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Numerical continuation

Ft a polynomial system
depending continuously
on t ∈ [0,1]

z0 a zero of F0

function
NumericalContinuation(Ft , z0)

t ← 0
z ← z0

repeat
t ← t + ∆t
z ← Newton(Ft , z)

until t Ê 1
return z

end function

Solves any generic system!

But we still have to decide:

• How to choose the start
system F0?

• How to choose a path?
• How to set the step size ∆t ?
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Input size and Bézout bound

n complex variables
n equations of degree d

Bézout bound d n

input size N = n
(n+d

n

)Ê cmin(n,d)

quadratic case d = 2
N ∼ 1

2 n3 ≪ 2d

medium degree case d = n

N ∼ 1p
π

n
1
2 4n ≪ nn

large degree case d ≫ n
N ∼ 1

(n−1)! d
n
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Renegar (1987)

n complex variables
n random equations of degree d
input size N

# of steps poly(d n) , with high probability

starting system xd
1 = 1, . . . , xd

n = 1

continuation path (1− t )F0 + tF1

previous best ∅
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Shub, Smale (1994)

n complex variables
n random equations of degree d
input size N

# of steps poly(N ) , with high probability
starting system not constructive

continuation path (1− t )F0 + tF1

previous best poly(d n)
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Beltrán, Pardo (2009)

n complex variables
n random equations of degree d
input size N

# of steps O(nd 3/2N ) , on average
starting system random system, sampled directly with a zero

continuation path (1− t )F0 + tF1

previous best poly(d n) → poly(N )
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Armentano, Beltrán, Bürgisser, Cucker, Shub (2016)

n complex variables
n random equations of degree d
input size N

# of steps O(nd 3/2N 1/2) , on average
starting system idem Beltrán-Pardo

continuation path (1− t )F0 + tF1

previous best poly(d n) → poly(N ) →O(nd 3/2N )
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This talk (Lairez 2020)

n complex variables
n random equations of degree d
input size N

# of steps O(n3d 2) , on average
starting system an analogue of Beltrán-Pardo

continuation path ( f1 ◦u1−t
1 , . . . , fn ◦u1−t

n ), with ui ∈U (n +1)
(rigid motion of each equations)

previous best poly(d n) → poly(N ) →O(nd 3/2N ) →
O(nd 3/2N 1/2)
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How to improve the complexity?

By making bigger steps!

z = the current zero
ρ(F, z) = inverse of the radius of the bassin of attraction of z

µ(F, z) = sup [over F ′ ∼ F and F ′(z ′) = 0] dist(z,z ′)
∥F−F ′∥

step size heuristic + µ-estimate

1

∆t
≈ ρ(F, z) · ∆z

∆t
⪅ µ(F, z)︸ ︷︷ ︸

loose

· µ(F, z)︸ ︷︷ ︸
sharp

(loose on average)

.

Each factor µ contributes O(N 1/2) in the average # of steps.
To go down to poly(n,d), we must improve both.
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Conditioning and dimension

Rule of thumb

µ(F, z) ≈
on average

(
dimension of ambient space

)c

What is the ambient space?
Is it the space of all polynomials systems?

Rigid paths

Fix polynomials f1, . . . , fn , then
ambient space = {

( f1 ◦u1, . . . , fn ◦un)
∣∣ ui ∈U (n +1)

}
.

The average conditioning is poly(n)!
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Construction of a start system (Beltrán–Pardo analogue)

input f1, . . . , fn , homogeneous polynomials of degree d
in x0, . . . , xn

1 Sample H1, . . . , Hn hyperplanes in Pn(C), uniformly
2 Compute x ∈ H1 ∩·· ·∩Hn (unique)
3 For 1 É i É n,

a sample points pi ∈Pn(C) such that fi (pi ) = 0, uniformly
b sample ui ∈U (n +1) such that ui (x) = pi

and ui (Hi ) = Tpi V ( fi ), uniformly

output x and f1 ◦u1, . . . , fn ◦un

Theorem
The output u1, . . . ,un is uniformly distributed in U (n +1)n (Haar measure),
and the zero x is uniformly distributed in V ( f1 ◦u1, . . . , fn ◦un).
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Rigid continuation algorithm

input f1, . . . , fn , homogeneous polynomials of degree d
in x0, . . . , xn

1 Compute a start system f1 ◦u1, . . . , fn ◦un with a zero x

2 Perform the numerical continuation with
Ft =

(
f1 ◦u1−t

1 , . . . , fn ◦u1−t
n

)
.

big win the parameter space has O(n3) dimensions,
the conditioning is poly(n) on average

total complexity O(n6d 4N ) = N 1+o(1) operation on average, quasilinear
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The step size

For a n-variable polynomial f and a point z ∈C,

γ( f , z) = sup
kÊ2

(
∥dz f ∥−1∥dk

z f ∥
) 1

k−1

∆t ≈ 1

µrigid(F, z)2 ∑
i γ( fi , z)

• Computational difficulties in computing γ.
N 1+o(1) complexity but not by evaluation.

• Uses the γ-number of a single polynomial, not a system.
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Complexity

average gamma Γ( f )2 = Ez∈V ( f )
[
γ( f , z)2

]
input distribution f1, . . . , fn independant random polynomials with

unitary invariant distribution

Theorem
On input f1, . . . , fn , rigid continuation terminates after

poly(n)
n∑

i=1
E
[
Γ( fi )

]
continuation steps, on average.

• Only requires independance of equations and unitary invariance
• To be useful, need to estimate E[Γ( fi )]
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Average gamma for Gaussian polynomials

Theorem
For f ∈C[x0, . . . , xn] a homogeneous Gaussian random polynomial (a.k.a.
Kostlan polynomial) of degree d ,

E
[
Γ( f )

]É 1
4 d 3(d +n).

Corollary

On input f1, . . . , fn Kostlan polynomials of degree d , the rigid continuation
algorithm outputs an approximate zero after poly(n,d) steps on average,
and N 1+o(1) operations on average.
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Low complexity polynomials (teaser for next talk)

fact The set of polynomials with low evaluation complexity is
unitary invariant.

questions Can we endow low-complexity polynomials with a unitary
invariant probability measure?

Can we estimate Γ( f ) on average for a random low-complexity
polynomial f ?

Can we evaluate γ( f , z) efficiently, if we can evaluate f
efficiently?

Thank you!
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