Rigid continuation paths I Quasilinear average complexity for solving polynomial systems

Pierre Lairez

MATHEXP, Université Paris-Saclay, Inria, France
FoCM 2023, Real-number complexity workshop
Paris - June 14, 2023
$\underset{\text { PARIS-SACLAY }}{\text { UnIVer }}$

Numerical continuation
F_{t} a polynomial system
depending continuously
on $t \in[0,1]$
z_{0} a zero of F_{0}

function

NumericalContinuation $\left(F_{t}, z_{0}\right)$
$t \leftarrow 0$
$z \leftarrow z_{0}$
repeat
$t \leftarrow t+\Delta t$
$z \leftarrow \operatorname{Newton}\left(F_{t}, z\right)$
until $t \geqslant 1$
return z
end function
F_{t} a polynomial system
depending continuously
on $t \in[0,1]$
z_{0} a zero of F_{0}
Solves any generic system!

function

NumericalContinuation $\left(F_{t}, z_{0}\right)$
$t \leftarrow 0$
$z \leftarrow z_{0}$
repeat
$t \leftarrow t+\Delta t$
$z \leftarrow \operatorname{Newton}\left(F_{t}, z\right)$
until $t \geqslant 1$
return z
end function
F_{t} a polynomial system
depending continuously
on $t \in[0,1]$
z_{0} a zero of F_{0}
Solves any generic system!

function

NumericalContinuation $\left(F_{t}, z_{0}\right)$
$t \leftarrow 0$
$z \leftarrow z_{0}$
repeat
$t \leftarrow t+\Delta t$
$z \leftarrow \operatorname{Newton}\left(F_{t}, z\right)$
until $t \geqslant 1$
return z
end function
F_{t} a polynomial system
depending continuously
on $t \in[0,1]$
z_{0} a zero of F_{0}
Solves any generic system!

function

NumericalContinuation $\left(F_{t}, z_{0}\right)$
$t \leftarrow 0$
$z \leftarrow z_{0}$
repeat
$t \leftarrow t+\Delta t$
$z \leftarrow \operatorname{Newton}\left(F_{t}, z\right)$
until $t \geqslant 1$
return z
end function
F_{t} a polynomial system
depending continuously
on $t \in[0,1]$
z_{0} a zero of F_{0}

function

NumericalContinuation $\left(F_{t}, z_{0}\right)$
$t \leftarrow 0$
$z \leftarrow z_{0}$
repeat
$t \leftarrow t+\Delta t$
$z \leftarrow \operatorname{Newton}\left(F_{t}, z\right)$
until $t \geqslant 1$
return z
end function

Solves any generic system!
But we still have to decide:

- How to choose the start system F_{0} ?
- How to choose a path?
- How to set the step size Δt ?

Input size and Bézout bound

n complex variables
n equations of degree d

Bézout bound d^{n}
input size $N=n\binom{n+d}{n} \geqslant c^{\min (n, d)}$
quadratic case $d=2$

$$
N \sim \frac{1}{2} n^{3} \ll 2^{d}
$$

medium degree case $d=n$

$$
N \sim \frac{1}{\sqrt{\pi}} n^{\frac{1}{2}} 4^{n} \ll n^{n}
$$

large degree case $d \gg n$

$$
N \sim \frac{1}{(n-1)!} d^{n}
$$

Renegar (1987)

n complex variables
n random equations of degree d
input size N

\# of steps poly $\left(d^{n}\right)$, with high probability
starting system $x_{1}^{d}=1, \ldots, x_{n}^{d}=1$
continuation path $(1-t) F_{0}+t F_{1}$

previous best \varnothing

Shub, Smale (1994)
n complex variables
n random equations of degree d input size N

\# of steps $\operatorname{poly}(N)$, with high probability starting system not constructive continuation path $(1-t) F_{0}+t F_{1}$

previous best poly $\left(d^{n}\right)$

Beltrán, Pardo (2009)

n complex variables
n random equations of degree d input size N

\# of steps $O\left(n d^{3 / 2} N\right)$, on average
 starting system random system, sampled directly with a zero continuation path $(1-t) F_{0}+t F_{1}$

previous best $\operatorname{poly}\left(d^{n}\right) \rightarrow \operatorname{poly}(N)$

