The 22 periods of a quartic surface

Pierre Lairez
MATHEXP, Université Paris-Saclay, Inria, France
joint work with E. Pichon-Pharabod, E. Sertöz, and P. Vanhove
February 12, 2024
MPI-MiS Leipzig / Positive geometry in particle physics and cosmology
université
PARIS-SACLAY

High precision quadrature

uncovers fine invariants

of algebraic varieties.

of algebraic varieties.

High precision quadrature

uncovers fine invariants

of algebraic varieties. uses symbolic-numeric algorithms
invariants that characterizes nontriviality among an ocean of generic triviality

1. The 2 periods of an elliptic curve
2. Picard-Fuchs equations
3. The 22 periods of a quartic surface
4. How to compute periods faster?

The endomorphism ring of an elliptic curve

$$
\text { Let } X=\left\{y^{2}=x^{3}+a x+b\right\} \subset \mathbb{P}^{2}(\mathbb{C}) \text { be an elliptic curve. }
$$

The endomorphism ring of an elliptic curve

Let $X=\left\{y^{2}=x^{3}+a x+b\right\} \subset \mathbb{P}^{2}(\mathbb{C})$ be an elliptic curve.

* X has the structure of an abelian group.
* $\operatorname{End}(X)$ (holomorphic group endomorphism of X) is a ring.
* $\operatorname{End}(X)$ contains at least all the maps $p \in X \mapsto n p$ with $n \in \mathbb{Z}$.

The endomorphism ring of an elliptic curve

Let $X=\left\{y^{2}=x^{3}+a x+b\right\} \subset \mathbb{P}^{2}(\mathbb{C})$ be an elliptic curve.

* X has the structure of an abelian group.
* $\operatorname{End}(X)$ (holomorphic group endomorphism of X) is a ring.
* End (X) contains at least all the maps $p \in X \mapsto n p$ with $n \in \mathbb{Z}$.

Problem

Is $\operatorname{End}(X)$ nontrivial $(\neq \mathbb{Z})$?

Most elliptic curves does not have a nontrivial endomorphism.

Algebraic approach

* The problem does not reduce directly to polynomial system solving. (The set of elliptic curves with nontrivial endomorphisms is dense.)

Algebraic approach

* The problem does not reduce directly to polynomial system solving. (The set of elliptic curves with nontrivial endomorphisms is dense.)
* Main approach by reduction modulo p (e.g. Cremona \& Sutherland, 2023).

Analytic approach

An elliptic curve is a torus.

* $X \simeq \mathbb{C} / \Lambda, \quad$ with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$
* $\operatorname{End}(X) \simeq\{z \in \mathbb{C} \mid z \Lambda=\Lambda\}$

Analytic approach

An elliptic curve is a torus.

* $X \simeq \mathbb{C} / \Lambda, \quad$ with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$
* $\operatorname{End}(X) \simeq\{z \in \mathbb{C} \mid z \Lambda=\Lambda\}$

Proposition

$\operatorname{End}(X)$ is nontrivial if and only if the equations

$$
\left\{\begin{array}{l}
z \alpha_{1}=a \alpha_{1}+b \alpha_{2} \\
z \alpha_{2}=c \alpha_{1}+d \alpha_{2}
\end{array}\right.
$$

has a nontrivial solution, $z \in \mathbb{C}$ and $a, b, c, d \in \mathbb{Z}$.

Analytic approach

An elliptic curve is a torus.

* $X \simeq \mathbb{C} / \Lambda, \quad$ with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$
* $\operatorname{End}(X) \simeq\{z \in \mathbb{C} \mid z \Lambda=\Lambda\}$

Proposition

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
b \alpha_{2}^{2}+(a-d) \alpha_{1} \alpha_{2}-c \alpha_{1}^{2}=0
$$

has a nontrivial solution, $a, b, c, d \in \mathbb{Z}$.

Analytic approach

An elliptic curve is a torus.

* $X \simeq \mathbb{C} / \Lambda, \quad$ with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$
* $\operatorname{End}(X) \simeq\{z \in \mathbb{C} \mid z \Lambda=\Lambda\}$

Proposition

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
b \alpha_{2}^{2}+(a-d) \alpha_{1} \alpha_{2}-c \alpha_{1}^{2}=0
$$

has a nontrivial solution, $a, b, c, d \in \mathbb{Z}$.

