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Introduction

Computing Periods: The Smooth Case

Period Matrices. Let X be a compact Kähler manifold. Famously, the com-
plex geometry of X induces the functorial Hodge decompostion on the purely
topological cohomology groups of X:

Hk(X, Z)⊗C ∼= Hk(X, C) =
k⊕

i=0

Hi,k−i(X, C),

with this decomposition satisfying the constraints given in definition 1.1.1.2.
One sais that Hk(X, Z) carries a pure Hodge structure of weight k. The main goal
of this thesis is to compute how this decomposition relates to the lattice

Hn(X, Z) ⊂ Hn(X, C)

in the special case where X ⊂ Pn+1 is a smooth complex projective hypersur-
face. This relationship is described by a so-called period matrix associated to X
(see definition 1.1.2.4). We remark that, in this case, the middle cohomology
group Hn(X, Z) carries the only ”interesting” Hodge structure associated to
X in a sense made precise in Remark 1.1.1.5.

In fact, we will treat this problem for the primitive cohomology PHn(X, C)
respectively the primitive homology PHn(X, Z) of X. This is the subspace of
the (co)homology of X which ”does not come from the surrounding projective
space”. PHn(X, Z) also carries a Hodge structure as above and can be thought
of as the ”non-trivial” part of the (co)homology of X.

More precisely we want to solve the following

Problem 0.0.0.1. Let X ⊂ Pn+1 be a smooth complex projective hypersurface,
cut out by a homogenous polynomial fX with rational coefficients. Denote by
〈·, ·〉 the canonical dual pairing between PHn(X, C) and PHn(X, C). Compute
a period matrix of X:

P(X) :=
(
〈γj, ωi〉

)
1≤i,j≤m

where

5



Introduction 6

• γ1, ..., γm is a basis of PHn(X, Z).

• ω1, ..., ωm is a basis of PHn(X, C) such that for all p there exists an mp

such that ω1, ..., ωmp span Fp :=
⊕

k≥p PHk,n−k(X, C).

The values 〈γj, ωi〉 are called periods associated to X.

Before we briefly introduce our method to solve this problem, we discuss
two applications of the invariant P(X).

The Picard Group of a Smooth Projective Hypersurface. Suppose that X ⊂
P3, i.e. that X is a surface. Let Pic(X) be the group of Cartier divisors of
X modulo linear equivalence. Any curve in X naturally defines a cycle in
H2(X, Z) and one can prove [Lef50] that the thus constructed map

Pic(X) ↪→ H2(X, Z)

is injective. Moreover, Lefschetz characterized the algebraic cycles in H2(X, Z)
as follows ([Mov20], [Lef50])

Theorem 0.0.0.2 (Lefschetz (1, 1)-Theorem). A cycle γ ∈ H2(X, Z) lies in Pic(X)
if and only if

〈γ, ω〉 = 0

for every ω ∈ H2,0(X, C).

Computation of the Picard group respectively the Picard rank of X is an
active area of research (see e.g. [EJ11], [Cha14], [LS19]), especially for smooth
projective hypersurfaces of degree 4. We remark that if ω ∈ H2,0(X, C) then
ω ∈ PH2(X, C). In the case when X is cut out by a degree 4 polynomial, i.e.
X is a K3-surface, we have

dim H2,0(X, C) = 1

and hence for a generator ω of H2,0(X, C)

rk(Pic(X)) = rkZ{γ ∈ H2(X, Z) | 〈γ, ω〉 = 0}
= rkZ{γ ∈ PH2(X, Z) | 〈γ, ω〉 = 0}+ 1.

Thus if one is able to compute the (possibly transcendental) periods of ω to ar-
bitrary precision, one can compute the Picard rank of X with ”high certainty”.
This approach to the computation of the Picard rank of a smooth projective
hypersurface has been investigated in more detail in [LS19].

Torelli Theorems. The Torelli theorems (see e.g. [Voi20], [Don83]) assert that
for almost all cases, a smooth projective hypersurface is uniquely determined
by its periods. The classical Torelli theorem states this for curves and has been
extended to, for example, K3-surfaces:
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Theorem 0.0.0.3. Two complex K3-surfaces X and Y are isomorphic if and only if
there is an isomorphism H2(X, Z) ∼= H2(Y, Z) preserving both the cup product and
the Hodge decomposition.

