Two algorithms for computing with Feynman integrals

Pierre Lairez

Université Paris-Saclay, Inria, France
based on joint work with Pierre Vanhove (IPhT)
December 8, 2022
erc

Outline

1. Introduction
2. Computation of Picard-Fuchs operators
3. Minimality of the Picard-Fuchs operator
4. Order of the PF operator from GKZ systems

The meta-question

What is the the motive of a Feynman integral? (and also, what is a motive?)

That is, explain the nature of a Feynman integral in terms of basic varieties.

The three-loops sunset graph: an example
(Bloch et al., 2015)

$$
I(t)=\iiint_{0}^{\infty} \frac{1}{\left(1+\sum_{i=1}^{3} x_{i}\right)\left(1+\sum_{i=1}^{3} x_{i}^{-1}\right)-t} \frac{\mathrm{~d} x_{1}}{x_{1}} \frac{\mathrm{~d} x_{2}}{x_{2}} \frac{\mathrm{~d} x_{3}}{x_{3}} .
$$

Theorem

$$
\underbrace{\left(t^{2}(t-4)(t-16) \frac{\mathrm{d}^{3}}{\mathrm{~d} t^{3}}+\cdots\right)}_{\text {Picard-Fuchs operator }} \cdot I(t)=-24
$$

$$
I(t)=(\text { period of a K3 family }) \cdot(\text { elliptic trilogarithms })
$$

The Picard-Fuchs operator

- x_{1}, \ldots, x_{n}, integration variables
- t, parameter
- $R\left(t, x_{1}, \ldots, x_{n}\right)$, a rational function
- γ, a n-cycle in \mathbb{C}^{n} on which R is continuous
- $I(t)=\oint_{\gamma} R\left(t, x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}$

Problem

Find $p_{0}(t), \ldots, p_{r}(t) \in \mathbb{C}[t]$ such that

$$
p_{r}(t) I^{(r)}(t)+\cdots+p_{1}(t) I^{\prime}(t)+p_{0}(t) I(t)=0
$$

The Picard-Fuchs operator

- $x_{0}, x_{1}, \ldots, x_{n}$, integration variables
- t, parameter
- $R\left(t, x_{0}, x_{1}, \ldots, x_{n}\right)$, a rational function
- γ, a $n+1$-cycle in \mathbb{C}^{n+1} on which R is continuous
- $I(t)=\oint_{\gamma} R\left(t, x_{0}, x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{0} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{n}$
- homogeneity :

$$
R\left(t, \lambda x_{0}, \ldots, \lambda x_{n}\right) \mathrm{d}\left(\lambda x_{0}\right) \cdots \mathrm{d}\left(\lambda x_{n}\right)=R\left(t, x_{0}, \ldots, x_{n}\right) \mathrm{d} x_{0} \cdots \mathrm{~d} x_{n}
$$

Problem

Find $p_{0}(t), \ldots, p_{r}(t) \in \mathbb{C}[t]$ such that

$$
p_{r}(t) I^{(r)}(t)+\cdots+p_{1}(t) I^{\prime}(t)+p_{0}(t) I(t)=0
$$

The order of the PF operator

Let $\gamma \in H_{n}\left(\mathbb{P}^{n} \backslash \operatorname{pole}(R)\right)$ generic and $I(t)=\int_{\gamma} R(t, \mathbf{x}) \mathrm{d} \mathbf{x}$.

$$
\underbrace{\operatorname{dim}_{\mathbb{C}(t)} \operatorname{Vect}_{\mathbb{C}(t)}\left\{I^{(k)}(t)\right\}_{k \geq 0}}=\operatorname{dim}_{\mathbb{C}} \operatorname{Vect}_{\mathbb{C}}\left\{\int_{\eta} R(t, \mathbf{x}) \mathrm{d} \mathbf{x}\right\}_{\eta \in H_{n}\left(\mathbb{P}^{n} \backslash \operatorname{pole}(R)\right)} .
$$

order of the PF operator
\leadsto the order of the PF operator reflects an intrinsic geometry.
See also (Agostini et al., 2022)