Analytic approach

An elliptic curve is a torus.

* $X \simeq \mathbb{C} / \Lambda, \quad$ with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$
* $\operatorname{End}(X) \simeq\{z \in \mathbb{C} \mid z \Lambda=\Lambda\}$

Proposition

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
b \alpha_{2}^{2}+(a-d) \alpha_{1} \alpha_{2}-c \alpha_{1}^{2}=0
$$

has a nontrivial solution, $a, b, c, d \in \mathbb{Z}$.
8 We can find integer relations between complex numbers given only high precision approximations using the Lenstra-Lenstra-Lovász algorithm.

Computation of the periods

$$
\alpha_{i}=\int_{\gamma_{i}} \omega_{X}
$$

Computation of the periods

が管Demo！

High precision quadrature

uncovers
 the endomorphism ring

of elliptic curves.

High precision quadrature

uncovers the endomorphism ring

of elliptic curves

heuristic algorithm, only provides a safe bet. No known way to trick the heuristic.

* Possibility to certify a posteriori (Costa et al., 2019), at the cost of simplicity of course

1. The 2 periods of an elliptic curve
2. Picard-Fuchs equations
3. The 22 periods of a quartic surface
4. How to compute periods faster?

Periods

$$
\alpha=\int_{\gamma} F\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

* F is a rational function
* γ is a complex n-cycle on which F is continuous

8 contains information about the geometry of the denominator of F

Periods

$$
\alpha=\int_{\mathcal{Y}} F\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

* F is a rational function
* γ is a complex n-cycle on which F is continuous

8 contains information about the geometry of the denominator of F
A often not computable exactly, need hundreds or thousands of digits

Periods

$$
\alpha=\int_{\gamma} F\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

* F is a rational function
* γ is a complex n-cycle on which F is continuous

8 contains information about the geometry of the denominator of F
A often not computable exactly, need hundreds or thousands of digits
A in this regime, direct numerical recipes do not work well

Relative periods

$$
\alpha(t)=\int_{\gamma} F_{t}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

* F_{t} is a rational function of t and x_{1}, \ldots, x_{n}
* γ is a complex n-cycle on which F_{t} is continuous $(t \in U)$

8 contains information about the geometry of the denominator of F_{t}, as a familiy depending on t
8 computable exactly up to finitely many constants

Relative periods

$$
\alpha(t)=\int_{\mathcal{Y}} F_{t}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

* F_{t} is a rational function of t and x_{1}, \ldots, x_{n}
* γ is a complex n-cycle on which F_{t} is continuous $(t \in U)$

8 contains information about the geometry of the denominator of F_{t}, as a familiy depending on t
\& computable exactly up to finitely many constants

Picard-Fuchs equations

There are polynomials $p_{0}(t), \ldots, p_{r}(t) \neq 0$ such that

$$
p_{r}(t) \alpha^{(r)}(t)+\cdots+p_{1}(t) \alpha^{\prime}(t)+p_{0}(t) \alpha(t)=0 .
$$

Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions

Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions
* power series expansion

Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions
* power series expansion
* equality testing, given differential equations and initial condtions

Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions
* power series expansion
* equality testing, given differential equations and initial condtions
* numerical analytic continuation with certified precision (Chudnovsky \& Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

```
sage: from ore_algebra import *
sage: dop = (z^2+1)*Dz^2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])
    [0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])
    [3.9269908169872415 +/- 4.81e-17] + [+/- 4.63e-21]*I
```


Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions
* power series expansion
* equality testing, given differential equations and initial condtions
* numerical analytic continuation with certified precision (Chudnovsky \& Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

```
sage: from ore_algebra import *
sage: dop = (z^2+1)*Dz^2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])
    [0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])
    [3.9269908169872415 +/- 4.81e-17] + [+/- 4.63e-21]*I
```

* numerical integration

Computation of Picard-Fuchs equations

$$
E(t) \triangleq \oint \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x=\frac{1}{2 \pi i} \oint \overbrace{\frac{1}{1-\frac{1-t^{2} x^{2}}{\left(1-x^{2}\right) y^{2}}}}^{F(t, x, y)} \mathrm{d} x \mathrm{~d} y
$$

