A deterministic solution to Smale's 17th problem

Algorithms and complexity in algebraic geometry Simons Institute, Berkeley, December 16, 2015

> Pierre Lairez TU Berlin

> > ▲ロト ▲園 > ▲ 国 > ▲ 国 > ● 9 Q @ >

The homotopy method 000000

Un algorithme déterministe 000000

Smale 17th problem

"Can a zero of *n* complex polynomial equations in *n* unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?"

(S. Smale, 1998)

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Approximate root

A point from which Newton's iteration converges quadratically.

Average polynomial time

Polynomial w. r. t. input size, on average w. r. t. a reasonable input distribution, typically Gaussian.

Uniform algorithm

A BSS machine: unit cost arithmetic operations on exact real numbers.

The homotopy method 000000

Un algorithme déterministe 000000

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Symbolic vs. numeric

Symbolic

Knowing one root is knowing them all; the number of root is overpolynomial.

Numeric

Homotopy methods allow to approximate one root, disregarding the others.

 \rightsquigarrow a polynomial complexity is not ruled out.

Typically

- n equations of degree 2 with n unknowns.
- Input size: $N = n \binom{n+2}{2} \sim \frac{1}{2} n^3$.
- Number of roots: $\mathcal{D} = 2^n$, this is overpolynomial in *N*.

The homotopy method 000000

Un algorithme déterministe 000000

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Symbolic vs. numeric

Symbolic

Knowing one root is knowing them all; the number of root is overpolynomial.

Numeric

Homotopy methods allow to approximate one root, disregarding the others.

 \rightsquigarrow a polynomial complexity is not ruled out.

Typically

- n equations of degree n with n unknowns.
- Input size: $N = n \binom{2n}{n} \sim C n^{1/2} 4^n$.
- Number of roots: $\mathcal{D} = n^n$, this is overpolynomial in *N*.

The homotopy method •00000 Un algorithme déterministe 000000

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Notations

- *n* and *D*, positive integers.
- ▶ \mathcal{H} , the linear space of all systems of *n* equations of degree *D* with *n* unknowns ; also functions $\mathbb{C}^n \to \mathbb{C}^n$.
- *N*, the complex dimension of \mathcal{H} .
- \mathcal{H} is endowed with a hermitian inner product.
- $S(\mathcal{H})$, the systems with unit norm.

The homotopy method 00000

Un algorithme déterministe 000000

The homotopy method

Input

 $f \in \mathcal{H}$, a system to solve.

Starting point

Choose another $g \in \mathcal{H}$ of which we know a root $\zeta \in \mathbb{C}^n$.

Homotopy

$$h_0 = g \qquad h_{k+1} = h_k + \delta_k \cdot (f - g)$$

$$z_0 = \zeta \qquad z_{k+1} = z_k - (d_{z_k} h_{k+1})^{-1} (h_{k+1}(z_k)).$$

End point

If $h_K = f$, then z_K is an approximate root of f.

- How to choose the step size δ_k ?
- How to choose the starting pair (g, ζ) ?

イロト (同) (ヨ) (ヨ) (つ) (つ)

The complexity of the homotopy method Shub, Smale, 90's

Shub and Smale:

- Gave a method to choose the δ_k in terms of a condition number μ(f, z);
- For each *n* and *D*, proved the existence of a starting point (g, ζ) from which the homotopy method is efficient on the average.
- Gave a bound on the number of iteration in the homotopy method:

number of iterations
$$\leq cD^{3/2} \int_g^f \mu(h,\eta)^2 dh$$
.

Random starting points Beltrán, Pardo, 2009

Beltrán and Pardo:

- Proved that a random starting point (g, ζ) is efficient on the (twofold) average.
- Discovered how to pick a random pair (g, ζ) .

```
For us, Beltrán-Pardo algorithm is a function
BP : \mathbb{S}(\mathcal{H}) \times [0, 1]^{\mathbb{N}} \to \mathbb{C}^{n}
```

such that

- BP(f, a) is an approximate root of f, for almost all f and a;
- ► if f and a are uniformly distributed, then $\mathbb{E}(\text{cost}_{\text{BP}}(f, a)) = O(nD^{3/2}N^2)$.

The homotopy method 000000

Un algorithme déterministe 000000

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Smoothed analysis Bürgisser, Cucker, 2011

Bürgisser and Cucker:

Proved that the smoothed complexity of Beltrán-Pardo algorithm is polynomial:

 $\sup_{f \in \mathcal{H}} \left[\mathbb{E} \left(\text{cost}_{\text{BP}}(f) \right) \right] = \infty$

but
$$\sup_{f \in \mathcal{H}} \left[\mathbb{E} \left(\operatorname{cost}_{\mathsf{BP}}(f + \varepsilon) \right) \right] = O\left(\frac{1}{\sigma} n D^{3/2} N^2 \right),$$

where $\varepsilon \in \mathcal{H}$ is a random non centered Gaussian variable with variance σ^2 .