We remark that, by definition of the primitive cohomology, this is the case
if and only if there exists an isomorphism PH2(X, Z) ∼= PH2(Y, Z) preserving
both the cup product and the Hodge filtration.

This demonstrates the power of period matrices as a complex-geometric
invariant. The central difficulty in solving problem 0.0.0.1 lies in recovering
the underlying lattice structure of PHn(X, C) since it is a purely topological
invariant.

Using Pencils of Hypersurfaces to Compute Periods. Due to the power of
the period matrix as a complex-geometric invariant, numerous attempts have
been made to compute it (see e.g. [TT84], [EJ18] and [Ser19]).

Let us now briefly discuss the main idea of our method to solve prob-
lem 0.0.0.1. In [Ser19], the author used a deformation-theoretic approach to
compute a period matrix for a smooth projective hypersurface X: The main
idea is to deform the given hypersurface X into another smooth hypersurface
Y, for which a period matrix is known, and to then use analytic continu-
ation to track the resulting change of periods. We vary this approach based
on an idea presented in [ES06]. We deform the given hypersurface X into
any hypersurface Y and track the change of periods of X when we ”walk
around” the singular values of this deformation, i.e. we compute the mono-
dromy action on PHn(X, C) resulting from this deformation. The theory of
how this monodromy action is determined by the geometry of the situation
is known as Picard-Lefschetz theory. We then want to abuse the fact that this
monodromy action must necessarily preserve the integral primitive homo-
logy PHn(X, Z). In [HKS20], the authors combined the approach presented
in [Ser19] with neural networks to find deformations into smooth hypersur-
faces Y with known period matrix for which computationally tracking the
resulting change of periods would be as quick as possible. We demonstrate
the potential of our strategy by discussing an example given in [HKS20] in sec-
tion 3.3.3 for which the authors of [HKS20] were not able to compute a period
matrix in any reasonable time. We managed to compute a period matrix for
this example in roughly three and a half hours.

Let us now introduce our approach to solve problem 0.0.0.1 in slightly
more detail:

1. Suppose that fX ∈ Q[z0, ..., zn+1]. Choose any other fY ∈ Q[z0, ..., zn+1]
with deg( fY) = deg( fX) such that fY defines a hypersurface different
from X. Put X and Y := { fY = 0} in a pencil of hypersurfaces by declaring

ft := t fX + (1− t) fY, t ∈ C;
Xt := { ft = 0}.

2. Let π : X → P1 be the fibration associated to the pencil. Compute
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sections ω1(t), ..., ωm(t) of the cohomology bundle of the smooth part π
of π such that ωi := ωi(1) form a basis of PHn(X, C) as above.

3. π will have finitely many singular values. Let S ⊂ C be the set of
singular values of π. Compute the monodromy action of π1(P

1 − S, 1)
on PHn(X, C) in terms of the basis ω∗1 , ..., ω∗m of PHn(X, C), represented
computationally by the standard unit vectors.

Here we choose paths in π1(P
1 − S, 1) such that each path encloses ex-

actly one element s in S.

4. Since the monodromy action π1(1, P1 − S) → GL(PHn(X, C)) arises
purely topologically and preserves intersection products, the monodromy
representation must factor over SL (PHn(X, Z)). We want to use this fact
to now compute a monodromy invariant lattice consisting of integral vec-
tors, i.e. vectors of the form

(〈γ, ω1〉, ..., 〈γ, ωm〉)ᵀ , γ ∈ PHn(X, Z).

Let us now discuss how each of the chapters in this thesis pertains to these
steps.

In step 2 we use the classical technique of Griffiths residues and Griffiths-
Dwork reduction ([Gri69], [Dwo62]) , see section 1.2. This allows one to repres-
ent elements in PHn(X, C) explicitly as differential forms on Pn+1 with poles
on X modulo certain exact forms. These forms in turn are given as elements
of a vector space of polynomials. The pole order of such a differential form
turns out to be compatible with the Hodge filtration on PHn(X, C) (see lemma
1.2.1.3). Griffiths-Dwork reduction allows one to decide when the residues of
two such forms in PHn(X, C) are linearly independent.

