont pas de racines réelles communes et (3) entre deux

racines consécutives de 𝑄 (resp. 𝑃 ), il y a une et une seule racine de 𝑃 (resp. 𝑄).

Montre que si pour tout (𝜆, 𝜇) ∈ ℝ2 \ {(0, 0)}, les racines de 𝜆𝑃 + 𝜇𝑄 sont toutes réelles et

simples, alors 𝑃 et 𝑄 s’entrelacent.

Montrer la réciproque.

Rahman et Schmeisser (2002) donnent une démonstration, mais on peut faire plus élémentaire

(surtout pour la réciproque).

25 Un groupe de polynômes

Soit 𝑝 un nombre premier. On considère l’anneau𝐴 des fractions rationnelles en 𝑋 à coefficients

dans ℤ/𝑝2ℤ de la forme 𝑋 −𝑘𝑃 (𝑋 ), avec 𝑃 un polynôme. Décrire le groupe 𝐴×
des éléments

inversibles (pour la multiplication) et montrer qu’il n’est pas engendré par un nombre fini

d’éléments.
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26 Matrices de traces nulles et sommes de deux carrés

Soient 𝐴, 𝐵 ∈ SL2(ℤ) (le groupes des matrices 2 × 2 à coefficients entiers et déterminant 1).

Montrer que si Tr(𝐴) = Tr(𝐵) = 0, alors 𝐴 est conjuguée à 𝐵 ou −𝐵.

Montrer que si 𝑛 > 1 et 𝑥 sont des entiers tels que 𝑥2 ≡ −1 (mod 𝑛), alors il existe des entiers 𝑎
et 𝑏 tels que 𝑛 = 𝑎2 + 𝑏2

.

27 Théorème d’Hermite–Sylvester

Soit 𝑃 ∈ ℝ[𝑋 ] un polynôme de degré 𝑛 ⩾ 1. Soit 𝜆1, . . . , 𝜆𝑛 ∈ ℂ ses racines, avec multiplicité.

Soit 𝐻 ∈ ℂ𝑛×𝑛
la matrice définie par

𝐻𝑖, 𝑗 =

𝑛∑︁
𝑘=1

𝜆
𝑖+𝑗
𝑘

.

Montrer que 𝐻 est une matrice symétrique réelle. Montrer que le rang de 𝐻 est égal au nombre

de racines distincte, et que 𝐻 est positive si et seulement si toutes les racines sont réelles.

Il faudrait parler de la signature d’une forme quadratique pour énoncer le théorème de manière plus

précise, mais c’est hors programme. Cette version se passe de la théorie des formes quadratiques.
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