The 22 periods of a quartic surface

Pierre Lairez

MATHEXP, Université Paris-Saclay, Inria, France

joint work with E. Pichon-Pharabod, E. Sertöz, and P. Vanhove

February 12, 2024 MPI-MiS Leipzig / Positive geometry in particle physics and cosmology

1. The 2 periods of an elliptic curve

2. Picard–Fuchs equations

3. The 22 periods of a quartic surface

4. How to compute periods faster?

The endomorphism ring of an elliptic curve

Let
$$X = \{y^2 = x^3 + ax + b\} \subset \mathbb{P}^2(\mathbb{C})$$
 be an elliptic curve.

The endomorphism ring of an elliptic curve

Let $X = \{y^2 = x^3 + ax + b\} \subset \mathbb{P}^2(\mathbb{C})$ be an elliptic curve.

- * *X* has the structure of an abelian group.
- * End(X) (holomorphic group endomorphism of X) is a ring.
- * End(*X*) contains at least all the maps $p \in X \mapsto np$ with $n \in \mathbb{Z}$.

The endomorphism ring of an elliptic curve

Let $X = \{y^2 = x^3 + ax + b\} \subset \mathbb{P}^2(\mathbb{C})$ be an elliptic curve.

* *X* has the structure of an abelian group.

- * End(X) (holomorphic group endomorphism of X) is a ring.
- * End(*X*) contains at least all the maps $p \in X \mapsto np$ with $n \in \mathbb{Z}$.

Problem

Is $\operatorname{End}(X)$ nontrivial ($\neq \mathbb{Z}$)?

Most elliptic curves does not have a nontrivial endomorphism.

Algebraic approach

* The problem does *not* reduce directly to polynomial system solving. (The set of elliptic curves with nontrivial endomorphisms is dense.)

Algebraic approach

- * The problem does *not* reduce directly to polynomial system solving. (The set of elliptic curves with nontrivial endomorphisms is dense.)
- * Main approach by reduction modulo *p* (e.g. Cremona & Sutherland, 2023).

An elliptic curve is a torus.

* $X \simeq \mathbb{C}/\Lambda$, with $\Lambda = \mathbb{Z} \alpha_1 + \mathbb{Z} \alpha_2$

*
$$\operatorname{End}(X) \simeq \{z \in \mathbb{C} \mid z\Lambda = \Lambda\}$$

An elliptic curve is a torus.

* $X \simeq \mathbb{C}/\Lambda$, with $\Lambda = \mathbb{Z} \alpha_1 + \mathbb{Z} \alpha_2$

*
$$\operatorname{End}(X) \simeq \{z \in \mathbb{C} \mid z\Lambda = \Lambda\}$$

Proposition

End(X) is nontrivial if and only if the equations

$$z \alpha_1 = a \alpha_1 + b \alpha_2 z \alpha_2 = c \alpha_1 + d \alpha_2$$

has a nontrivial solution, $z \in \mathbb{C}$ and $a, b, c, d \in \mathbb{Z}$.

An elliptic curve is a torus.

* $X \simeq \mathbb{C}/\Lambda$, with $\Lambda = \mathbb{Z} \alpha_1 + \mathbb{Z} \alpha_2$

*
$$\operatorname{End}(X) \simeq \{z \in \mathbb{C} \mid z\Lambda = \Lambda\}$$

Proposition

End(X) is nontrivial if and only if the equation

$$b \alpha_2^2 + (a - d) \alpha_1 \alpha_2 - c \alpha_1^2 = 0.$$

has a nontrivial solution, $a, b, c, d \in \mathbb{Z}$.

An elliptic curve is a torus.

* $X \simeq \mathbb{C}/\Lambda$, with $\Lambda = \mathbb{Z} \alpha_1 + \mathbb{Z} \alpha_2$

*
$$\operatorname{End}(X) \simeq \{z \in \mathbb{C} \mid z\Lambda = \Lambda\}$$

Proposition

End(X) is nontrivial if and only if the equation

$$b \alpha_2^2 + (a - d) \alpha_1 \alpha_2 - c \alpha_1^2 = 0.$$

has a nontrivial solution, $a, b, c, d \in \mathbb{Z}$.

An elliptic curve is a torus.