This technique is again used in step 3: For each of the sections ωi(t) we
compute a differential operator Di ∈ C(t)

[
d
dt

]
in t called the Picard-Fuchs

operator of ωi(t). This operator has the property that it annihilates ωi(t) and is
minimal in order with respect to this property. This means in particular (see
lemma 1.1.5.2) that its solution space at t = 1 is spanned by the functions

〈ω∗j , ωi(t)〉, j = 1, ..., m. (1)

where ωj denotes the multi-valued section of the primitive cohomology bundle
of π given by parallel transport of ωj(1). Then we can numerically compute
the analytic continuation of each of these functions along our chosen paths
in π1(P

1 − S, 1) using code presented in [Mez16] and relate this easily to the
monodromy action on PHn(X, C) (see section 1.1.6).

We ideally want to decide when a monodromy operator T at a given sin-
gular value s can be used to compute an integral vector before computing T.
This is because computation of the Picard-Fuchs equations and computation
of analytic continuation for them are by far the most computationally expens-
ive steps in our method. Specifically, we want to know whether there exists a
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polynomial q ∈ Z[x] such that

rk(q(T)) = 1.

If rk(q(T)) = 1 then

v = (〈δ, ωi〉)m
i=1 ; δ ∈ PHn(X, C)

does not lie in the kernel of q(T), q(T)v is a scalar multiple of an integral
vector, i.e.

w := q(T)v = λ (〈γ, ωi〉)m
i=1

for some γ ∈ PHn(X, Z) and unknown λ ∈ C. Once we have obtained such
a w we can apply more monodromy matrices to w until we have computed
a basis of PHn(X, Z). These monodromy matrices may have to be computed
using other pencils of hypersurfaces through X, in which case we make sure
to carry over our basis basis of primitive cohomology ω1, ..., ωm. The result
is a period matrix P(X) for X, with the entire basis ω1, ..., ωm changed to
λω1, ..., λωm.

In order to decide whether such a q exists we want to gain information
about the Jordan normal form of T before computing T.

If we are in the surface case, i.e. X ⊂ P3 and if the singular fiber Xs
carries only isolated singular points, we will discuss in chapter 2 how T almost
entirely depends only on the types of these singular points in a sense made
precise in chapter 2. In some cases, we will then know enough about the
Jordan normal form of T by computing certain invariants of Xs coming from
singularity theory (see sections 2.1.1 and 2.1.4), even before computing the
Picard-Fuchs equations.

If we are not in the surface case or if singularity theory does not suffice
to predict the Jordan normal form of T to a sufficient extent, we can use
the follwing: Even though T arises purely topologically, the theory of Hodge
structures and variations of Hodge structures (see section 1.1) puts restrictions
on the Jordan normal form of T and connects the Jordan normal form of T
to the local theory of the Picard-Fuchs equations at the singular points of π.
Using this, we will then be able to predict the Jordan normal form of T almost
completely after computing a few Picard-Fuchs equations (see theorem 3.1.3.5)
but still before doing any analytic continuation.

For a detailed discussion of our method see chapter 3.

Computing Periods: The Singular Case

Period Matrices in the Singular Case. The second contribution of this thesis
is as follows: Suppose that X is again a projective hypersurface, this time
singular. Deligne [Del75] showed that in this case the cohomology group
Hn(X, Z) carries a functorial mixed Hodge structure (see definition 1.1.3.1). This
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can be thought of as a Hodge structure with several parts of different weight
in contrast to a pure Hodge structure which only contains elements of one
fixed weight. Such a mixed Hodge structure can be parametrized by a period
matrix P(X) analogous to the smooth case together with the data of a few
matrices (Wk)

n
k=0 with entries in Q each giving the part ”of weight k” of this

Hodge structure by computing P(X)Wk.

Using Pencils of Hypersurfaces in the Singular Case. In the case dim(Sing(X)) =
0 we provide a method to compute both P(X) and (Wk)

n
k=1 based on previous

unpublished work by the supervisor of this thesis:

1. We again put X in a pencil of hypersurfaces as above by declaring

ft := (1− t) fX + t fY

with fX and fY defined as above where Y := { fY = 0} is smooth.

2. The primitive cohomology bundle of the smooth part of the associated
fibration π : X→ P1 defines a so-called variation of Hodge structures (see
definition 1.1.4.1). This induces a mixed Hodge structure over t = 0,
called the Schmid limit mixed Hodge structure (see section 1.1.8). If one
is given a period matrix P(Y) of Y one can compute this mixed Hodge
structure as a datum (P∞, (Wk)

2n−1
k=0 ) as above (see section 3.2).

3. One can then use a simple compatibility between the Schmid limit mixed
Hodge structure and the mixed Hodge structure on Hn(X, Z) [Ste76] to
compute the mixed Hodge structure on Hn(X, Z) (see section 2.1.5).

