Rigid continuation paths I Quasilinear average complexity for solving polynomial systems

Pierre Lairez

MATHEXP, Université Paris-Saclay, Inria, France

FoCM 2023, Real-number complexity workshop

Paris — June 14, 2023

Ínnía -

- F_t a polynomial system depending continuously on $t \in [0, 1]$
- z_0 a zero of F_0

function

```
NumericalContinuation(F_t, z_0)

t \leftarrow 0

z \leftarrow z_0

repeat

t \leftarrow t + \Delta t

z \leftarrow \text{Newton}(F_t, z)

until t \ge 1

return z

end function
```

- F_t a polynomial system depending continuously on $t \in [0, 1]$
- z_0 a zero of F_0

function

```
NumericalContinuation(F_t, z_0)

t \leftarrow 0

z \leftarrow z_0

repeat

t \leftarrow t + \Delta t

z \leftarrow \text{Newton}(F_t, z)

until t \ge 1

return z

end function
```

Solves any generic system!

- F_t a polynomial system depending continuously on $t \in [0, 1]$
- z_0 a zero of F_0

function

NumericalContinuation(F_t , z_0)

 $t \leftarrow 0$ $z \leftarrow z_0$ repeat $t \leftarrow t + \Delta t$ $z \leftarrow \text{Newton}(F_t, z)$ until $t \ge 1$ return zend function

Solves any generic system!

But we still have to decide:

• How to choose the start system *F*₀?

- F_t a polynomial system depending continuously on $t \in [0, 1]$
- z_0 a zero of F_0

function

NumericalContinuation(F_t , z_0)

 $t \leftarrow 0$ $z \leftarrow z_0$ repeat $t \leftarrow t + \Delta t$ $z \leftarrow \text{Newton}(F_t, z)$ until $t \ge 1$ return zend function

Solves any generic system!

But we still have to decide:

- How to choose the start system *F*₀?
- How to choose a path?

- F_t a polynomial system depending continuously on $t \in [0, 1]$
- z_0 a zero of F_0

function

NumericalContinuation(F_t , z_0)

 $t \leftarrow 0$ $z \leftarrow z_0$ repeat $t \leftarrow t + \Delta t$ $z \leftarrow \text{Newton}(F_t, z)$ until $t \ge 1$ return zend function

Solves any generic system!

But we still have to decide:

- How to choose the start system *F*₀?
- How to choose a path?
- How to set the step size Δt ?

Input size and Bézout bound

n complex variablesn equations of degree dBézout bound d^n input size $N = n \binom{n+d}{n} \ge c^{\min(n,d)}$

quadratic case d=2 $N \sim \frac{1}{2}n^3 \ll 2^d$

medium degree case d = n $N \sim \frac{1}{\sqrt{\pi}} n^{\frac{1}{2}} 4^n \ll n^n$

large degree case $d \gg n$ $N \sim \frac{1}{(n-1)!} d^n$

Renegar (1987)

n complex variables *n* random equations of degree *d* input size *N*

of steps poly(d^n), with high probability starting system $x_1^d = 1, ..., x_n^d = 1$ continuation path $(1 - t)F_0 + tF_1$

previous best \varnothing

Shub, Smale (1994)

n complex variables *n* random equations of degree *d* input size *N*

of steps poly(*N*), with high probability starting system not constructive continuation path $(1 - t)F_0 + tF_1$

previous best $poly(d^n)$

Beltrán, Pardo (2009)

n complex variables *n* random equations of degree *d* input size *N*

of steps $O(nd^{3/2}N)$, on average **starting system** random system, sampled directly with a zero **continuation path** $(1-t)F_0 + tF_1$

previous best $poly(d^n) \rightarrow poly(N)$

Armentano, Beltrán, Bürgisser, Cucker, Shub (2016)

n complex variables *n* random equations of degree *d* input size *N*

of steps $O(nd^{3/2}N^{1/2})$, on average starting system idem Beltrán-Pardo continuation path $(1-t)F_0 + tF_1$

previous best $poly(d^n) \rightarrow poly(N) \rightarrow O(nd^{3/2}N)$

This talk (Lairez 2020)

n complex variables *n* random equations of degree *d* input size *N*

of steps $O(n^3d^2)$, on average

starting system an analogue of Beltrán-Pardo **continuation path** $(f_1 \circ u_1^{1-t}, \dots, f_n \circ u_n^{1-t})$, with $u_i \in U(n+1)$ (rigid motion of each equations)

previous best $poly(d^n) \rightarrow poly(N) \rightarrow O(nd^{3/2}N) \rightarrow O(nd^{3/2}N^{1/2})$

How to improve the complexity?

By making bigger steps!

z = the current zero

 $\rho(F, z) =$ inverse of the radius of the bassin of attraction of z

 $\mu(F, z) = \sup \left[\text{over } F' \sim F \text{ and } F'(z') = 0 \right] \frac{\operatorname{dist}(z, z')}{\|F - F'\|}$

step size heuristic + μ -estimate

Each factor μ contributes $O(N^{1/2})$ in the average # of steps. To go down to poly(n, d), we must improve both.

Conditioning and dimension

What is the ambient space? Is it the space of all polynomials systems?

Conditioning and dimension

What is the ambient space? Is it the space of all polynomials systems?