* $X \simeq \mathbb{C}/\Lambda$, with $\Lambda = \mathbb{Z} \alpha_1 + \mathbb{Z} \alpha_2$

*
$$\operatorname{End}(X) \simeq \{z \in \mathbb{C} \mid z\Lambda = \Lambda\}$$

Proposition

End(X) is nontrivial if and only if the equation

$$b \alpha_2^2 + (a - d) \alpha_1 \alpha_2 - c \alpha_1^2 = 0.$$

has a nontrivial solution, $a, b, c, d \in \mathbb{Z}$.

We can find integer relations between complex numbers given only high precision approximations using the Lenstra–Lenstra–Lovász algorithm.

Computation of the periods

$$\alpha_i = \int_{\gamma_i} \omega_X$$

Computation of the periods

Contraction Demo!

* Possibility to certify *a posteriori* (Costa et al., 2019), at the cost of simplicity of course

1. The 2 periods of an elliptic curve

2. Picard–Fuchs equations

3. The 22 periods of a quartic surface

4. How to compute periods faster?

Periods

$$\alpha = \int_{\gamma} F(x_1,\ldots,x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F is a rational function
- * γ is a complex *n*-cycle on which *F* is continuous
- \mathcal{G} contains information about the geometry of the denominator of F

Periods

$$\alpha = \int_{\gamma} F(x_1,\ldots,x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous

contains information about the geometry of the denominator of F
often not computable exactly, need hundreds or thousands of digits

Periods

$$\alpha = \int_{\gamma} F(x_1,\ldots,x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous

contains information about the geometry of the denominator of F
often not computable exactly, need hundreds or thousands of digits
in this regime, direct numerical recipes do not work well

Relative periods

$$\alpha(t) = \int_{\gamma} F_t(x_1, \ldots, x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F_t is a rational function of t and x_1, \ldots, x_n
- * γ is a complex *n*-cycle on which F_t is continuous ($t \in U$)
- \Im contains information about the geometry of the denominator of F_t , as a familiy depending on t
- Somputable exactly up to finitely many constants

Relative periods

$$\alpha(t) = \int_{\gamma} F_t(x_1, \ldots, x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

* F_t is a rational function of t and x_1, \ldots, x_n

- * γ is a complex *n*-cycle on which F_t is continuous ($t \in U$)
- \bigcirc contains information about the geometry of the denominator of F_t , as a familiy depending on t
- 💡 computable exactly up to finitely many constants

Picard–Fuchs equations

There are polynomials $p_0(t), \ldots, p_r(t) \neq 0$ such that

 $p_r(t)\alpha^{(r)}(t)+\cdots+p_1(t)\alpha'(t)+p_0(t)\alpha(t)=0.$

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion
- * equality testing, given differential equations and initial condtions

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion
- * equality testing, given differential equations and initial condtions
- numerical analytic continuation with certified precision (Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- power series expansion
- * equality testing, given differential equations and initial condtions
- numerical analytic continuation with certified precision (Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

* numerical integration

Computation of Picard–Fuchs equations

$$E(t) \triangleq \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} dx = \frac{1}{2\pi i} \oint \underbrace{\frac{F(t, x, y)}{1}}_{1 - \frac{1 - t^2 x^2}{(1 - x^2)y^2}} dx dy$$

Theorem (Euler, 1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$

Computation of Picard–Fuchs equations

$$E(t) \triangleq \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} dx = \frac{1}{2\pi i} \oint \underbrace{\frac{F(t, x, y)}{1}}_{1 - \frac{1 - t^2 x^2}{(1 - x^2)y^2}} dx dy$$

Theorem (Euler, 1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$

Proof. Observe that

$$(t - t^3) \frac{\partial^2 F}{\partial t^2} + (1 - t^2) \frac{\partial F}{\partial t} + tF = \frac{\partial}{\partial x} \left(-\frac{t(-1 - x + x^2 + x^3)y^2(-3 + 2x + y^2 + x^2(-2 + 3t^2 - y^2))}{(-1 + y^2 + x^2(t^2 - y^2))^2} \right) + \frac{\partial}{\partial y} \left(\frac{2t(-1 + t^2)x(1 + x^3)y^3}{(-1 + y^2 + x^2(t^2 - y^2))^2} \right) = C$$

(Chyzak, 2000; Koutschan, 2010; Lairez, 2016)

1. The 2 periods of an elliptic curve

2. Picard–Fuchs equations

3. The 22 periods of a quartic surface

4. How to compute periods faster?

Curves on a surface

Let $f \in \mathbb{C}[w, x, y, z]_4 \simeq \mathbb{C}^{35}$ such that $X = V(f) \subseteq \mathbb{P}^3$ is smooth.