As far as we know, we are the first to give a way to compute periods
matrices in the singular case.



Chapter 1

Preliminaries

We first recall some of the basic definitions and concepts of Hodge theory.
Our main sources of exposition are [Voi02], [Huy05], [PS08] and [Gri68].

1.1 Hodge Structures and Periods

1.1.1. Hodge Structures. Let X ⊂ Pn+1 be a smooth complex projective hy-
persurface. Let Hn(X, Z) be the n-th singular cohomology group of X with
coefficients in Z. As X is in particular a Kähler manifold, Hodge theory yields
a decomposition

Hn(X, Z)⊗C ∼= Hn
dR(X, C) =

n⊕
k=0

Hn−k,k(X, C).

satisfying certain constraints (see definition 1.1.1.2).

Remark 1.1.1.1. Here, the space Hn−k,k(X, C) can be thought of as differential
forms ω with ”n− k dz’s and k dz’s” which satisfy ∆ω = 0 where ∆ = ∂∂∗ +
∂∗∂ is the Laplace operator and ∂ is the holomorphic part of the canonical
differential d on the differential forms on X.

This decomposition is a complex-geometric invariant of X whereas the
cohomology groups of X themselves just come ”from the topology” of X. The
geometric occurence of this decomposition motivates the following definition:

Definition 1.1.1.2. A pure Hodge structure (HS) of weight n is a tuple H :=
(HZ, n, {Hp,q}) where

1. HZ is a free Z-module of finite rank.

2. n is an integer, called the weight of H.

3. {Hp,q} is a collection of subspaces of HC := HZ ⊗C satisfying

11
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(a) Hp,q = 0 unless p + q = n.

(b) Hp,q = Hq,p.

(c) HC =
⊕

p+q=n Hp,q

In the situation of definition 1.1.1.2 we will sometimes say that HZ carries
a pure HS of weight n.

Definition 1.1.1.3. A Hodge filtration of weight k on a free Z-module HZ of
finite rank is a collection of subspaces {Fp} of HC, defining a finite decreasing
filtration of HC satisfying

HC = Fp ⊕ Fn−p+1 ∀p ∈ Z.

The two definitions turn out two be equivalent, i.e. any pure HS of weight
k defines a Hodge filtration via

Fp =
⊕
r≥p

Hr,n−r

and a Hodge filtration determines a pure HS via

Hp,q = Fp ∩ Fq

respectively.

Definition 1.1.1.4. A morphism of pure HS’s is a morphism of the underlying
Z-modules such that its C-linear extension preserves the Hodge filtration.

Remark 1.1.1.5. Let X be as above. As the Hodge decomposition on the co-
homology groups of X is functorial with respect to holomorphic maps, i.e.
the induced maps on cohomology are morphisms of pure Hodge structures,
the only ”interesting” cohomological complex-geometric invariant of X is the
pure Hodge structure on the middle cohomology Hn(X, C) of X. This is since
we have Hk(Pn+1, Z) ∼= Hk(X, Z) for all k 6= n via the canonical inclusion
X ⊂ Pn+1 by the Lefschetz theorem on hyperplane sections and the hard Lef-
schetz theorem. Hence we will only be interested in computing the pure HS
on the middle cohomology of X.

1.1.2. Primitive Cohomology and Polarization. In the case of a smooth pro-
jective hypersurface X, the so-called middle primitive cohomology is the part
that ”does not come from the surrounding projective space”. It is a subspace
of Hn(X, Z) that may be explicitly represented as a vector space of polynomi-
als called Griffiths residues (see section 1.2), thus making it available for com-
putational manipulation. Additionally, it carries a certain bilinear form which
restricts the monodromy on the primitive cohomology of X if X is contained in
a family as a fiber. In more detail: The restriction of the standard Kähler class
κ of Pn+1 determines a Kähler class κX on X. Let L : Hn(X, Z)→ Hn+2(X, Z),
L(ω) = κX ∧ω, be the corresponding Lefschetz operator. We define
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Definition 1.1.2.1. The middle primitive cohomology on X is given by

PHn(X, Z) = ker(L).

Remark 1.1.2.2. Dually, one may of course define the middle primitive homo-
logy PHn(X, Z) of X.