Armentano, Beltrán, Bürgisser, Cucker, Shub (2016)
n complex variables
n random equations of degree d input size N
\# of steps $O\left(n d^{3 / 2} N^{1 / 2}\right)$, on average
starting system idem Beltrán-Pardo continuation path $(1-t) F_{0}+t F_{1}$
previous best $\operatorname{poly}\left(d^{n}\right) \rightarrow \operatorname{poly}(N) \rightarrow O\left(n d^{3 / 2} N\right)$

This talk (Lairez 2020)
n complex variables
n random equations of degree d input size N
\# of steps $O\left(n^{3} d^{2}\right)$, on average
starting system an analogue of Beltrán-Pardo
continuation path ($f_{1} \circ u_{1}^{1-t}, \ldots, f_{n} \circ u_{n}^{1-t}$), with $u_{i} \in U(n+1)$ (rigid motion of each equations)
previous best $\operatorname{poly}\left(d^{n}\right) \rightarrow \operatorname{poly}(N) \rightarrow O\left(n d^{3 / 2} N\right) \rightarrow$ $O\left(n d^{3 / 2} N^{1 / 2}\right)$

How to improve the complexity?

By making bigger steps!

$z=$ the current zero
$\rho(F, z)=$ inverse of the radius of the bassin of attraction of z $\mu(F, z)=\sup \left[\right.$ over $F^{\prime} \sim F$ and $\left.F^{\prime}\left(z^{\prime}\right)=0\right] \frac{\operatorname{dist}\left(z, z^{\prime}\right)}{\left\|F-F^{\prime}\right\|}$

step size heuristic + μ-estimate

$$
\frac{1}{\Delta t} \approx \rho(F, z) \cdot \frac{\Delta z}{\Delta t} \lesssim \underbrace{\mu(F, z)}_{\text {loose }} \cdot \underbrace{\mu(F, z)}_{\substack{\text { sharp } \\ \text { losesenverase) }}} .
$$

Each factor μ contributes $O\left(N^{1 / 2}\right)$ in the average \# of steps. To go down to $\operatorname{poly}(n, d)$, we must improve both.

Conditioning and dimension

Rule of thumb

$\mu(F, z) \underset{\text { on average }}{\approx}(\text { dimension of ambient space })^{c}$

What is the ambient space?
Is it the space of all polynomials systems?

Conditioning and dimension

Rule of thumb

$\mu(F, z) \underset{\text { on average }}{\approx}(\text { dimension of ambient space })^{c}$

What is the ambient space?
Is it the space of all polynomials systems?

Rigid paths

Fix polynomials f_{1}, \ldots, f_{n}, then ambient space $=\left\{\left(f_{1} \circ u_{1}, \ldots, f_{n} \circ u_{n}\right) \mid u_{i} \in U(n+1)\right\}$. The average conditioning is poly (n) !

Construction of a start system (Beltrán-Pardo analogue)
input f_{1}, \ldots, f_{n}, homogeneous polynomials of degree d in x_{0}, \ldots, x_{n}

1 Sample H_{1}, \ldots, H_{n} hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$, uniformly
2 Compute $x \in H_{1} \cap \cdots \cap H_{n}$ (unique)
3 For $1 \leqslant i \leqslant n$,
a sample points $p_{i} \in \mathbb{P}^{n}(\mathbb{C})$ such that $f_{i}\left(p_{i}\right)=0$, uniformly
b sample $u_{i} \in U(n+1)$ such that $u_{i}(x)=p_{i}$ and $u_{i}\left(H_{i}\right)=T_{p_{i}} V\left(f_{i}\right)$, uniformly
output x and $f_{1} \circ u_{1}, \ldots, f_{n} \circ u_{n}$

Construction of a start system (Beltrán-Pardo analogue)

input f_{1}, \ldots, f_{n}, homogeneous polynomials of degree d in x_{0}, \ldots, x_{n}

1 Sample H_{1}, \ldots, H_{n} hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$, uniformly
2 Compute $x \in H_{1} \cap \cdots \cap H_{n}$ (unique)
3 For $1 \leqslant i \leqslant n$,
a sample points $p_{i} \in \mathbb{P}^{n}(\mathbb{C})$ such that $f_{i}\left(p_{i}\right)=0$, uniformly
b sample $u_{i} \in U(n+1)$ such that $u_{i}(x)=p_{i}$ and $u_{i}\left(H_{i}\right)=T_{p_{i}} V\left(f_{i}\right)$, uniformly
output x and $f_{1} \circ u_{1}, \ldots, f_{n} \circ u_{n}$

Theorem

The output u_{1}, \ldots, u_{n} is uniformly distributed in $U(n+1)^{n}$ (Haar measure), and the zero x is uniformly distributed in $V\left(f_{1} \circ u_{1}, \ldots, f_{n} \circ u_{n}\right)$.