- * X contains algebraic curves.
- * *Trivial* curves are those obtained by intersecting *X* with another surface.

Problem

Does X contain a nontrivial curve?

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then X_f contains only trivial curves.

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then X_f contains only trivial curves.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that X_f contains only trivial curves.

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then X_f contains only trivial curves.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that X_f contains only trivial curves.

Theorem (van Luijk, 2007)

Let $f = 2w^4 + w^3z + w^2x^2 + 2w^2xy + 2w^2xz - w^2y^2 + w^2z^2 + \cdots$ Then X_f contains only trivial curves.

The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then X_f contains only trivial curves.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that X_f contains only trivial curves.

Theorem (van Luijk, 2007)

Let $f = 2w^4 + w^3z + w^2x^2 + 2w^2xy + 2w^2xz - w^2y^2 + w^2z^2 + \cdots$ Then X_f contains only trivial curves.

Theorem (Lairez & Sertöz, 2019)

Let $f = wx^3 + w^3y + xz^3 + y^4 + z^4$. Then X_f contains only trivial curves.

Algebraic approach

Reduction to countably many polynomial systems.

{lines in *X*} = { $(u, v) \in (\mathbb{C}^4)^2$ | $u \land v \neq 0$ and $\forall t, f(u + tv) = 0$ } /~ {conic curves in *X*} = { $(u, v, w) \in (\mathbb{C}^4)^3$ | $u \wedge v \wedge w \neq 0$ and $\forall t, f(u + tv + t^2w) = 0 \}/\sim$ {twisted cubics in *X*} = { $(u_0, \ldots, u_3) \in (\mathbb{C}^4)^4$ | $u_0 \wedge \cdots \wedge u_3 \neq 0 \text{ and } \forall t, f\left(\sum_{i=0}^3 u_i t^i\right) = 0 \big\} / \sim$ {deg. 4 gen. 1 c. in *X*} = { $(g_1, g_2, h_1, h_2) \in (\mathbb{C}[\mathbf{x}]_2)^4$ g_1 and g_2 generic and $f = h_1g_1 + h_2g_2$ /~

Periods of a quartic surface

Let $f \in \mathbb{C}[w, x, y, z]_4 \simeq \mathbb{C}^{35}$ such that $X = V(f) \subseteq \mathbb{P}^3$ is smooth.

Let $\gamma_1, \ldots, \gamma_{22}$ be a basis of $H_2(X, \mathbb{Z})$, and let $\omega_X \in \Omega^2(X)$ be the unique holomorphic 2-form on *X*.

The *periods* of *X* are the complex numbers $\alpha_1, \ldots, \alpha_{22}$ defined – up to scaling and choice of basis – by

$$\alpha_i \stackrel{\text{def}}{=} \oint_{\gamma_i} \omega_X = \frac{1}{2\pi i} \oint_{\text{Tube}(\gamma_i)} \frac{dxdydz}{f|_{w=1}}$$

Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice of $H_2(X, \mathbb{Z})$ generated by the classes of algebraic curves on X.

Theorem (Lefschetz, 1924)

$$\mathrm{NS}(X) = \left\{ \gamma \in H_2(X, \mathbb{Z}) \ \middle| \ \int_{\gamma} \omega_X = 0 \right\}$$

In coordinates, $NS(X) \simeq \{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1\alpha_1 + \cdots + u_{22}\alpha_{22} = 0 \}$. This is the lattice of *integer relations between the periods*.

The NS group determine the possible degree and genus of all the algebraic curves lying on *X*.