Outline

1. Introduction

2. Computation of Picard-Fuchs operators
3. Minimality of the Picard-Fuchs operator
4. Order of the PF operator from GKZ systems

Fundamental relations

Integral of derivatives

$$
\oint \sum_{i=1}^{n} \frac{\partial C_{i}}{\partial x_{i}} \mathrm{~d} \mathbf{x}=0
$$

Integration by part
$\oint F \frac{\partial G}{\partial x_{i}} \mathrm{~d} \mathbf{x}=-\oint \frac{\partial F}{\partial x_{i}} G \mathrm{~d} \mathbf{x}$

Derivation under \int
$\frac{\partial}{\partial t} \oint F \mathrm{~d} \mathbf{x}=\oint \frac{\partial F}{\partial t} \mathrm{~d} \mathbf{x}$

Griffiths-Dwork reduction

Let $R=a / f^{q}$ an homogeneous rational function, $q>1$

- If $a=\sum_{i=0}^{n} b_{i} \partial_{i} f$, then

$$
\oint \frac{a}{f^{q}} \mathrm{~d} \mathbf{x}=\oint \sum_{i=0}^{n} b_{i} \frac{\partial_{i} f}{f^{q}} \mathrm{~d} \mathbf{x}=\frac{1}{q-1} \oint \sum_{i=0}^{n} \frac{\partial_{i} b_{i}}{f^{q-1}}
$$

Rewriting rule $\frac{\sum_{i} b_{i} \partial_{j} f}{f^{q}} \longrightarrow \frac{1}{q-1} \frac{\sum_{i} \partial_{i} b_{i}}{f^{q-1}}$
Proposition If $R \longrightarrow{ }^{*} R^{\prime}$, then $\oint R \mathrm{~d} \mathbf{x}=\oint R^{\prime} \mathrm{d} \mathbf{x}$.
Theorem (Griffiths, 1969) If $V(f)$ is a smooth projective hypersurface, then

$$
\oint \frac{a}{f^{q}} \mathrm{~d} \mathbf{x}=0 \quad \Leftrightarrow \quad \frac{a}{f^{q}} \rightarrow^{*} 0
$$

Computation of a PF operator (in the smooth case)

Input An homogeneous rational function $R=a / f^{q}$, with $V(f)$ smooth Output The minimal PF operator annihilating $\oint \frac{a}{f^{q}} \mathrm{~d} \mathbf{x}$

$$
\text { for } k=0,1,2, \ldots \text { : }
$$

compute a normal form $\frac{\partial^{k}}{\partial t^{k}} \frac{a}{f^{q}} \longrightarrow^{*} \frac{b_{k}}{f^{n}}$
if $\operatorname{rank}\left\{b_{0}, \ldots, b_{k}\right\} \leq k:$
compute c_{0}, \ldots, c_{k} non trivial such that $\sum_{i} c_{i} b_{i}=0$
return $\sum_{i=0}^{k} c_{i}(t) \frac{\mathrm{d}^{i}}{\mathrm{~d} t^{i}}$

Extended Griffiths-Dwork reduction, principle

Recall the rewriting rule

$$
\frac{\sum_{i} b_{i} \partial_{i} f}{f^{q+1}} \longrightarrow \frac{1}{q} \frac{\sum_{i} \partial_{i} b_{i}}{f^{q}}
$$

- There no unicity in the choice of the b_{i}.
- If $\sum_{i} b_{i} \partial_{i} f=0$, the rule

$$
0 \longrightarrow \frac{1}{q} \frac{\sum_{i} \partial_{i} b_{i}}{f^{q}}
$$

give new relations, maybe unseen by the GD reduction.