Since Hk(Pn+1, Z) = 0 for odd k we have Hn(X, Z) = PHn(X, Z) if n is
odd. Moreover

Lemma 1.1.2.3 ([Ser19]). If n is even there exists an algebraic class v ∈ Hn/2,n/2(X, Z)
such that Hn(X, Z) = PHn(X, Z)⊕Z〈v〉.

Thus PHn(X, Z) also carries a pure HS by restricting the HS on Hn(X, Z).
The HS on PHn(X, Z) is the HS that we will compute in the end.

We will computationally represent this HS as follows: Denote by 〈·, ·〉 :
V ×V∗ → C the canonical pairing between a complex vector space V and its
dual V∗. One may represent the Hodge structure on PHn(X, Z) by a period
matrix and thus make such a Hodge structure representable by a computer:

Definition 1.1.2.4. Fix a basis γ1, ..., γm of PHn(X, Z) and a basis ω1, ..., ωm
of PHn(X, C) such that for all p there exists an mp such that ω1, ..., ωmp span
Fp Hn(X, C). Then we call the matrix

P(X) :=
(
〈γj, ωi〉

)
1≤i,j≤m

a period matrix associated to X. For any ω ∈ PHn(X, C) and γ ∈ PHn(X, Z) we
call values of the form 〈γ, ω〉 periods of X. Additionally, we call (〈γj, ω〉)m

j=1 a
period vector of ω ∈ PHn(X, C) and (〈γ, ωi〉)m

i=1 an integral vector for ω1, ..., ωm.

Additionally, as mentioned above, one has a certain bilinear form on the
middle primitive cohomology of X which restricts the monodromy on families
containing X as a fiber: The definition

Q(ω1, ω2) := (−1)n(n−1)/2〈[X], ω1 ∧ω2〉;
ω1, ω2 ∈ PHn(X, C)

turns the pure HS on PHn(X, Z) into a polarized Hodge structure defined as
follows:

Definition 1.1.2.5. A pure HS (HZ, n, {Hp,q}) is called polarized if a non-
degenerate bilinear form Q on HZ is fixed and its extension to HC satisfies
the following properties

1. Q(Fp, Fn−p+1) = 0 for all p.

2. The form given by ∑p+q=n ip−qQ|Hp,q is a hermitian form on HC where
i ∈ C is the imaginary unit.
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1.1.3. Mixed Hodge Structures. Deligne [Del75] showed that if X is a project-
ive (but not necessarily smooth) variety then the integral cohomology groups
of X carry functorial mixed Hodge structures:

Definition 1.1.3.1. A mixed Hodge structure is a tuple H := (HZ, F•, W•) where

1. HZ is a free Z-module of finite rank.

2. W• is a finite increasing filtration of HQ := HZ ⊗Q, called the weight
filtration of H.

3. F• is a finite decreasing filtation of HC := HZ⊗C, called the Hodge filtra-
tion of H, such that the filtration induced by F• on the complexification
of

GrW
l HQ := Wl/Wl−1

satisfies the above properties of a Hodge filtration of a pure HS of weight
l.

Remark 1.1.3.2. If X is again projective, then the MHS on Hk(X, Z) satisfies
Wl = 0 unless l ∈ N0 ∩ [0, k] and Fp = 0 unless p ∈ N0 ∩ [0, k]. Additionally,
one has that Wk = Hk(X, Q) and F0Hk(X, C) = Hk(X, C).

Analogously to morphisms of pure HS’s we have morphisms of MHS’s:

Definition 1.1.3.3. A morphism of MHS’s is given by a morphism of the un-
derlying Z-modules such that its Q-linear respectively C-linear extension pre-
serves the weight respectively the Hodge filtration.

1.1.4. Variations of Hodge structures. Suppose now that we are given a fam-
ily of projective varieties, for example a family of projective hypersurfaces via
the equation

µ f (z) + νg(z) = 0, [µ : ν] ∈ P1

where f , g ∈ C[z0, ..., zn+1]d for some d > 0 and where f and g define different
hypersurfaces. We call such a family a pencil of hypersurfaces in Pn+1. Let

X := {(z, [µ : ν]) ∈ Pn+1 ×P1 | µ f (z) + νg(z) = 0}

and let π : X→ P1 be the second projection. The locus of singular values of π
is Zariski-closed in P1 and hence is equal to a finite set S ⊂ P1. Let X := X−
π−1(S) and let π : X → P1 − S be the restriction of π to X. By Ehrenmann’s
fibration theorem, π is a C∞-fibration. Hence all fibers of π are diffeomorphic
via a choice of an appropriate path in P1 − S. This identification however is
not holomorphic. Therefore one can think of this as being given a smooth
manifold, diffeomorphic to a fiber of π, with a varying complex structure on
it. The primitive cohomology bundle induced by π thus determines a polarized
variation of Hodge structures:
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Definition 1.1.4.1. A polarized variation of Hodge structures of weight k H :=
(HZ,F •, Q) (VHS) on some complex manifold B consists of the following
data:

1. a local system HZ of free, finite rank Z-modules on B.