The Fermat hypersurface

rank $NS(X_f) = 22 - \dim Vect_{\mathbb{Q}} \{periods\} = 20.$

Indeed there are 48 lines on X_f spanning a sublattice of $H_2(X, \mathbb{Z})$ of rank 20.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

Afflicted by the size of the PF equation (generically order 21 and degree \geq 1000), the algorithm does not always terminate in reasonnable time.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm: 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_i [10^{1000} \alpha_i] = x + y\sqrt{-1} \right\},\$

this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_i [10^{1000} \alpha_i] = x + y\sqrt{-1} \right\}$, this is a rank 22 lattice. Short vectors are expected to come from
 - integer relations between the periods.
- 3. Compute a LLL-reduced basis of L

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_i [10^{1000} \alpha_i] = x + y\sqrt{-1} \right\}$,

this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

- 3. Compute a LLL-reduced basis of *L*
- 4. Output the *short* vectors

What is a short vector?

Let $f = 3x^3z - 2x^2y^2 + xz^3 - 8y^4 - 8w^4$. With 100 digits of precision on the periods, here is a LLL-reduced basis of the lattice *L* (last 5 columns omitted).

ſ	0 0	0 0	0 0 0 0	0 0	0 0	0	0 0	~	~	~	•	•	~	-16690832	12117	790591	136527	•••	16690832121	17905	0 913652734		9370196411 9370196411	000001	LIG1 ,007]
	1	0	0-1	0	0	0	1	1	0	0	0	0	0	-1465118	20001	1001	100/1/	00	844784290	11007	02210/020		3659802286	00001	01010000		ł
t	0	0	0 0	1	0	0	0	0	0	0	0	0	0	-3371677			10001		2241101519			-	7431169559				1
Ł	0	0	0 0	0	0	0	0	0	0	0	0	1.	-	3570314					7680663376			-	9405259947				t.
Ł	0	0	0 0	0	1	0	0	1	0	1	0	0	0						-1260182482			-	5350958119				Ł
Ł	0 -	-1	1 0	0	0	0	0	1	0	0	-1	0	0	1043354	31129	990864	158251	33 -	-2316162845	85318	363570849)	5027304085	859624	11025306		Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	0	0 -	-1	-6491595	86430	020317	736926	32	7707848679	67071	100945665	5-2	1520144697	379993	15531272		Ł
L	0	0	0 0	0	0	0	0	0	1	1	0	0	0	2777479	83934	179769	908352	05	-286257398	73061	372966384	1 –	6387321794	083584	79990097		L
Ł	1	0	0 0	0	0	0	0	0	0	0	1	0	0	1465118	29901	19544	136717	90	-844784290	44587	822467823	3	3659802286	906301	04919296		Ł
L	0	0	0 0	0	0	0	0	0	0	0	-1	1	1	2508991	46775	540664	159367	61	5756150300	11256	031395007	7 -	1148300124	261040	78247291		L
L	0	1	0 0	0	0	0	1	0	0	-1	0	0	0	1043354	31129	90864	158251	33 -	-2316162845	85318	363570849)	5027304085	859624	11025307		L
L	0	0	0 0	0	0.	-1	0	0	0	0	0	1.	-1	-1406449	50443	345458	369194	39 -	-3930582062	12350	140614235	5	4299330808	339302	08291557		L
L	0	0	0 0	0	0	0	0	1	0	0	0	0	0	5949330	70600	014095	509615	61	2731561038	20314	126589096	5 -	6718459918	484982	23316874		L
L	0	0	0 0	1	0	0 -	-1	0	0	0	0	0	0	3371677	20252	267831	02581	77 -	-2241101519	73403	946221421	Ĺ '	7431169559	364872	79910552		L
L	0	0	0 0	0	0	0	0	0	0	0	0	0	1	-8243171	54838	399668	319846	21	1771197631	97465	887754938	3 -	2367923009	246437	40702432		L
L	0	0	0 0	0	0	0	1	0	0	1	0	0	0	3793441	19023	396510	081048	33	-769722964	32673	405118395	5	6063667760	411549	73804541		1
L	õ	ñ	0 0	ő	1	õ	Ô	õ	õ	Ô	ő	õ	õ						1260182482				5350958119				L
Ł	ñ	ñ	0 0	ñ	ñ	1	ñ	ň	ň	ň	ñ	0.	~						-3930582062				4299330808				ł.
Ł	0	0	1 0	0	0	0	0	0	0	0	0	0	0	1100110	00110	10 100			2316162845	10000	110011001	•	42555550000 5027304085				Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	0	1	0	1010001			100101		-9506231614	00010	000070010	· ·	002/001000	00001	11010007		Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	0	1	0	-4072030	,0000		00000		844784290		000010010		2556290651		10012/02	• • • •	ł
Ł	0	0	0 1	0	0	0	0	0	1	0	1	0	0	1100110		1001	100717		011/01200	1007	000000000000000000000000000000000000000		0000001100	000001	010101000	• • •	ł
L	0	0	0 0	0	0	0	0	U	1	0.	-1	č	~	2777173	0000				286257398			-	6387321794				
L	0	0	0 0	0	0	0	U	0	0	0	1	0	0	-690252	35930	167784	127451	00	4571029143	43586	863258366	5	6606523468	775867	07848817		L