Theorem (Euler, 1733)

$$
\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0
$$

Computation of Picard-Fuchs equations

$$
E(t) \triangleq \oint \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x=\frac{1}{2 \pi i} \oint \overbrace{\frac{1}{1-\frac{1-t^{2} x^{2}}{\left(1-x^{2}\right) y^{2}}}}^{F(t, x, y)} \mathrm{d} x \mathrm{~d} y
$$

Theorem (Euler, 1733)

$$
\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0
$$

Proof. Observe that

$$
\begin{aligned}
& \left(t-t^{3}\right) \frac{\partial^{2} F}{\partial t^{2}}+\left(1-t^{2}\right) \frac{\partial F}{\partial t}+t F= \\
& \frac{\partial}{\partial x}\left(-\frac{t\left(-1-x+x^{2}+x^{3}\right) y^{2}\left(-3+2 x+y^{2}+x^{2}\left(-2+3 t^{2}-y^{2}\right)\right)}{\left(-1+y^{2}+x^{2}\left(t^{2}-y^{2}\right)\right)^{2}}\right)+\frac{\partial}{\partial y}\left(\frac{2 t\left(-1+t^{2}\right) x\left(1+x^{3}\right) y^{3}}{\left(-1+y^{2}+x^{2}\left(t^{2}-y^{2}\right)\right)^{2}}\right)
\end{aligned}
$$

(Chyzak, 2000; Koutschan, 2010; Lairez, 2016)

1. The 2 periods of an elliptic curve
2. Picard-Fuchs equations
3. The 22 periods of a quartic surface
4. How to compute periods faster?

Curves on a surface

Let $f \in \mathbb{C}[w, x, y, z]_{4} \simeq \mathbb{C}^{35}$ such that $X=V(f) \subseteq \mathbb{P}^{3}$ is smooth.

* X contains algebraic curves.
* Trivial curves are those obtained by intersecting X with another surface.

Problem

Does X contain a nontrivial curve?

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_{4} \backslash$ (countable union of algebraic hypersurfaces). Then X_{f} contains only trivial curves.

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_{4} \backslash$ (countable union of algebraic hypersurfaces). Then X_{f} contains only trivial curves.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_{4}$ such that X_{f} contains only trivial curves.

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_{4} \backslash$ (countable union of algebraic hypersurfaces). Then X_{f} contains only trivial curves.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_{4}$ such that X_{f} contains only trivial curves.

Theorem (van Luijk, 2007)

Let $f=2 w^{4}+w^{3} z+w^{2} x^{2}+2 w^{2} x y+2 w^{2} x z-w^{2} y^{2}+w^{2} z^{2}+\cdots$
Then X_{f} contains only trivial curves.

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_{4} \backslash$ (countable union of algebraic hypersurfaces). Then X_{f} contains only trivial curves.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_{4}$ such that X_{f} contains only trivial curves.

Theorem (van Luijk, 2007)

Let $f=2 w^{4}+w^{3} z+w^{2} x^{2}+2 w^{2} x y+2 w^{2} x z-w^{2} y^{2}+w^{2} z^{2}+\cdots$
Then X_{f} contains only trivial curves.

Theorem (Lairez \& Sertöz, 2019)

Let $f=w x^{3}+w^{3} y+x z^{3}+y^{4}+z^{4}$. Then X_{f} contains only trivial curves.

Algebraic approach

Reduction to countably many polynomial systems.

$$
\{\text { lines in } X\}=\left\{(u, v) \in\left(\mathbb{C}^{4}\right)^{2} \mid u \wedge v \neq 0 \text { and } \forall t, f(u+t v)=0\right\} / \sim
$$

$$
\{\text { conic curves in } X\}=\left\{(u, v, w) \in\left(\mathbb{C}^{4}\right)^{3} \mid\right.
$$

$$
\left.u \wedge v \wedge w \neq 0 \text { and } \forall t, f\left(u+t v+t^{2} w\right)=0\right\} / \sim
$$

