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The meta-question

What is the the motive of a Feynman integral?
(and also, what is a motive?)

That is, explain the nature of a Feynman integral in terms of basic varieties.
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The three-loops sunset graph: an example

(Bloch et al., 2015)
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Theorem (
t2(t − 4) (t − 16) d3

dt3 + · · ·
)

︸                               ︷︷                               ︸
Picard-Fuchs operator

·I(t) = −24.

I(t) = (period of a K3 family) · (elliptic trilogarithms)
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The Picard-Fuchs operator

• x1, . . . , xn, integration variables
• t, parameter
• R(t, x1, . . . , xn), a rational function
• 𝛾, a n-cycle in ℂn on which R is continuous

• I(t) =
∮
𝛾

R(t, x1, . . . , xn)dx1 · · · dxn

• homogeneity :
R(t, _x0, . . . , _xn)d(_x0) · · · d(_xn) = R(t, x0, . . . , xn)dx0 · · · dxn

Problem
Find p0(t), . . . , pr(t) ∈ ℂ[t] such that

pr(t)I (r) (t) + · · · + p1(t)I′(t) + p0(t)I(t) = 0.

4/21



The Picard-Fuchs operator

• x0, x1, . . . , xn, integration variables
• t, parameter
• R(t, x0, x1, . . . , xn), a rational function
• 𝛾, a n + 1-cycle in ℂn+1 on which R is continuous

• I(t) =
∮
𝛾

R(t, x0, x1, . . . , xn)dx0dx1 · · · dxn

• homogeneity :
R(t, _x0, . . . , _xn)d(_x0) · · · d(_xn) = R(t, x0, . . . , xn)dx0 · · · dxn

Problem
Find p0(t), . . . , pr(t) ∈ ℂ[t] such that

pr(t)I (r) (t) + · · · + p1(t)I′(t) + p0(t)I(t) = 0.
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The order of the PF operator

Let 𝛾 ∈ Hn(ℙn \ pole(R)) generic and I(t) =
∫
𝛾

R(t, x)dx.

dimℂ(t) Vectℂ(t)
{
I (k) (t)

}
k≥0︸                               ︷︷                               ︸

order of the PF operator

= dimℂ Vectℂ
{∫

[
R(t, x)dx

}
[∈Hn (ℙn\pole(R))

.

{ the order of the PF operator reflects an intrinsic geometry.

See also (Agostini et al., 2022)
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Fundamental relations

Integral of derivatives∮ n∑︁
i=1

𝜕Ci

𝜕xi
dx = 0

Integration by part∮
F
𝜕G
𝜕xi

dx = −
∮

𝜕F
𝜕xi

Gdx

Derivation under
∫

𝜕

𝜕t

∮
Fdx =

∮
𝜕F
𝜕t

dx
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Griffiths–Dwork reduction
Let R = a/f q an homogeneous rational function, q > 1
• If a =

∑n
i=0 bi𝜕if , then∮

a

f q
dx =

∮ n∑︁
i=0

bi
𝜕if
f q dx = 1

q−1

∮ n∑︁
i=0

𝜕ibi

f q−1
.

Rewriting rule
∑

i bi𝜕if
f q −→ 1

q−1

∑
i 𝜕ibi

f q−1

Proposition If R −→∗ R′, then
∮

Rdx =
∮

R′dx.

Theorem (Griffiths, 1969) If V (f ) is a smooth projective hypersurface, then∮
a
f q dx = 0 ⇔ a

f q →∗ 0.
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Computation of a PF operator (in the smooth case)

Input An homogeneous rational function R = a/f q, with V (f ) smooth
Output The minimal PF operator annihilating

∮
a
f q dx

for k = 0, 1, 2, . . . :

compute a normal form
𝜕k

𝜕tk
a
f q −→∗ bk

f n

if rank {b0, . . . , bk} ≤ k:
compute c0, . . . , ck non trivial such that

∑
i cibi = 0

return
∑k

i=0 ci(t) di

dti
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Extended Griffiths–Dwork reduction, principle

Recall the rewriting rule ∑
i bi𝜕if
f q+1 −→ 1

q

∑
i 𝜕ibi

f q

• There no unicity in the choice of the bi.
• If

∑
i bi𝜕if = 0, the rule

0 −→ 1
q

∑
i 𝜕ibi

f q

give new relations, maybe unseen by the GD reduction.
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Extended Griffiths–Dwork reduction, definition

Extended rank 2 rewrite rules

(Griffiths-Dwork) +
(

n∑︁
i=0

bi𝜕if = 0︸         ︷︷         ︸
requirement

⇒
∑n

i=0 𝜕ibi

f q −→ 0

)

• The extended rules are still ambiguous
• We may have

a
f q

b
f q−1

0

rg 1

rg 2

but not b/f q−1 rk 2−→ 0.