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

Separation of periods

Let $f \in \mathbb{Q}[w, x, y, z]_4$ and let $\alpha_1, \dots, \alpha_{22}$ be the periods.

Theorem (Lairez & Sertöz, 2022)

There exist a computable constant c > 0 depending only on f and the choice of the homology basis, such that for any $\mathbf{u} \in \mathbb{Z}^{22}$,

$$|u_1\alpha_1 + \cdots + u_{22}\alpha_{22}| < 2^{-c^{\max_i |u_i|^9}} \Rightarrow u_1\alpha_1 + \cdots + u_{22}\alpha_{22} = 0.$$

1. The 2 periods of an elliptic curve

2. Picard–Fuchs equations

3. The 22 periods of a quartic surface

4. How to compute periods faster?

Direct integration?

- * Sertöz' algorithm is very indirect.
- * Can we directly compute

$$\alpha_i = \oint_{\gamma_i} \omega_X?$$

Direct integration?

- * Sertöz' algorithm is very indirect.
- * Can we directly compute

$$\alpha_i = \oint_{\gamma_i} \omega_X?$$

* That's a *double* integral.

Direct integration?

- * Sertöz' algorithm is very indirect.
- * Can we directly compute

$$\alpha_i = \oint_{\gamma_i} \omega_X?$$

- * That's a *double* integral.
- * How do we get γ_i ? How do we compute a basis of the singular homology group $H_2(X)$?

Double integrals via Fubini

- * $f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)
- $\ast \ X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$
- * $X_t \triangleq X \cap \left\{\frac{w}{x} = t\right\}$ (hyperplane section)
- **?** Consider the surface as a family of curves

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)

$$* \ X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$$

- * $X_t \triangleq X \cap \left\{ \frac{w}{x} = t \right\}$ (hyperplane section)
- **?** Consider the surface as a family of curves

Main idea

$$\int_{\gamma} \omega_X = \oint_{\text{loop in } \mathbb{C}} \underbrace{\oint_{\text{cycle in } X_t} \frac{\omega_X}{dt}}_{\text{satisfies a Picard-Fuchs equation!}}.$$

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)

$$* \ X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$$

- * $X_t \triangleq X \cap \left\{\frac{w}{x} = t\right\}$ (hyperplane section)
- **?** Consider the surface as a family of curves

Main idea

$$\int_{\gamma} \omega_X = \oint_{\text{loop in } \mathbb{C}} \underbrace{\oint_{\text{cycle in } X_t} \frac{\omega_X}{dt}}_{\text{cycle in } X_t}.$$
f satisfies a Picard–Fuchs equation!

Construction To be implemented, requires a concrete description of γ . We need to *compute* $H_2(X, \mathbb{Z})$

The homology of curves (Tretkoff & Tretkoff, 1984)

- * X a complex algebraic curve
- * $p: X \to \mathbb{P}^1(\mathbb{C})$ nonconstant map
- * $\Sigma \triangleq \{ \text{critical values} \}$
- * Given a loop in $\mathbb{P}^1(\mathbb{C}) \setminus \Sigma$, starting from a base point *b*, and a point in the fiber $p^{-1}(b)$, the loop lifts in *X* uniquely.
- Compute loops in $\mathbb{P}^1(\mathbb{C})$ that lift in a basis of $H_1(X, \mathbb{Z})$

(Costa et al., 2019; Deconinck & van Hoeij, 2001)

Principle of the method

- 1. compute pieces of paths in *X* by lifting loops
- 2. connect them to form loops

Homology of surfaces

	dimension 1	dimension 2
monodromy action lift in <i>X</i> computable with	permute the fiber path path tracking	linear action on $H_1(X)$ <i>hosepipe</i> numerical ODE solving
p ⁻¹ (b)	y y y	
<i>b</i> .	. C b	

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

XXX

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

XXX

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Thank you!