$\{$ twisted cubics in $X\}=\left\{\left(u_{0}, \ldots, u_{3}\right) \in\left(\mathbb{C}^{4}\right)^{4} \mid\right.$

$$
\left.u_{0} \wedge \cdots \wedge u_{3} \neq 0 \text { and } \forall t, f\left(\sum_{i=0}^{3} u_{i} t^{i}\right)=0\right\} / \sim
$$

$\{$ deg. 4 gen. 1 c. in $X\}=\left\{\left(g_{1}, g_{2}, h_{1}, h_{2}\right) \in\left(\mathbb{C}[\mathbf{x}]_{2}\right)^{4} \mid\right.$
g_{1} and g_{2} generic and $\left.f=h_{1} g_{1}+h_{2} g_{2}\right\} / \sim$

Periods of a quartic surface

Let $f \in \mathbb{C}[w, x, y, z]_{4} \simeq \mathbb{C}^{35}$ such that $X=V(f) \subseteq \mathbb{P}^{3}$ is smooth.
Let $\gamma_{1}, \ldots, \gamma_{22}$ be a basis of $H_{2}(X, \mathbb{Z})$, and let $\omega_{X} \in \Omega^{2}(X)$ be the unique holomorphic 2-form on X.
The periods of X are the complex numbers $\alpha_{1}, \ldots, \alpha_{22}$ defined - up to scaling and choice of basis - by

$$
\alpha_{i} \stackrel{\text { def }}{=} \oint_{\gamma_{i}} \omega_{X}=\frac{1}{2 \pi i} \oint_{\text {Tube }\left(\gamma_{i}\right)} \frac{\mathrm{d} x \mathrm{dyd} z}{\left.f\right|_{w=1}}
$$

Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice of $H_{2}(X, \mathbb{Z})$ generated by the classes of algebraic curves on X.

Theorem (Lefschetz, 1924)

$$
\operatorname{NS}(X)=\left\{\gamma \in H_{2}(X, \mathbb{Z}) \mid \int_{\gamma} \omega_{X}=0\right\}
$$

In coordinates, $\operatorname{NS}(X) \simeq\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}$. This is the lattice of integer relations between the periods.

The NS group determine the possible degree and genus of all the algebraic curves lying on X.

The Fermat hypersurface

Let $f=w^{4}+x^{4}+y^{4}+z^{4}$. The vector of periods is
$\left(\begin{array}{lllllllllllllllllllllll}1 & i & i & i & i & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -i & -i & -i & -i & -i & -i & 0\end{array}\right)$

$$
\operatorname{rank} \mathrm{NS}\left(X_{f}\right)=22-\operatorname{dim} \text { Vect }_{\mathbb{Q}}\{\text { periods }\}=20 .
$$

Indeed there are 48 lines on X_{f} spanning a sublattice of $H_{2}(X, \mathbb{Z})$ of rank 20.

Numerical computation of periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

Numerical computation of periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).

Numerical computation of periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).

Numerical computation of periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

Numerical computation of periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

Numerical computation of periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

A Afflicted by the size of the PF equation (generically order 21 and degree ≥ 1000), the algorithm does not always terminate in reasonnable time.

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}
$$

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.
2. Let $L=\left\{(\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_{i}\left[10^{1000} \alpha_{i}\right]=x+y \sqrt{-1}\right\}$,
this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.
2. Let $L=\left\{(\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_{i}\left[10^{1000} \alpha_{i}\right]=x+y \sqrt{-1}\right\}$,
this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.
3. Compute a LLL-reduced basis of L

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.
2. Let $L=\left\{(\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_{i}\left[10^{1000} \alpha_{i}\right]=x+y \sqrt{-1}\right\}$,
this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.
3. Compute a LLL-reduced basis of L
4. Output the short vectors

What is a short vector?

Let $f=3 x^{3} z-2 x^{2} y^{2}+x z^{3}-8 y^{4}-8 w^{4}$.
With 100 digits of precision on the periods, here is a LLL-reduced basis of the lattice L (last 5 columns omitted).

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
3 There is a rare numerical coincidence.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
3 There is a rare numerical coincidence.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
3 There is a rare numerical coincidence.
I do not know how to deal with 2, there are quartic surfaces with NS group minimaly generated by arbitrary large elements (Mori, 1984).
But we can do something about 3 .