Extended Griffiths-Dwork reduction, definition

Extended rank 2 rewrite rules

$$
(\text { Griffiths-Dwork })+\left(\sum_{i=0}^{n} b_{i} \partial_{i} f=0 \Rightarrow \frac{\sum_{i=0}^{n} \partial_{i} b_{i}}{f^{q}} \longrightarrow 0\right)
$$

- The extended rules are still ambiguous
- We may have

$$
\frac{a}{f^{q}} \xrightarrow[\operatorname{rg} 2]{\mathrm{rg} 1} 0_{0} \frac{b}{f^{q-1}} \quad \text { but not } b / f^{q-1} \xrightarrow{\mathrm{rk} 2} 0
$$

- In this case, we define a new rule $b / f^{q-1} \xrightarrow{\text { rk } 3} 0$.

Extended Griffiths-Dwork reduction, continued

Extended rank 3 rewrite rules

$$
\text { (rank } 3 \text { rules) }+\left(\frac{a}{f^{q} \xrightarrow[\operatorname{rg} 2]{\operatorname{rg} 1}} \frac{b}{f^{q-1}} 0 . \quad \frac{b}{f^{q}} \longrightarrow 0\right)
$$

And so on for higher ranks.
Theorem

$$
\forall f \exists r \forall \frac{a}{f^{q}}, \oint \frac{a}{f^{q}} \mathrm{~d} \mathbf{x}=0 \Rightarrow \frac{a}{f^{q}} \xrightarrow{\mathrm{rk} r}{ }^{*} 0
$$

An example (Beukers' integral for $\zeta(3)$)

Consider

$$
f=2 x y z(w-x)(w-y)(w-z)-w^{3}\left(w^{3}-w^{2} z+x y z\right)
$$

Let $e(q, r)$ be the number of independent homogeneous rational functions a / f^{q} that are not reducible with rank r rules.

q	0	1	2	3	4	$q>4$
without reduction	0	10	165	680	1771	$\sim 36 q^{3}$
$e(q, 1)$	0	10	86	102	120	$\sim 18 q$
$e(q, 2)$	0	10	7	6	6	6
$e(q, 3)$	0	9	1	0	0	0

Outline

1. Introduction
 2. Computation of Picard-Fuchs operators

3. Minimality of the Picard-Fuchs operator

4. Order of the PF operator from GKZ systems

Asserting the minimality of the PF operator

If the rank r is large enough (?), the PF operator that is computed is minimal. But a specific solution $I(t)$ may satisfy a smaller equation. But we don't know well the function in which we are interested.

Problem Given a differential operator $\mathcal{L}=\sum_{i=0}^{m} p_{i}(t) \frac{\mathrm{d}^{i}}{\mathrm{dt}}$, is there a non zero $I(t) \in \operatorname{Sol}(\mathcal{L})$ such that

$$
\operatorname{dim}_{\mathbb{C}(t)} \operatorname{Vect}_{\mathbb{C}(t)}\left\{I, I^{\prime}, I^{\prime \prime}, \ldots\right\}<m .
$$

Alternative formulation Are there positive order differential operators \mathcal{A} and \mathcal{B} such that $\mathcal{L}=\mathcal{A B}$?

Algorithms by van Hoeij (1997), van der Hoeven (2007), and Chyzak et al. (2022).

Monodromy and irreducibility

Let \mathcal{L} be a Fuchsian differential operator of order m. (Fuchsian = all the solutions have at most polynomial growth everywhere.)

Theorem

Let G be the monodromy group acting on $\operatorname{Sol}(\mathcal{L})$. Let $I \in \operatorname{Sol}(\mathcal{L})$.

$$
\operatorname{dim}_{\mathbb{C}(t)} \operatorname{Vect}_{\mathbb{C}(t)}\left\{I, I^{\prime}, I^{\prime \prime}, \ldots\right\}=\operatorname{dim}_{\mathbb{C}} \operatorname{Vect}_{\mathbb{C}}(G \cdot I)
$$

Factorization algorithm

(van der Hoeven, 2007; Chyzak et al., 2022)
Input A Fuchsian differential operator \mathcal{L}
Output A factorization of \mathcal{L}, or Irreducible
1 fix a working precision
2 while true:
3 compute numerically generators of the monodromy group G
4 if we can find a non trivial subspace invariant under G :
reconstruct numerically a factorization $\mathcal{L}=\mathcal{A} \mathcal{B}$
if the factorization is exact:
return \mathcal{A} and \mathcal{B}
else:
9 use the error bounds to certify that there is no such space if it worked:
return IrReducible
12 increase the precision