References I

Chudnovsky, D. V., & Chudnovsky, G. V. (1990). Computer algebra in the service of mathematical physics and number theory. In *Computers in mathematics (Stanford, CA, 1986)* (pp. 109–232, Vol. 125). Dekker.

- Chyzak, F. (2000). An extension of Zeilberger's fast algorithm to general holonomic functions. *Discrete Math.*, *217*(1-3), 115–134. https://doi.org/10/drkkn6
- Costa, E., Mascot, N., Sijsling, J., & Voight, J. (2019). Rigorous computation of the endomorphism ring of a Jacobian. *Math. Comput.*, 88(317), 1303–1339. https://doi.org/10/ggck8g
- Cremona, J. E., & Sutherland, A. V. (2023). *Computing the endomorphism ring of an elliptic curve over a number field*. arXiv: 2301.11169. https://doi.org/10.48550/arXiv.2301.11169

References II

Deconinck, B., & van Hoeij, M. (2001). Computing Riemann matrices of algebraic curves. *Phys. Nonlinear Phenom.*, *152–153*, 28–46. https://doi.org/10/c95vnb

Euler, L. (1733). Specimen de constructione aequationum differentialium sine indeterminatarum separatione. *Comment. Acad. Sci. Petropolitanae, 6,* 168–174.

Koutschan, C. (2010). A fast approach to creative telescoping. *Math. Comput. Sci.*, 4(2-3), 259–266. https://doi.org/10/bhb6sv Lairez, P. (2016). Computing periods of rational integrals. *Math. Comput.*,

85(300), 1719–1752. https://doi.org/10/ggck95

Lairez, P., & Sertöz, E. C. (2019). A numerical transcendental method in algebraic geometry: Computation of Picard groups and related invariants. *SIAM J. Appl. Algebra Geom.*, *3*(4), 559–584. https://doi.org/10/ggck6n

References III

Lairez, P., & Sertöz, E. C. (2022). Separation of periods of quartic surfaces. *Algebra Number Theory* To appear.

- Lefschetz, S. (1924). *L'analysis situs et la géométrie algébrique*. Gauthier-Villars.
- Mezzarobba, M. (2010). NumGFun: A package for numerical and analytic computation with D-finite functions. *Proc. ISSAC 2010*, 139–146. https://doi.org/10/cg7w72
- Mori, S. (1984). On degrees and genera of curves on smooth quartic surfaces in P³. Nagoya Math. J., 96, 127–132. https://doi.org/10/grk9rj
- Pham, F. (1965). Formules de Picard-Lefschetz généralisées et ramification des intégrales. *B. Soc. Math. Fr.*, 79, 333–367. https://doi.org/10/ggck9f

References IV

Picard, É. (1902). Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires. Comptes Rendus Hebd. Séances Académie Sci., 134, 69–71. http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f539.image Sertöz, E. C. (2019). Computing periods of hypersurfaces. Math. Comput., 88(320), 2987-3022. https://doi.org/10/ggck7t Terasoma, T. (1985). Complete intersections with middle Picard number 1 defined over Q. Math. Z., 189(2), 289–296. https://doi.org/10/bhf8gv Tretkoff, C. L., & Tretkoff, M. D. (1984). Combinatorial group theory, Riemann surfaces and differential equations. In Contributions to group theory (pp. 467–519, Vol. 33). AMS. https://doi.org/10.1090/conm/033/767125 van der Hoeven, J. (1999). Fast evaluation of holonomic functions. *Theoret. Comput. Sci.*, 210(1), 199–215. https://doi.org/10/b95scc

van Luijk, R. (2007). K3 surfaces with Picard number one and infinitely many rational points. *Algebra Number Theory*, *1*(1), 1–15. https://doi.org/10/dx3cmr