Separation of periods

Let $f \in \mathbb{Q}[w, x, y, z]_{4}$ and let $\alpha_{1}, \ldots, \alpha_{22}$ be the periods.

Theorem (Lairez \& Sertöz, 2022)

There exist a computable constant $c>0$ depending only on f and the choice of the homology basis, such that for any $\mathbf{u} \in \mathbb{Z}^{22}$,

$$
\left|u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}\right|<2^{-c^{\max _{i}\left|u_{i}\right|^{9}}} \Rightarrow u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0
$$

1. The 2 periods of an elliptic curve
2. Picard-Fuchs equations
3. The 22 periods of a quartic surface
4. How to compute periods faster?

Direct integration?

* Sertöz' algorithm is very indirect.
* Can we directly compute

$$
\alpha_{i}=\oint_{y_{i}} \omega_{X} ?
$$

Direct integration?

* Sertöz' algorithm is very indirect.
* Can we directly compute

$$
\alpha_{i}=\oint_{y_{i}} \omega_{X} ?
$$

* That's a double integral.

Direct integration?

* Sertöz' algorithm is very indirect.
* Can we directly compute

$$
\alpha_{i}=\oint_{\gamma_{i}} \omega_{X} ?
$$

* That's a double integral.
* How do we get γ_{i} ?

How do we compute a basis of the singular homology group $H_{2}(X)$?

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_{4}$ (generic coordinates)
* $X \triangleq V(f) \subseteq \mathbb{P}^{3}(\mathbb{C})$
* $X_{t} \triangleq X \cap\left\{\frac{w}{x}=t\right\}$ (hyperplane section)

8 Consider the surface as a family of curves

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_{4}$ (generic coordinates)
* $X \triangleq V(f) \subseteq \mathbb{P}^{3}(\mathbb{C})$
* $X_{t} \triangleq X \cap\left\{\frac{w}{x}=t\right\}$ (hyperplane section)

8 Consider the surface as a family of curves

Main idea

$$
\int_{V} \omega_{X}=\oint_{\text {loop in } \mathrm{C}} \underbrace{\oint_{\text {cycle in } X_{t}} \frac{\omega_{X}}{\mathrm{~d} t}}_{\text {h satisfies a Picard-Fuchs equation! }} .
$$

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_{4}$ (generic coordinates)
* $X \triangleq V(f) \subseteq \mathbb{P}^{3}(\mathbb{C})$
* $X_{t} \triangleq X \cap\left\{\frac{w}{x}=t\right\}$ (hyperplane section)

8 Consider the surface as a family of curves

Main idea

$$
\int_{\gamma} \omega_{X}=\oint_{\text {loop in } \mathrm{C}} \mathrm{~d} t \underbrace{\oint_{\text {cycle in } X_{t}} \frac{\omega_{X}}{\mathrm{~d} t}}_{\text {satisfies a Picard-Fuchs equation! }} .
$$

礶 To be implemented, requires a concrete description of γ. We need to compute $H_{2}(X, \mathbb{Z})$

The homology of curves (Tretkoff \& Tretkoff, 1984)

* X a complex algebraic curve
* $p: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ nonconstant map
* $\Sigma \triangleq\{$ critical values $\}$
* Given a loop in $\mathbb{P}^{1}(\mathbb{C}) \backslash \Sigma$, starting from a base point b, and a point in the fiber $p^{-1}(b)$, the loop lifts in X uniquely.
别苑 Compute loops in $\mathbb{P}^{1}(\mathbb{C})$ that lift in a basis of $H_{1}(X, \mathbb{Z})$
(Costa et al., 2019; Deconinck \& van Hoeij, 2001)

Principle of the method

1. compute pieces of paths in X by lifting loops
2. connect them to form loops

Homology of surfaces

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_{1}\left(X_{t}\right)$ is dual to the monodromy action on the solution of the Picard-Fuchs equation of the periods of X_{t}.

4 We can connect hosepipes by integrating a Picard-Fuchs differential equation.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_{1}\left(X_{t}\right)$ is dual to the monodromy action on the solution of the Picard-Fuchs equation of the periods of X_{t}.