 Described a deterministic algorithm with average complexity N^{O(log log N)}.

The homotopy method $00000 \bullet$

Un algorithme déterministe 000000

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Today Lairez, 2015

Deterministic algorithm with complexity $O(nD^{3/2}N^2)$.

Duplication of the uniform dist. on [0, 1]

- q > 0 an integer.
- ▶ $x \in [0, 1]$ a uniformly distributed random variable.

►
$$\lfloor x \rfloor_q \stackrel{\text{def}}{=} 2^{-q} \lfloor 2^q x \rfloor \in [0, 1]$$
, the truncature of *x* to precision *q*.

►
$$\{x\}_q \stackrel{\text{def}}{=} 2^q x - \lfloor 2^q x \rfloor \in [0, 1]$$
, the fractionary part.

Proposition

- The probability distribution of LxJq converges to the uniform distribution [0, 1] when q → ∞.
- $\{x\}_q$ is uniformly distributed on [0, 1].
- $\lfloor x \rfloor_q$ and $\{x\}_q$ are independent.

Duplication of the uniform dist. on $\mathbb{S}(\mathcal{H})$

- q > 0 an integer.
- $x \in S(\mathcal{H})$ a uniformly distributed random variable.

Proposition

- The probability distribution of LxJq converges to the uniform distribution S(H) when q → ∞.
- $\{x\}_q$ is *almost* uniformly distributed on $\mathbb{S}(\mathcal{H})$.
- $\lfloor x \rfloor_q$ and $\{x\}_q$ are *almost* independent.

The homotopy method

Un algorithme déterministe 00000

The homotopy method 000000

Un algorithme déterministe 00000

A deterministic algorithm Derandomization of Beltrán-Pardo algorithm

Beltrán-Pardo algorithm BP : $\mathbb{S}(\mathcal{H}) \times [0, 1]^{\mathbb{N}} \to \mathbb{C}^{n}$.

The homotopy method 000000

Un algorithme déterministe 00000

A deterministic algorithm Derandomization of Beltrán-Pardo algorithm

Modified Beltrán-Pardo algorithm BP : $\mathbb{S}(\mathcal{H}) \times \mathbb{S}(\mathcal{H}) \to \mathbb{C}^n$.

The homotopy method 000000

Un algorithme déterministe 00000

A deterministic algorithm Derandomization of Beltrán-Pardo algorithm

Modified Beltrán-Pardo algorithm BP : $\mathbb{S}(\mathcal{H}) \times \mathbb{S}(\mathcal{H}) \to \mathbb{C}^n$.

The homotopy method 000000

Un algorithme déterministe 00000

イロト (同) (ヨ) (ヨ) (つ) (つ)

A deterministic algorithm Derandomization of Beltrán-Pardo algorithm

Modified Beltrán-Pardo algorithm BP : $\mathbb{S}(\mathcal{H}) \times \mathbb{S}(\mathcal{H}) \to \mathbb{C}^n$.

The algorithm, 1st try

```
procedure DBP(f)

q \leftarrow a large enough integer

return BP (\lfloor f \rfloor_q, \{f\}_q)

end procedure
```

The homotopy method 000000

Un algorithme déterministe 00000

イロト (同) (ヨ) (ヨ) (つ) (つ)

A deterministic algorithm Derandomization of Beltrán-Pardo algorithm

Modified Beltrán-Pardo algorithm BP : $\mathbb{S}(\mathcal{H}) \times \mathbb{S}(\mathcal{H}) \to \mathbb{C}^n$.

The algorithm, 2nd try

```
procedure DBP(f)

q \leftarrow \lfloor \log_2 N \rfloor

repeat

q \leftarrow 2q

z \leftarrow BP(\lfloor f \rfloor_q, \{f\}_q)

until z is an approximate root of f

return z

end procedure
```

The homotopy method 000000

Un algorithme déterministe 00000

A deterministic algorithm Derandomization of Beltrán-Pardo algorithm

Modified Beltrán-Pardo algorithm BP : $\mathbb{S}(\mathcal{H}) \times \mathbb{S}(\mathcal{H}) \to \mathbb{C}^n$.

