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The meta-question

What is the the motive of a Feynman integral?
(and also, what is a motive?)

That is, explain the nature of a Feynman integral in terms of basic varieties.
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The three-loops sunset graph: an example

(Bloch et al., 2015)
dxy dx; dxs

® 1
o= (L stn) (e 2] o0 % %

Theorem

2 d3
(t (t=4)(t=16) 5+ ) I(t) = —24.

Picard-Fuchs operator

I(t) = (period of a K3 family) - (elliptic trilogarithms)
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The Picard-Fuchs operator

® Xi,...,Xn, integration variables

t, parameter

R(t,x1,...,Xn), a rational function
¢ y, a n-cycle in C" on which R is continuous

I(t) = fR(t,xl,...,xn)dxl - dxp
y

Problem
Find po(t),...,pr(t) € C[t] such that

pr(OIT () + -+ p1(OI' () + po(DI(t) = 0.
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The Picard-Fuchs operator

® Xo, X1, ..., Xn, iNntegration variables

t, parameter

R(t, xg, X1, . .., Xp), a rational function
® y,an+ 1-cycle in C**! on which R is continuous

I(t) = fR(t,Xo,Xl, .. .,Xn)dX()d_Xl - dxp
Y

¢ homogeneity :
R(t, Axq, ..., Axp)d(AXp) - - - d(Axp) = R(t, Xo, - - ., Xp)dXp - - - dXp

Problem
Find po(t),...,pr(t) € C[t] such that

pr(OIT () + -+ p1(OI' () + po(DI(t) = 0.
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The order of the PF operator

Let y € Hy(P" \ pole(R)) generic and I(t) = fVR(t, x)dx.

dimgy) Vecte(y {I (k)(t)} = dim¢ Vectc { / R(t, X)dX} .
k=0 n neHn(P\pole(R))

order of the PF operator

~> the order of the PF operator reflects an intrinsic geometry.

See also (Agostini et al., 2022)
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2. Computation of Picard-Fuchs operators
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Fundamental relations

Integral of derivatives

f‘za—)ﬁdx 0

Integ ration by part

‘7{ f—de
Derivation under [

F
Fdx = f a—dx
ot
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Griffiths-Dwork reduction
Let R = a/f? an homogeneous rational function, g > 1
o Ifa=}7",bidf, then

Z i 9:b:
—dx f bl = %f —
iz fO1
Rewriting rule 2 bidf iZla'bi
f1 ot

Proposition If R —* R’, then ¢ Rdx = § R'dx.

Theorem (Griffiths, 1969) If V(f) is a smooth projective hypersurface, then

ix=0 4 0
f,_qX— (=1 f_—q—) .
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Computation of a PF operator (in the smooth case)

Input An homogeneous rational function R = a/f4%, with V(f) smooth
Output The minimal PF operator annihilating f f%dx

fork=0,1,2,...:

K a bk
compute a normal form — —

qu fn
if rank {by,...,bx} < k:
compute Co, . . ck non trivial such that }; ¢;b; = 0

return Y cl(t) a7
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Extended Griffiths-Dwork reduction, principle

Recall the rewriting rule
2ibidf 4 Xidibi
fat 1 fa
¢ There no unicity in the choice of the b;.
o If >, bid;f =0, therule

1 2i Oibi
a7 fq

give new relations, maybe unseen by the GD reduction.

0—
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Extended Griffiths-Dwork reduction, definition

Extended rank 2 rewrite rules

. - Yo dibi
(Griffiths-Dwork) + Z bio;f =0 = f—q —
i=0
requirement
¢ The extended rules are still ambiguous
¢ We may have
a rgl L rk 2
— ——  f41 Dputnot b/fT! =5 0.
0
rk 3

¢ In this case, we define a new rule b/ fq‘1 — 0.
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Extended Griffiths-Dwork reduction, continued

Extended rank 3 rewrite rules

rgl — b
(rank 3 rules) + a_ > fl = w 0
e

And so on for higher ranks.

Theorem
a rkr,

VfErV %fqu 0:>f—q *0.
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An example (Beukers' integral for {(3))

Consider
f=2xyz(w - x)(w—y)(w - z) — w3 (w® - w?z + xyz)

Let e(q, r) be the number of independent homogeneous rational functions
a/f that are not reducible with rank r rules.

q 0 1 2 3 4 q>4

without reduction 0 10 165 680 1771  ~ 36¢°
e(q,1) 0 10 8 102 120 ~18q

e(q,2) 0 10 7 6 6 6

e(q,3) 0 9 1 0 0 0
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3. Minimality of the Picard-Fuchs operator
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Asserting the minimality of the PF operator

If the rank r is large enough (?), the PF operator that is computed is
minimal. But a specific solution I(t) may satisfy a smaller equation. But we
don’t know well the function in which we are interested.

Problem Given a differential operator £ = >\ pi(t) C%ii, is there a non
zero I(t) € Sol(L) such that

dimc(t) Vect@(t) {LI,I",...} <m.

Alternative formulation Are there positive order differential operators A
and B such that £ = AB?

Algorithms by van Hoeij (1997), van der Hoeven (2007), and Chyzak et al.
(2022).
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Monodromy and irreducibility

Let £ be a Fuchsian differential operator of order m.
(Fuchsian = all the solutions have at most polynomial growth everywhere.)

Theorem
Let G be the monodromy group acting on Sol(L). Let I € Sol(L).

dime ) Vecte(y {LLT,I",...} = dim¢c Vectc (G- I).
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Factorization algorithm

(van der Hoeven, 2007; Chyzak et al., 2022)
Input A Fuchsian differential operator £
Output A factorization of £, or IRREDUCIBLE

1 fix a working precision

2 while true:

compute numerically generators of the monodromy group G
4 if we can find a non trivial subspace invariant under G:

5 reconstruct numerically a factorization £ = AB

6 if the factorization is exact:
7

8

w

return A and B

else:
9 use the error bounds to certify that there is no such space
10 if it worked:
11 return IRREDUCIBLE

12 increase the precision
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A-hypergeometric holonomic systems

Let A € Z%" such that (1,...,1)! € A(Q"). Let B € Q™.

The A-hypergeometric system, with parameter S, is the left ideal of the
Weyl algebra in n variable generated by:
o 94 — 9V for all u,v € N" such that Au = Av

o Y, ayxi0;— Pfor1 <i<d

v Rich combinatorial structure
v/ Some integrals are solutions of A-hypergeometric systems
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Generalized Euler integrals

Let f1,...,fi be polynomials where each coefficient is a variable c;. Let

E(c) :fl_lfkﬁ"dx
k

Theorem (Gelfand et al., 1990)
E(c) is solution of an A-hypergeometric system.

v/ Computation of the integral for free
X Generic coefficients
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Specialization of generalized Euler integrals

Let I(t) be some Feynman integral, over a cycle.

Then I(t) = E(c(t)) for some generalized Euler integral E and some
rational functionc : C — C".

Question Does the A-hypergeometric system for E provide any help to
determine the order of the minimal differential equation annihilating I?

Remarks
® We may need extra equations for E (Hosono et al., 1996)
® D-module restriction seems useless?
® Power series expansion may helpl!...
e ... but we need to consider Nilsson rings.
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Example

B dxdy
1) = jg Y2 +x(x—1)(x —t)

It satisfies a differential equation of order 2, but going through
A-hypergeometric systems leads to equations of order 3.

10-¢ Dy

(random cubic) + t(random cubic)

~» differential equation of order 2...
... but a A-hypergeometric system of rank 9.
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