2. a finite decreasing filtration F • of the vector bundle H := HZ ⊗ OB
by holomorphic subvectorbundles such that F • induces a pure HS of
weight k on each fiber HZ,t, t ∈ B, and such that the canonical con-
nection ∇ on H, given by the canonical differential d on OB, satisfies
Griffiths transversality:

∇(F p) ⊂ F p−1 ⊗Ω1
B.

3. A flat, nondegenerate bilinear form Q on H, symmetric if k is even and
skew if k is odd, which takes integral values on HZ and which polarizes
the Hodge structure on each HZ,t.

For convenience, we make the following definition:

Definition 1.1.4.2. Suppose that B = P1 − S where S is a finite set. Let s ∈ S
and t0 ∈ B. Let γ be a closed path starting and ending at t0 such that s is
the only point in S it encloses and going around s. We call the monodromy
operator on HZ,t0 given by γ the monodromy at s.

As mentioned above, the polarization of a VHS puts strong restrictions on
the Jordan normal form of any monodromy operator T: As T must preserve
the polarization of the VHS, and hence also a hermitian form, all eigenvalues
of T must have absolute value 1. As T preserves a lattice, its characteristic
polynomial has integral coefficients. Thus all eigenvalues of T must be roots
of unity, proving the first part of the following

Theorem 1.1.4.3 (Monodromy theorem, [PS08]). All eigenvalues of T are roots of
unity. Let m be chosen minimally such that Tm is unipotent, i.e. there exists some k
such that (Tm − Id)k = 0. If l := max{p− q | Hp,q

t0
6= 0} then (Tm − Id)l+1 = 0.

1.1.5. Picard–Fuchs Equations. Let now again B := P1− S where S is a finite
set of points in P1. Fix a complex parameter t centered at some s ∈ S on P1

and denote by d
dt the composition of ∇ and contraction with the vector field

given by t. The Picard-Fuchs equations are differential operators associated to
sections ω(t) of H connecting the monodromy on H to analytic continuation
for solutions to these equations. This is what will allow us to compute the
monodromy on the primitive homology bundle of a pencil of hypersurfaces.
They are defined as follows:

Definition 1.1.5.1. The monic differential operator Dω ∈ C(t)
[

d
dt

]
annihil-

ating a given section ω(t) of H and minimal in order with respect to this
property is called the Picard–Fuchs equation of ω(t).
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Fix some t0 ∈ B. Let H∗ be the dual bundle of H. Fix a basis α1, ..., αm of
H∗t0

. These extend to flat sections of H∗ over any simply connected neighbor-
hood U of t0 in B. Over U we may hence write

ω(t) =
m

∑
k=1
〈αk, ω(t)〉αk.

We have the following

Lemma 1.1.5.2 ([Ser19]). The periods of ω(t), i.e. the functions 〈αk, ω(t)〉, span
the solution space of Dω near t0.

Proof. By the flatness of the sections determined by the αk, we have

d
dt

ω(t) =
m

∑
k=1

(
d
dt
〈αk, ω(t)〉

)
αk.

so that the functions 〈αk, ω(t)〉, k = 1, ..., m, are annihilated by Dω. Hence the
periods of ω(t) are contained in the solution space of Dω. Define

σk(t) := 〈αk, ω(t)〉, k = 1, ..., m;
σ(t) = (σ1(t), ..., σm(t)).

Let l := ord(Dω). Then the space of solutions to the equation Dω f = 0 has
dimension l. Now, by the minimality of Dω, the vectors σ(t), σ′(t), ..., σ(l−1)(t)
are linearly independent. Therefore, the space spanned by the σi(t) has at
least dimension l since linear relations are preserved by differentiating.