The algorithm, final version

```
procedure DBP(f)

q \leftarrow \lfloor \log_2 N \rfloor

repeat

q \leftarrow 2q

z \leftarrow BP(\lfloor f \rfloor_q, \{f\}_q) with early abort

until z is an approximate root of f

return z

end procedure
```

・ロ・・ 日・・ 日・・ 日・・ 日・ うらう

Homotopy continuation with early abort

procedure HC'(f, g, z, q) $t \leftarrow 1/\left(101D^{3/2}\mu(g,z)^2d_{\mathbb{S}}(f,g)\right)$ while 1 > t do $h \leftarrow \Gamma(g, f, t)$ \triangleright "*tf* + (1 - *t*)*g*" on the sphere $z \leftarrow \text{Newton}(h, z)$ $t \leftarrow t + 1/\left(101D^{3/2}\mu(h,z)^2 d_{\mathbb{S}}(f,g)\right)$ **abort if** $151D^{3/2}\mu(h, z)^2 > 2^q$ end while return z end procedure

► If $||f - \tilde{f}|| \le 2^{-q}$, then HC'(f, g, z, q) fails or returns an approximate root of \tilde{f} .

► In any case, it performs at most $cD^{3/2} \int_{a}^{f} \mu(h, z)^2 dh$ steps.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Complexity analysis

- Let $f \in S(\mathcal{H})$ be a uniformly distributed random variable.
- Let Ω be the number of iterations in DBP(f).

Proposition $-\mathbb{E}(\Omega) \leq 7$. (And the distribution is very light-tailed.) \rightarrow The precision *q* is typically no more than 128 log *N*.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Complexity analysis

- Let $f \in S(\mathcal{H})$ be a uniformly distributed random variable.
- Let Ω be the number of iterations in DBP(f).

Proposition $-\mathbb{E}(\Omega) \leq 7$. (And the distribution is very light-tailed.) \rightarrow The precision *q* is typically no more than 128 log *N*.

Complexity analysis

$$\blacktriangleright \operatorname{cost}_{\mathsf{DBP}}(f) = \sum_{k=1}^{\Omega} \left(O(Nq_k) + \operatorname{cost}_{\mathsf{BP}}\left(\lfloor f \rfloor_{q_k}, \{f\}_{q_k} \right) \right)$$

Complexity analysis

- Let $f \in S(\mathcal{H})$ be a uniformly distributed random variable.
- Let Ω be the number of iterations in DBP(f).

Proposition $-\mathbb{E}(\Omega) \leq 7$. (And the distribution is very light-tailed.) \rightarrow The precision *q* is typically no more than 128 log *N*.

Complexity analysis

- $\blacktriangleright \operatorname{cost}_{\mathsf{DBP}}(f) = \sum_{k=1}^{\Omega} \left(O(Nq_k) + \operatorname{cost}_{\mathsf{BP}}\left(\lfloor f \rfloor_{q_k}, \{f\}_{q_k} \right) \right)$
- ► $\operatorname{cost}_{\operatorname{BP}}\left(\lfloor f \rfloor_{q_k}, \{f\}_{q_k}\right) \sim \operatorname{cost}_{\operatorname{BP}}(\lfloor f \rfloor_{q_k}, g) \sim \operatorname{cost}_{\operatorname{BP}}(f, g)$

Complexity analysis

- Let $f \in S(\mathcal{H})$ be a uniformly distributed random variable.
- Let Ω be the number of iterations in DBP(f).

Proposition $-\mathbb{E}(\Omega) \leq 7$. (And the distribution is very light-tailed.) \rightarrow The precision *q* is typically no more than 128 log *N*.

Complexity analysis

- ► $\operatorname{cost}_{\operatorname{DBP}}(f) = \sum_{k=1}^{\Omega} \left(O(Nq_k) + \operatorname{cost}_{\operatorname{BP}}\left(\lfloor f \rfloor_{q_k}, \{f\}_{q_k} \right) \right)$
- ► $\operatorname{cost}_{\operatorname{BP}}\left(\lfloor f \rfloor_{q_k}, \{f\}_{q_k}\right) \sim \operatorname{cost}_{\operatorname{BP}}(\lfloor f \rfloor_{q_k}, g) \sim \operatorname{cost}_{\operatorname{BP}}(f, g)$
- $\blacktriangleright \quad \mathbb{E}(\operatorname{cout}_{\mathsf{BPD}}(f)) = O(nD^{3/2}N^2)$

The homotopy method 000000

Un algorithme déterministe 000000

イロト (同) (ヨ) (ヨ) (つ) (つ)

Conclusion

Randomness is part of Smale's 17th problem from its very formulation asking for an average analysis.

Problème no. 17bis — Can a zero of *n* complex polynomial equations in *n* unknowns be found approximately in polynomial time with respect to the evaluation complexity of the input and the logarithm of its conditionning?

The homotopy method 000000

Un algorithme déterministe 000000

Conclusion

Randomness is part of Smale's 17th problem from its very formulation asking for an average analysis.

Problème no. 17bis — Can a zero of *n* complex polynomial equations in *n* unknowns be found approximately in polynomial time with respect to the evaluation complexity of the input and the logarithm of its conditionning?

Thank you!