• In this case, we define a new rule b/f q−1 rk 3−→ 0.
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Extended Griffiths–Dwork reduction, continued

Extended rank 3 rewrite rules

(rank 3 rules) +
©«

a
f q

b
f q−1

0.

rg 1

rg 2

⇒ b
f q −→ 0

ª®®¬
And so on for higher ranks.

Theorem
∀f ∃r ∀ a

f q ,

∮
a
f q dx = 0 ⇒ a

f q
rk r−→∗0.
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An example (Beukers’ integral for Z (3))

Consider

f = 2xyz(w − x) (w − y) (w − z) − w3(w3 − w2z + xyz)

Let e(q, r) be the number of independent homogeneous rational functions
a/f q that are not reducible with rank r rules.

q 0 1 2 3 4 q > 4

without reduction 0 10 165 680 1771 ∼ 36q3

e(q, 1) 0 10 86 102 120 ∼ 18q
e(q, 2) 0 10 7 6 6 6
e(q, 3) 0 9 1 0 0 0
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Asserting the minimality of the PF operator

If the rank r is large enough (?), the PF operator that is computed is
minimal. But a specific solution I(t) may satisfy a smaller equation. But we
don’t know well the function in which we are interested.

Problem Given a differential operator L =
∑m

i=0 pi(t) di

dti , is there a non
zero I(t) ∈ Sol(L) such that

dimℂ(t) Vectℂ(t) {I, I′, I′′, . . . } < m.

Alternative formulation Are there positive order differential operators A
and B such that L = AB?

Algorithms by van Hoeij (1997), van der Hoeven (2007), and Chyzak et al.
(2022).
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Monodromy and irreducibility

Let L be a Fuchsian differential operator of order m.
(Fuchsian = all the solutions have at most polynomial growth everywhere.)

Theorem
Let G be the monodromy group acting on Sol(L). Let I ∈ Sol(L).

dimℂ(t) Vectℂ(t) {I, I′, I′′, . . . } = dimℂ Vectℂ (G · I) .
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Factorization algorithm
(van der Hoeven, 2007; Chyzak et al., 2022)
Input A Fuchsian differential operator L
Output A factorization of L, or Irreducible

1 fix a working precision
2 while true:
3 compute numerically generators of the monodromy group G
4 if we can find a non trivial subspace invariant under G:
5 reconstruct numerically a factorization L = AB
6 if the factorization is exact:
7 returnA and B
8 else:
9 use the error bounds to certify that there is no such space

10 if it worked:
11 return Irreducible
12 increase the precision
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A-hypergeometric holonomic systems

Let A ∈ ℤd×n such that (1, . . . , 1)t ∈ A(ℚn). Let 𝛽 ∈ ℚn.

The A-hypergeometric system, with parameter 𝛽, is the left ideal of the
Weyl algebra in n variable generated by:
• 𝜕u − 𝜕v, for all u, v ∈ ℕn such that Au = Av
• ∑n

i=1 aijxj𝜕j − 𝛽j, for 1 ≤ i ≤ d

✓ Rich combinatorial structure
✓ Some integrals are solutions of A-hypergeometric systems
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Generalized Euler integrals

Let f1, . . . , fl be polynomials where each coefficient is a variable ci. Let

E(c) =
∮ ∏

k
f 𝛽k
k dx

Theorem (Gelfand et al., 1990)
E(c) is solution of an A-hypergeometric system.

✓ Computation of the integral for free
✗ Generic coefficients

19/21



Specialization of generalized Euler integrals

Let I(t) be some Feynman integral, over a cycle.

Then I(t) = E(c(t)) for some generalized Euler integral E and some
rational function c : ℂ → ℂn.

Question Does the A-hypergeometric system for E provide any help to
determine the order of the minimal differential equation annihilating I?

Remarks
• We may need extra equations for E (Hosono et al., 1996)
• D-module restriction seems useless?
• Power series expansion may help!...
• ... but we need to consider Nilsson rings.
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Example

I(t) =
∮

dxdy
y2 + x(x − 1) (x − t)

It satisfies a differential equation of order 2, but going through
A-hypergeometric systems leads to equations of order 3.

J (t) =
∮

dxdy
(random cubic) + t(random cubic)

{ differential equation of order 2...
... but a A-hypergeometric system of rank 9.
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