4 We can connect hosepipes by integrating a Picard-Fuchs differential equation.

프픔

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_{1}\left(X_{t}\right)$ is dual to the monodromy action on the solution of the Picard-Fuchs equation of the periods of X_{t}.

4 We can connect hosepipes by integrating a Picard-Fuchs differential equation.

프플

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Thank you!

References I

Chudnovsky, D. V., \& Chudnovsky, G. V. (1990). Computer algebra in the service of mathematical physics and number theory. In Computers in mathematics (Stanford, CA, 1986) (pp. 109-232, Vol. 125). Dekker.
Chyzak, F. (2000). An extension of Zeilberger's fast algorithm to general holonomic functions. Discrete Math., 217(1-3), 115-134. https://doi.org/10/drkkn6
Costa, E., Mascot, N., Sijsling, J., \& Voight, J. (2019). Rigorous computation of the endomorphism ring of a Jacobian. Math. Comput., 88(317), 1303-1339. https://doi.org/10/ggck8g
Cremona, J. E., \& Sutherland, A. V. (2023). Computing the endomorphism ring of an elliptic curve over a number field. arXiv: 2301.11169. https://doi.org/10.48550/arXiv.2301.11169

References II

Deconinck, B., \& van Hoeij, M. (2001). Computing Riemann matrices of algebraic curves. Phys. Nonlinear Phenom., 152-153, 28-46. https://doi.org/10/c95vnb
Euler, L. (1733). Specimen de constructione aequationum differentialium sine indeterminatarum separatione. Comment. Acad. Sci. Petropolitanae, 6, 168-174.
Koutschan, C. (2010). A fast approach to creative telescoping. Math. Comput. Sci., 4(2-3), 259-266. https://doi.org/10/bhb6sv
Lairez, P. (2016). Computing periods of rational integrals. Math. Comput., 85(300), 1719-1752. https://doi.org/10/ggck95
Lairez, P., \& Sertöz, E. C. (2019). A numerical transcendental method in algebraic geometry: Computation of Picard groups and related invariants. SIAM J. Appl. Algebra Geom., 3(4), 559-584. https://doi.org/10/ggck6n

References III

Lairez, P., \& Sertöz, E. C. (2022). Separation of periods of quartic surfaces. Algebra Number Theory
To appear.
Lefschetz, S. (1924). L'analysis situs et la géométrie algébrique. Gauthier-Villars.
Mezzarobba, M. (2010). NumGFun: A package for numerical and analytic computation with D-finite functions. Proc. ISSAC 2010, 139-146. https://doi.org/10/cg7w72
Mori, S. (1984). On degrees and genera of curves on smooth quartic surfaces in \mathbb{P}^{3}. Nagoya Math. J., 96, 127-132. https://doi.org/10/grk9rj
Pham, F. (1965). Formules de Picard-Lefschetz généralisées et ramification des intégrales. B. Soc. Math. Fr., 79, 333-367. https://doi.org/10/ggck9f

References IV

Picard, É. (1902). Sur les périodes des intégrales doubles et sur une classe d’équations différentielles linéaires. Comptes Rendus Hebd. Séances Académie Sci., 134, 69-71. http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f539.image
Sertöz, E. C. (2019). Computing periods of hypersurfaces. Math. Comput., 88(320), 2987-3022. https://doi.org/10/ggck7t
Terasoma, T. (1985). Complete intersections with middle Picard number 1 defined over \mathbb{Q}. Math. Z., 189(2), 289-296. https://doi.org/10/bhf8gv
Tretkoff, C. L., \& Tretkoff, M. D. (1984). Combinatorial group theory, Riemann surfaces and differential equations. In Contributions to group theory (pp. 467-519, Vol. 33). AMS. https://doi.org/10.1090/conm/033/767125
van der Hoeven, J. (1999). Fast evaluation of holonomic functions. Theoret. Comput. Sci., 210(1), 199-215. https://doi.org/10/b95scc

References V

van Luijk, R. (2007). K3 surfaces with Picard number one and infinitely many rational points. Algebra Number Theory, 1(1), 1-15. https://doi.org/10/dx3cmr

