A polynomial time algorithm for rational creative telescoping

$\left.\int \begin{array}{ccc}\text { Alin Bostan } & \text { Pierre Lairez } & \text { Bruno Salvy } \\ \text { Inria } & \text { Inria } & \text { Inria, ENS Lyon }\end{array}\right\}$
ISSAC
June 26-29, 2013
Boston, Massachussetts

creative telescoping

General framework to handle multiple integrals with parameters in computer algebra.
rational
We restrict ourselves to rational integrands.
polynomial time algorithm
Polynomial with respect to the generic size of the output.

Multiple rational integrals

Problem

$$
\left.\begin{array}{c}
\mathbf{x}=x_{1}, \ldots, x_{n} \text { - integration variables } \\
t-\text { parameter } \\
F(t, \mathbf{x})-\text { rational function } \\
\gamma-\text { a } n \text {-cvcle in } \mathbb{C}^{n}
\end{array}\right\} \oint_{\gamma} F(t, \mathbf{x}) \mathrm{d} \mathbf{x}
$$

How to compute this integral?

Theorem (Picard)

These integrals satisfy linear differential equations with polynomial coefficients.

The "why"

Rational-algebraic equivalence

n-integrals of algebraic functions are $(n+1)$-tuple integrals of rational functions.

Combinatorics Differential approach to discrete identities like

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}
$$

(Strehl)
Physics Computation of various special functions, like " n-particle contribution to the magnetic susceptibility of the Ising model".
Number theory Computation of mirror maps.
Algebraic geometry Computation of topological invariants.

Examples

Univariate integrals

$\oint F(t, x) \mathrm{d} x$ is an algebraic function of t (by residue theorem).

Perimeter of an ellipse

Perimeter of an ellipse with excentricity e and semi-major axis 1 :

$$
\begin{aligned}
& p(e)=\int_{0}^{1} \sqrt{\frac{1-e^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x \propto \oint \frac{\mathrm{~d} x \mathrm{~d} y}{1-\frac{1-e^{2} x^{2}}{\left(1-x^{2}\right) y^{2}}} \\
& \left(e-e^{3}\right) p^{\prime \prime}+\left(1-e^{2}\right) p^{\prime}+e p=0
\end{aligned}
$$

(Euler, 1733)

The "how"

How to compute algebraically an analytical object?

Fact

For all rational functions $A(t, \mathbf{x})$ finite on γ,

$$
\oint_{\gamma} \frac{\partial A}{\partial x_{i}} \mathrm{~d} \mathbf{x}=0 .
$$

The "how"

$$
\left.\begin{array}{rl}
\mathbf{x}=x_{1}, \ldots, & x_{n}-\text { integration variables } \\
t & - \text { parameter } \\
F(t, \mathbf{x}) & - \text { rationnal function } \\
\gamma & - \text { a } n \text {-cycle }
\end{array}\right\} \oint_{\gamma} F(t, \mathbf{x}) \mathrm{d} \mathbf{x}
$$

Principle of creative telescoping

$$
\underbrace{\sum_{k=0}^{r} c_{k}(t) \frac{\partial^{k} F}{\partial t^{k}}=\overbrace{\sum_{i=1}^{n} \frac{\partial A_{i}}{\partial x_{i}}}^{\text {certificate }}}_{\text {telescopic relation }} \Rightarrow \overbrace{\left(\sum_{k=0}^{r} c_{k}(t) \partial_{t}^{k}\right)}^{\text {telescoper }} \cdot \oint_{\gamma} F \mathrm{~d} \mathbf{x}=0
$$

We want to:
1 find the $c_{k}(t)$ which satisfy the telescopic relation,
2 without computing the certificate $\left(A_{i}\right)$.

Example

Perimeter of an ellipse

$$
p(e) \propto \oint \frac{\mathrm{d} y \mathrm{~d} x}{1-\frac{1-e^{2} x^{2}}{\left(1-x^{2}\right) y^{2}}}
$$

Telescopic relation:

$$
\begin{array}{r}
\left(\left(e-e^{3}\right) \partial_{e}^{2}+\left(1-e^{2}\right) \partial_{e}+e\right) \cdot\left(\frac{1}{1-\frac{1-e^{2} x^{2}}{\left(1-x^{2}\right) y^{2}}}\right)= \\
\partial_{x}\left(-\frac{e\left(-1-x+x^{2}+x^{3}\right) y^{2}\left(-3+2 x+y^{2}+x^{2}\left(-2+3 e^{2}-y^{2}\right)\right)}{\left(-1+y^{2}+x^{2}\left(e^{2}-y^{2}\right)\right)^{2}}\right) \\
\quad+\partial_{y}\left(\frac{2 e\left(-1+e^{2}\right) x\left(1+x^{3}\right) y^{3}}{\left(-1+y^{2}+x^{2}\left(e^{2}-y^{2}\right)\right)^{2}}\right)
\end{array}
$$

Thus $\left(e-e^{3}\right) p^{\prime \prime}+\left(1-e^{2}\right) p^{\prime}+e p=0$.

Brief review

General algorithms:
■ using linear algebra (Lipshitz, 1988);

- using non-commutative Gröbner bases:
- and elimination (Takayama, 1990);
- and rational resolution of differential equations (Chyzak, 2000);
- and heuristics (Koutschan, 2010).
- etc.

Algorithms for the rational case:

- univariate integrals (Bostan, Chen, Chyzak, Li, 2010);
- double integrals (Chen, Kauers, Singer, 2012).

