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creative telescoping
General framework to handle multiple integrals with
parameters in computer algebra.

rational
We restrict ourselves to rational integrands.

polynomial time algorithm
Polynomial with respect to the generic size of the output.



Multiple rational integrals

Problem
x = x1, . . . , xn — integration variables

t — parameter
F (t,x) — rational function

γ — a n-cycle in Cn

} ∮γ F (t,x)dx

How to compute this integral?

Theorem (Picard)
These integrals satisfy linear differential equations with polynomial
coefficients.



The “why”

Rational–algebraic equivalence
n-integrals of algebraic functions are (n+ 1)-tuple integrals of
rational functions.

Combinatorics Differential approach to discrete identities like
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(Strehl)
Physics Computation of various special functions, like

“n-particle contribution to the magnetic susceptibility
of the Ising model”.

Number theory Computation of mirror maps.
Algebraic geometry Computation of topological invariants.



Examples

Univariate integrals∮
F (t, x)dx is an algebraic function of t (by residue theorem).

Perimeter of an ellipse
Perimeter of an ellipse with excentricity e and semi-major axis 1:

p(e) =

∫ 1

0

√
1− e2x2

1− x2
dx ∝

∮ dxdy
1− 1−e2x2

(1−x2)y2

,

(e− e3)p′′ + (1− e2)p′ + ep = 0 (Euler, 1733)



The “how”

How to compute algebraically an analytical object?

Fact
For all rational functionsA(t,x) finite on γ,∮

γ

∂A

∂xi
dx = 0.



The “how”
x = x1, . . . , xn — integration variables

t — parameter

F (t, x) — rationnal function

γ — an-cycle
} ∮γ F (t, x)dx

Principle of creative telescoping
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We want to:
1 find the ck(t) which satisfy the telescopic relation,
2 without computing the certificate (Ai).



Example
Perimeter of an ellipse

p(e) ∝
∮ dydx

1− 1−e2x2

(1−x2)y2

Telescopic relation:

(
(e− e3)∂2
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)
·

(
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)
=
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(
− e(−1−x+x2+x3)y2(−3+2x+y2+x2(−2+3e2−y2))
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)
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(
2e(−1+e2)x(1+x3)y3

(−1+y2+x2(e2−y2))2

)
Thus (e− e3)p′′ + (1− e2)p′ + ep = 0.



Brief review
Brief but incomplete

General algorithms:
using linear algebra (Lipshitz, 1988);
using non-commutative Gröbner bases:

and elimination (Takayama, 1990);
and rational resolution of differential equations (Chyzak, 2000);
and heuristics (Koutschan, 2010).

etc.
Algorithms for the rational case:

univariate integrals (Bostan, Chen, Chyzak, Li, 2010);
double integrals (Chen, Kauers, Singer, 2012).



Polynomial time computation
Main result

F = a
f — a rational function in t and x = x1, . . . , xn

dx — the degree of f w.r.t. x
dt — max(degt f, degt a)

Hypothesis — Simplifying assumption: degx a+ n+ 1 ⩽ dx

Theorem (Bostan, Lairez, Salvy, 2013)
A telescoper for F can be computed using Õ(e3nd8nx dt) operations in the
base field, uniformly in all the parameters. The minimal telescoper has
order⩽ dnx and degreeO(end3nx dt).

Remark
Each side of any telescopic relation has size at least d(1−ε)n2

x ,
generically.



Main ingredients of the algorithm

Griffiths–Dwork method for the generic case
Linear reduction used in algebraic geometry
Generalization of Hermite’s reduction

Fast linear algebra on polynomial matrices
Sophisticated algorithms due to Villard, Storjohann, Zhou, etc.

Deformation technique for the general case
Pertubation of F with a new free variable



Homogenization

F̃
def
= x−n−1

0 F
(
x1
x0
, . . . , xn

x0

)
=

a

f
.

Proposition
Homogeneous–inhomogeneous equivalenceL(t, ∂t) is a telescoper for F̃ if
and only it is a telescoper for F .

The degree−n− 1 is choosen to ensure this property.



Griffiths–Dwork reduction

Input F = a/f ℓ a rational function in x0, . . . , xn

Output [F ] such that there exist rational
functionsA0, . . . , An such that F = [F ] +

∑
i ∂iAi

Precompute a Gröbner basisG for (∂0f, . . . , ∂nf)
procedure [·](a/f ℓ)

if ℓ = 1 then return a/f ℓ

Decompose a as r +
n∑

i=0

vi∂if usingG

return r

f ℓ
+

[
1

ℓ− 1

∑
i

∂ivi
f ℓ−1

]



Properties of the reduction

f is fixed.
Linearity [·] is linear.

Soundness If [F ] = 0 then F =
∑

i ∂iAi.

(Dwork, Griffiths) Moreover, if the ideal (∂0f, . . . , ∂nf) is
0-dimensional, then:
Confinement The image of [·] is finite dimensional.
Normalization

[
∂i

(
b

fN

)]
= 0.



Generic case

Input F = a/f ℓ a generic homogeneous rational function
Output L(t, ∂t) a telescoper for F .

procedure Telescreg(F )
G0 ← [F ]
i← 0
loop

if rankL(G0, . . . , Gi) < r + 1 then
solve

∑r−1
k=0 akGk = Gi w.r.t. a0, . . . , ar−1 in L

return ∂r
t −

∑
k ak∂

k
t

else
Gr+1 ← [∂tGr]
r ← r + 1



Singular case: deformation

Input F = a/f ℓ a homogeneous rational function
Output L(t, ∂t) a telescoper for F .

procedure Telesc(F )

freg ← f + ε

n∑
i=0

xdx
i ∈ K[t, ε,x]

F̃reg ←
a

f ℓ
reg

return Telescreg(Freg)|ε=0

The deformation method:
1 has good complexity,
2 loses minimality properties.



Timings

For a generic a
f2 ∈ Q(t, x1, x2):

degx f 3 4 5 6
order 2 6 12 20

degt f = degt a = 1 32 (0.4s) 153 (46s) 480 (2h) 1175 (150h)
degt f = degt a = 2 66 (0.6s) 336 (140s) 1092 (7h) ? ()
degt f = degt a = 3 100 (0.9s) 519 (270s) 1704 (13h) ? ()︸ ︷︷ ︸

New



Conclusion

Õ(e3nd8nx dt)

First polynomial time algorithm for rational creative
telescoping
Accurate bounds on the size of the output
Proof that the certificate is generically way bigger that the
telescoper
On going work on the singular case


