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Abstract Peter Biirgisser
o 17t o theprobles proposed by e Sl for th 215t cntry Felipe Cucker

asks for the existence of a deterministic algorithm computing an appro
imate solution of a system of n complex polynomials in n unknowns in [
time polynomial, on the average, in the size N of the input system. A par-

tial solution to this problem was gwm by Carlos Beltrén and Luis

Miguel

ed algorithm doing so. In this paper we

iz [ ] [}
his result in several directions. Firstly, we exhibit a linear
homotopy algorithm that cfficiently implements a nonconstructive idea of
Mike Shub. This algorithm is then used in a randomized algorithm, call it
LV, & la Beltxin-Pardo. Secondly, we perform a smoothed analysis (in the
sense of Spielman and Teng) of algorithm LV and prove that its smoothed

form  conition b i of Lv. Tt . e ive 8 bound. for cach . .
atem 1, of the cxpected running time of LV with input . T adltion The Geometry of Numerical Algorithms
to its dependence on N this bound also depends on the condition of f,
Fourthly, and to conclude, we return to Smale’s 17th problem as originally
formulated for deterministic xlguntlun; V\e exhibit such an algorithm and
Thi

show that its average complexity s )

nearly a solution

to Smale’s 17th problem
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Solving polynomial systems in polynomial time?

Can we compute the roots of a polynomial system in polynomial time?

Likely not, deciding feasibility is NP-complete.

Can we compute the complex roots of n equations in n variables in polynomial time?

No, there are too many roots.

Bézout bound vs. input size (n polynomial equations, n variables, degree &)

degree ) 2 n d>n

. . 1
inputsize n(°*") ~1n ~Jenedt o~ s

#roots o" 2n n" o"




Finding one root: a purely numerical question

#roots > input size To compute a single root, do we have to pay for #roots?
using exact methods Having one root is having them all (generically).
using numerical methods One may approximate one root disregarding the others.

polynomial complexity? Maybe, but only with numerical methods

Thisis Smale’s question

Now B, let’s ask for more!



Numerical continuation

F; apolynomial system depending
continuously on £ € [0, 1]

zo aroot of Fy

function NumericalContinuation(F;, zg)
t—0
Z<— 2
repeat
t— t+ PAVE
z — Newton(Fy, z)
until =1
return z
end function

Solves any generic system

How to set the ?

How to choose the start system F;?

How to choose a path?



A short history



Average analysis

the complexity is unbounded near singular cases.
~ stochastic analysis

global distribution centered Gaussian in the space of all polynomial systems

local distribution non-centered Gaussian

randomized algorithms choosing the continuation path may need randomization

Lairez (2017) this can be derandomized eliminated for average analysis
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Renegar (1987)

n complex variables
n random equations of degree §
inputsize N

input distribution centered
# of steps poly(6”) , with high probability
starting system x0=1,...,x5=1

continuation path (1-1Fy+tF;

previous best o



Shub, Smale (1994)

n complex variables
n random equations of degree §
inputsize N

input distribution centered
# of steps | poly(&V) , with high probability
starting system not constructive

continuation path (1-1Fy+tF

previous best poly(6")



Beltran, Pardo (2009)

n complex variables
n random equations of degree §
inputsize N

input distribution centered
# of steps | O(nd%2N) , on average
starting system random system, sampled directly with a root

continuation path (1-1Fy+tF

previous best poly(6”) — poly(V)



Biirgisser, Cucker (2011)

n complex variables
n random equations of degree §
inputsize N

input distribution non-centered , variance o2, really relevant to applications!

# of steps |O(nd%%Nla) , on average
starting system idem Beltran-Pardo

continuation path (1-1Fy+tF

previous best o



Armentano, Beltrdn, Biirgisser, Cucker, Shub (2016)

n complex variables
n random equations of degree §
inputsize N

input distribution centered
# of steps | O(nd%2N''?) , on average
starting system idem Beltran-Pardo

continuation path (1-1Fy+tF

previous best poly(6”) — poly(N) — O(nd*'?N)



Lairez (2017)

n complex variables
n random equations of degree §
inputsize N

input distribution centered
# of steps  O(n62) , on average
starting system an analogue of Beltran-Pardo

continuation path (fioul™',..., fyoul™"), with u; e U(n+1)
(rigid motion of each equations)

previous best poly (6”) — poly(N) — 0(nd*'?N) — 0(nd3'>N''?)



Improving the conditioning




How to improve the complexity?

EVENEVI Digger steps!

z = the current root
o(F, z) = inverse of the radius of the bassin of attraction of z

w(E, z) = sup [over F' ~ F and F'(z') = 0] d”if,}ﬁ;,zli)

1 z
t . h . t. _ z EZ -
step size heuristic A7 p( ) A7

S UE2)-u(F2).
— Y—
loose sharp

average analysis Each factor u contributes O(N'/2) in the average # of steps.
To go down to poly(n,§), we must improve both.
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Changing the path

anold idea Can we choose a path that keeps u(F, z) low?
i.e. that stays far from singularities?
yes! Beltran, Shub (2009)
...but not applicable for polynomial system solving.

(Pictures by Juan Criado del Rey.) 13



Rigid continuation algorithm

input fi,..., f,, homogeneous polynomials of degree § in xy, ..., x,

1 Pick xe P*(C)

2 Forl<i<n,
a compute one point p; € P"(C) such that f;(p;) =0
b pick u; € U(n+ 1) such that u;(x) = p;.

3 Perform the numerical continuation with

F;= (flou%_t,...,fnou,lft).

big win the parameter space has O(n®) dimensions,
the conditioning is poly(n) on average

total complexity O(n%5*N) = N1*°W operation on average, quasilinear

14



Toward structured systems




Why structured systems?

structures sparse
symmetries

low evaluation complexity Js]Elegsfe)

This includes most practical examples!

Traditional average analysis is irrelevant.

observation A poly(N) complexity is far from what we observe in practice.

We want poly(#, 6) cost(input)

15



Black box input

input F given as a Ja]Eld4sIeXq function

question Can we adapt the rigid continuation algorithm?
Yes! , but with small probability of failure

difficulty Computing y requires all coefficients, costs N > cost(F).

. E|lfz+pw) - f(2)
stochastic formulation y(/,z) = min ,
L T

with w uniformly distributed in the unit ball.
Stochastic optimization problem




Random black box input

input F given as a fo]EldeIMg function, randomly distributed

question Is the average complexity poly(n, ) cost(F)? Watch arXiv...

random black boxes What it is?
A random model for a black box (homogeneous) polynomial:

f(xo,...,x,) = trace (A; (xo,...,Xn) - As(Xo,...,Xn)),

where the A; are r x r matrices with degree 1 entries,
coeefficients are i.i.d. Gaussian.

evaluation complexity O(r36 +r?n)
The parameter r reflects the complexity of evaluating f.
Polynomially equivalent to Valiant’s determinantal complexity.



Thank you!

Thankyout
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