Polynomial time computation
 \section*{Main result}

$$
\begin{aligned}
F=\frac{a}{f} & - \text { a rational function in } t \text { and } \mathbf{x}=x_{1}, \ldots, x_{n} \\
d_{\mathbf{x}} & - \text { the degree of } f \text { w.r.t. } \mathbf{x} \\
d_{t} & -\max \left(\operatorname{deg}_{t} f, \operatorname{deg}_{t} a\right)
\end{aligned}
$$

Hypothesis - Simplifying assumption: $\operatorname{deg}_{\mathbf{x}} a+n+1 \leqslant d_{\mathbf{x}}$

Theorem (Bostan, Lairez, Salvy, 2013)

A telescoper for F can be computed using $\widetilde{\mathcal{O}}\left(e^{3 n} d_{\mathbf{x}}^{8 n} d_{t}\right)$ operations in the base field, uniformly in all the parameters. The minimal telescoper has order $\leqslant d_{\mathbf{x}}^{n}$ and degree $\mathcal{O}\left(e^{n} d_{\mathbf{x}}^{3 n} d_{t}\right)$.

Remark

Each side of any telescopic relation has size at least $d_{\mathbf{x}}^{(1-\varepsilon) n^{2}}$, generically.

Main ingredients of the algorithm

Griffiths-Dwork method for the generic case Linear reduction used in algebraic geometry Generalization of Hermite's reduction

Fast linear algebra on polynomial matrices
Sophisticated algorithms due to Villard, Storjohann, Zhou, etc.

Deformation technique for the general case
Pertubation of F with a new free variable

Homogenization

$$
\tilde{F} \stackrel{\text { def }}{=} x_{0}^{-n-1} F\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)=\frac{a}{f}
$$

Proposition

Homogeneous-inhomogeneous equivalence $L\left(t, \partial_{t}\right)$ is a telescoper for \tilde{F} if and only it is a telescoper for F.

The degree $-n-1$ is choosen to ensure this property.

Griffiths-Dwork reduction

Input $F=a / f^{\ell}$ a rational function in x_{0}, \ldots, x_{n}
Output $[F]$ such that there exist rational
functions A_{0}, \ldots, A_{n} such that $F=[F]+\sum_{i} \partial_{i} A_{i}$
Precompute a Gröbner basis G for $\left(\partial_{0} f, \ldots, \partial_{n} f\right)$ procedure $[\cdot]\left(a / f^{\ell}\right)$
if $\ell=1$ then return a / f^{ℓ}
Decompose a as $r+\sum_{i=0}^{n} v_{i} \partial_{i} f$ using G
$\operatorname{return} \frac{r}{f^{\ell}}+\left[\frac{1}{\ell-1} \sum_{i} \frac{\partial_{i} v_{i}}{f^{\ell-1}}\right]$

Properties of the reduction

f is fixed.
Linearity [•] is linear.
Soundness If $[F]=0$ then $F=\sum_{i} \partial_{i} A_{i}$.
(Dwork, Griffiths) Moreover, if the ideal $\left(\partial_{0} f, \ldots, \partial_{n} f\right)$ is 0-dimensional, then:
Confinement The image of $[\cdot]$ is finite dimensional.
Normalization $\left[\partial_{i}\left(\frac{b}{f^{N}}\right)\right]=0$.

Generic case

Input $F=a / f^{\ell}$ a generic homogeneous rational function Output $L\left(t, \partial_{t}\right)$ a telescoper for F.
procedure Telesc $\mathrm{reg}_{\mathrm{reg}}(F)$
$G_{0} \leftarrow[F]$
$i \leftarrow 0$
loop
if $\operatorname{rank}_{L}\left(G_{0}, \ldots, G_{i}\right)<r+1$ then
solve $\sum_{k=0}^{r-1} a_{k} G_{k}=G_{i}$ w.r.t. a_{0}, \ldots, a_{r-1} in L return $\partial_{t}^{r}-\sum_{k} a_{k} \partial_{t}^{k}$
else

$$
\begin{aligned}
& G_{r+1} \leftarrow\left[\partial_{t} G_{r}\right] \\
& r \leftarrow r+1
\end{aligned}
$$

Singular case: deformation

Input $F=a / f^{\ell}$ a homogeneous rational function Output $L\left(t, \partial_{t}\right)$ a telescoper for F. procedure Telesc (F)

$$
\begin{aligned}
& f_{\mathrm{reg}} \leftarrow f+\varepsilon \sum_{i=0}^{n} x_{i}^{d_{\mathbf{x}}} \in K[t, \varepsilon, \mathbf{x}] \\
& \tilde{F}_{\mathrm{reg}} \leftarrow \frac{a}{f_{\mathrm{reg}}^{\ell}}
\end{aligned}
$$

$$
\text { return Telesc }\left.\mathrm{r}_{\mathrm{reg}}\left(F_{\mathrm{reg}}\right)\right|_{\varepsilon=0}
$$

The deformation method:
1 has good complexity,
2 loses minimality properties.

Timings

For a generic $\frac{a}{f^{2}} \in \mathbb{Q}\left(t, x_{1}, x_{2}\right)$:

$\operatorname{deg}_{x} f$	3	4	5	6
order	2	6	12	20
$\operatorname{deg}_{t} f=\operatorname{deg}_{t} a=1$	32 (0.4s)	153 (46s)	480 (2h)	1175 (150h)
$\operatorname{deg}_{t} f=\operatorname{deg}_{t} a=2$	66 (0.6s)	336(140s)	1092 (7h)	? ()
$\operatorname{deg}_{t} f=\operatorname{deg}_{t} a=3$	100 (0.9s)	519 (270s)	1704(13h)	? ()

Conclusion

$$
\tilde{\mathcal{O}}\left(e^{3 n} d_{\mathbf{x}}^{8 n} d_{t}\right)
$$

- First polynomial time algorithm for rational creative telescoping
- Accurate bounds on the size of the output
- Proof that the certificate is generically way bigger that the telescoper
- On going work on the singular case