A-hypergeometric holonomic systems

Let $A \in \mathbb{Z}^{d \times n}$ such that $(1, \ldots, 1)^{t} \in A\left(\mathbb{Q}^{n}\right)$. Let $\beta \in \mathbb{Q}^{n}$.
The A-hypergeometric system, with parameter β, is the left ideal of the Weyl algebra in n variable generated by:

- $\partial^{u}-\partial^{v}$, for all $u, v \in \mathbb{N}^{n}$ such that $A u=A v$
- $\sum_{i=1}^{n} a_{i j} x_{j} \partial_{j}-\beta_{j}$, for $1 \leq i \leq d$
\checkmark Rich combinatorial structure
\checkmark Some integrals are solutions of A-hypergeometric systems

Generalized Euler integrals

Let f_{1}, \ldots, f_{l} be polynomials where each coefficient is a variable c_{i}. Let

$$
E(\mathbf{c})=\oint \prod_{k} f_{k}^{\beta_{k}} \mathrm{~d} \mathbf{x}
$$

Theorem (Gelfand et al., 1990)
$E(c)$ is solution of an A-hypergeometric system.
\checkmark Computation of the integral for free
X Generic coefficients

Specialization of generalized Euler integrals

Let $I(t)$ be some Feynman integral, over a cycle.
Then $I(t)=E(\mathbf{c}(t))$ for some generalized Euler integral E and some rational function $\mathbf{c}: \mathbb{C} \rightarrow \mathbb{C}^{n}$.

Question Does the A-hypergeometric system for E provide any help to determine the order of the minimal differential equation annihilating I ?

Remarks

- We may need extra equations for E (Hosono et al., 1996)
- D-module restriction seems useless?
- Power series expansion may help!...
- ... but we need to consider Nilsson rings.

Example

$$
I(t)=\oint \frac{d x d y}{y^{2}+x(x-1)(x-t)}
$$

It satisfies a differential equation of order 2, but going through A-hypergeometric systems leads to equations of order 3.

$$
J(t)=\oint \frac{\mathrm{d} x \mathrm{~d} y}{(\text { random cubic })+t(\text { random cubic })}
$$

\leadsto differential equation of order 2 ...
... but a A-hypergeometric system of rank 9.

References I

Agostini, D., Fevola, C., Sattelberger, A.-L., \& Telen, S. (2022, August 18). Vector Spaces of Generalized Euler Integrals. https://doi.org/10.48550/arXiv.2208.08967
Bloch, S., Kerr, M., \& Vanhove, P. (2015). A Feynman integral via higher normal functions. Compos. Math., 151(12), 2329-2375. https://doi.org/10/f74v85
Chyzak, F., Goyer, A., \& Mezzarobba, M. (2022, February). Symbolic-numeric factorization of differential operators.
Gelfand, I. M., Kapranov, M. M., \& Zelevinsky, A. V. (1990). Generalized Euler integrals and A-hypergeometric functions. Advances in Mathematics, 84(2), 255-271. https://doi.org/10/bf8dtx
Griffiths, P. A. (1969). On the periods of certain rational integrals. Ann. Math., 90, 460-541. https://doi.org/10/dq3zc6
Hosono, S., Lian, B. H., \& Yau, S.-T. (1996). GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces. Commun. Math. Phys., 182(3), 535-577. https://doi.org/10/b2mcgm

References II

van der Hoeven, J. (2007). Around the numeric-symbolic computation of differential Galois groups. J. Symb. Comput., 42(1), 236-264. https://doi.org/10/cjxwkq
van Hoeij, M. (1997). Factorization of differential operators with rational functions coefficients. J. Symb. Comput., 24(5), 537-561. https://doi.org/10/cwbfq7