Rigid continuation algorithm

input f_{1}, \ldots, f_{n}, homogeneous polynomials of degree d in x_{0}, \ldots, x_{n}

1 Compute a start system $f_{1} \circ u_{1}, \ldots, f_{n} \circ u_{n}$ with a zero x
2 Perform the numerical continuation with

$$
F_{t}=\left(f_{1} \circ u_{1}^{1-t}, \ldots, f_{n} \circ u_{n}^{1-t}\right)
$$

big win the parameter space has $O\left(n^{3}\right)$ dimensions, the conditioning is poly (n) on average
total complexity $O\left(n^{6} d^{4} N\right)=N^{1+o(1)}$ operation on average, quasilinear

The step size

For a n-variable polynomial f and a point $z \in \mathbb{C}$,

$$
\gamma(f, z)=\sup _{k \geqslant 2}\left(\left\|\mathrm{~d}_{z} f\right\|^{-1}\left\|\mathrm{~d}_{z}^{k} f\right\|\right)^{\frac{1}{k-1}}
$$

$$
\Delta t \approx \frac{1}{\mu_{\text {rigid }}(F, z)^{2} \sum_{i} \gamma\left(f_{i}, z\right)}
$$

- Computational difficulties in computing γ. $N^{1+o(1)}$ complexity but not by evaluation.
- Uses the γ-number of a single polynomial, not a system.

Complexity

average gamma $\Gamma(f)^{2}=\mathbb{E}_{z \in V(f)}\left[\gamma(f, z)^{2}\right]$
input distribution f_{1}, \ldots, f_{n} independant random polynomials with unitary invariant distribution

Theorem

On input f_{1}, \ldots, f_{n}, rigid continuation terminates after

$$
\operatorname{poly}(n) \sum_{i=1}^{n} \mathbb{E}\left[\Gamma\left(f_{i}\right)\right]
$$

continuation steps, on average.

- Only requires independance of equations and unitary invariance
- To be useful, need to estimate $\mathbb{E}\left[\Gamma\left(f_{i}\right)\right]$

Average gamma for Gaussian polynomials

Theorem

For $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ a homogeneous Gaussian random polynomial (a.k.a. Kostlan polynomial) of degree d,

$$
\mathbb{E}[\Gamma(f)] \leqslant \frac{1}{4} d^{3}(d+n)
$$

Average gamma for Gaussian polynomials

Theorem

For $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ a homogeneous Gaussian random polynomial (a.k.a. Kostlan polynomial) of degree d,

$$
\mathbb{E}[\Gamma(f)] \leqslant \frac{1}{4} d^{3}(d+n)
$$

Corollary

On input f_{1}, \ldots, f_{n} Kostlan polynomials of degree d, the rigid continuation algorithm outputs an approximate zero after poly (n, d) steps on average, and $N^{1+o(1)}$ operations on average.

Low complexity polynomials (teaser for next talk)

fact The set of polynomials with low evaluation complexity is unitary invariant.

Low complexity polynomials (teaser for next talk)

fact The set of polynomials with low evaluation complexity is unitary invariant.
questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Low complexity polynomials (teaser for next talk)

fact The set of polynomials with low evaluation complexity is unitary invariant.
questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Can we estimate $\Gamma(f)$ on average for a random low-complexity polynomial f ?

Low complexity polynomials (teaser for next talk)

fact The set of polynomials with low evaluation complexity is unitary invariant.
questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Can we estimate $\Gamma(f)$ on average for a random low-complexity polynomial f ?

Can we evaluate $\gamma(f, z)$ efficiently, if we can evaluate f efficiently?

Low complexity polynomials (teaser for next talk)

fact The set of polynomials with low evaluation complexity is unitary invariant.
questions Can we endow low-complexity polynomials with a unitary invariant probability measure?

Can we estimate $\Gamma(f)$ on average for a random low-complexity polynomial f ?

Can we evaluate $\gamma(f, z)$ efficiently, if we can evaluate f efficiently?

Thank you!