Rigid paths

Fix polynomials f_1, \ldots, f_n , then ambient space = $\{(f_1 \circ u_1, \ldots, f_n \circ u_n) \mid u_i \in U(n+1)\}$. The average conditioning is poly(n)! Construction of a start system (Beltrán–Pardo analogue)

input f_1, \ldots, f_n , homogeneous polynomials of degree din x_0, \ldots, x_n

- **1** Sample H_1, \ldots, H_n hyperplanes in $\mathbb{P}^n(\mathbb{C})$, uniformly
- **2** Compute $x \in H_1 \cap \cdots \cap H_n$ (unique)
- **3** For $1 \leq i \leq n$,
 - a sample points $p_i \in \mathbb{P}^n(\mathbb{C})$ such that $f_i(p_i) = 0$, uniformly
 - **b** sample $u_i \in U(n+1)$ such that $u_i(x) = p_i$ and $u_i(H_i) = T_{p_i}V(f_i)$, uniformly

output x and $f_1 \circ u_1, \ldots, f_n \circ u_n$

Construction of a start system (Beltrán–Pardo analogue)

input f_1, \ldots, f_n , homogeneous polynomials of degree din x_0, \ldots, x_n

- **1** Sample H_1, \ldots, H_n hyperplanes in $\mathbb{P}^n(\mathbb{C})$, uniformly
- **2** Compute $x \in H_1 \cap \cdots \cap H_n$ (unique)
- **3** For $1 \leq i \leq n$,
 - a sample points $p_i \in \mathbb{P}^n(\mathbb{C})$ such that $f_i(p_i) = 0$, uniformly
 - **b** sample $u_i \in U(n+1)$ such that $u_i(x) = p_i$ and $u_i(H_i) = T_{p_i}V(f_i)$, uniformly

output x and $f_1 \circ u_1, \ldots, f_n \circ u_n$

Theorem

The output $u_1, ..., u_n$ is uniformly distributed in $U(n+1)^n$ (Haar measure), and the zero x is uniformly distributed in $V(f_1 \circ u_1, ..., f_n \circ u_n)$.

Rigid continuation algorithm

input f_1, \ldots, f_n , homogeneous polynomials of degree din x_0, \ldots, x_n

- **1** Compute a start system $f_1 \circ u_1, \ldots, f_n \circ u_n$ with a zero x
- **2** Perform the numerical continuation with $F_t = (f_1 \circ u_1^{1-t}, \dots, f_n \circ u_n^{1-t}).$

big win the parameter space has $O(n^3)$ dimensions, the conditioning is poly(n) on average

total complexity $O(n^6d^4N) = N^{1+o(1)}$ operation on average, quasilinear

The step size

For a *n*-variable polynomial f and a point $z \in \mathbb{C}$,

$$\gamma(f, z) = \sup_{k \ge 2} \left(\|\mathbf{d}_z f\|^{-1} \|\mathbf{d}_z^k f\| \right)^{\frac{1}{k-1}}$$

- Computational difficulties in computing γ . $N^{1+o(1)}$ complexity but not by evaluation.
- Uses the γ -number of a single polynomial, not a system.

Complexity

average gamma $\Gamma(f)^2 = \mathbb{E}_{z \in V(f)} [\gamma(f, z)^2]$ input distribution f_1, \dots, f_n independant random polynomials with unitary invariant distribution

Theorem

On input f_1, \ldots, f_n , rigid continuation terminates after poly $(n) \sum_{i=1}^n \mathbb{E} \left[\Gamma(f_i) \right]$ continuation steps, on average.

- Only requires independance of equations and unitary invariance
- To be useful, need to estimate $\mathbb{E}[\Gamma(f_i)]$

Average gamma for Gaussian polynomials

Theorem

For $f \in \mathbb{C}[x_0, ..., x_n]$ a homogeneous Gaussian random polynomial (a.k.a. Kostlan polynomial) of degree d, $\mathbb{E}[\Gamma(f)] \leq \frac{1}{4}d^3(d+n).$

Average gamma for Gaussian polynomials

Theorem

For $f \in \mathbb{C}[x_0, ..., x_n]$ a homogeneous Gaussian random polynomial (a.k.a. Kostlan polynomial) of degree d, $\mathbb{E}[\Gamma(f)] \leq \frac{1}{4}d^3(d+n).$

Corollary

On input f_1, \ldots, f_n Kostlan polynomials of degree d, the rigid continuation algorithm outputs an approximate zero after poly(n, d) steps on average, and $N^{1+o(1)}$ operations on average.

fact The set of polynomials with low evaluation complexity is unitary invariant.

fact The set of polynomials with low evaluation complexity is unitary invariant.

questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

fact The set of polynomials with low evaluation complexity is unitary invariant.

questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Can we estimate $\Gamma(f)$ on average for a random low-complexity polynomial f?

fact The set of polynomials with low evaluation complexity is unitary invariant.

questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Can we estimate $\Gamma(f)$ on average for a random low-complexity polynomial f?

Can we evaluate $\gamma(f, z)$ efficiently, if we can evaluate f efficiently?

fact The set of polynomials with low evaluation complexity is unitary invariant.

questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Can we estimate $\Gamma(f)$ on average for a random low-complexity polynomial f?

Can we evaluate $\gamma(f, z)$ efficiently, if we can evaluate f efficiently?

Thank you!