1.1.6. Monodromy of VHS’s and Analytic Continuation. Denote by sol(Dω)
the local system of solutions of Dω. Let Tω be the operator on sol(Dω)t0 given
by analytic continuation along a closed path from t0 to t0 around s ∈ S. Let
T be the monodromy operator on H∗Z,t0

given by the same path from t0 to t0.
Then, as we have the morphism of local systems pω : H∗Z → sol(Dω) given by
α 7→ 〈α, ω(t)〉, we have the following compatibility between the monodromy
operator T and analytic continuation Tω:

pω(Tα) = Tω pω(α); α ∈ HZ,t0 .

As mentioned above, computation of the Picard-Fuchs equations and their
analytic continuation operators will then allow us to compute the monodromy
operator on a fiber of the homology bundle of a given pencil of hypersurfaces,
using this compatibility (see section 3.1.4).

1.1.7. The Regularity of the Picard–Fuchs equations. Furthermore, the reg-
ularity of the Picard-Fuchs equations is key to predicting the Jordan normal
form of T after computing a few Picard-Fuchs equations and before analytic
continuation (see theorem 3.1.3.5):
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Definition 1.1.7.1. Let D ∈ C(t)
[

d
dt

]
be monic. A point s ∈ C is said to be a

singular point of D if any of the coefficients of D has a pole at s. A singular
point is said to be a regular singular point of D if D admits a full basis of
solutions of the form

gi(t) := (t− s)ν

(
σ0(t) + σ1(t) log(t− s) + ... + σp(t)

(log(t− s))p

p!

)
around s where ν ∈ Q and the σi are analytic functions around s. We say that
D is regular if all singular points are regular.

Luckily, all Picard-Fuchs equations occuring in our computations will be
regular by the following theorem:

Theorem 1.1.7.2 (Regularity theorem, [Gri70]). Any Picard-Fuchs operator com-
ing from a VHS is regular.

1.1.8. The Schmid Limit MHS. Fix a disc ∆ around some s ∈ S and let ∆∗ :=
∆− {s}. Abusing notation, we denote the restriction of the VHS H still by
H . This VHS induces a certain MHS over s, called the Schmid limit MHS.
As we will briefly discuss later, if H arises from a smooth map π : X → ∆,
as in the case of a pencil of hypersurfaces in Pn+1, where X is a compact
Kähler manifold, and all fibers Xt of π are smooth for t 6= 0, one may relate
the canonical mixed Hodge structure on X0 due to Deligne [Del75] and the
Schmid limit MHS of H if the singular locus of X0 is zero-dimensional [Ste76].
The Schmid limit MHS is constructed as follows: Fix any t0 ∈ ∆∗ and let T
be the monodromy operator on HZ,t0 at s. Suppose without loss of generality
that ∆ has unit radius and let

e : h→ ∆;

u 7→ e2πiu

be the universal cover of ∆ by the upper halfplane h. Since h is simply con-
nected the vector bundle e∗H trivializes to Ht0 × h by a choice of a branch of
the logarithm log(t). By this construction any α ∈ Ht0 hence defines a flat
multivalued section of H over ∆∗. We may thus define:

Definition 1.1.8.1 ([Sch73]). Let m be as in the previous definition and l as in
theorem 1.1.4.3. Let

N := log(Tm) =
l

∑
k=1

(−1)k+1 (T
m − Id)k

k
.

The untwisting operator ϕ is given by

ϕ(α)(t) := exp
(
− 1

2πi
log(t)N

)
α; α ∈ Ht0 .
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Let w : ∆∗ → ∆∗ be given by u 7→ t = um. The monodromy operator of
w∗H is Tm. An easy computation then shows

Lemma 1.1.8.2. ϕ(α)(t) ∈ H0(∆∗, w∗H) for any α ∈ Ht0 , i.e. ϕ(α(t)) defines a
single-valued global section of w∗H.

We will later use this simple fact to relate the regularity of the Picard-Fuchs
equations to the Jordan normal form of T (see theorem 3.1.3.5).

To define the Schmid limit MHS, we first introduce its weight filtration:

Definition 1.1.8.3. Let N be a nilpotent operator on a vector space V. Let l be
chosen minimally such that Nl+1 = 0. We define the weight filtration W(N, •)
associated to N recursively as follows:

1. W2l = V, W−1 = 0.

2. Wl+i = {v ∈ V | Ni+1v ∈Wl−i−2}.

3. Wl−i = NiWl+1.

Now, since the canonical connection on w∗H is flat one may extend w∗H to
a vector bundle w∗H∆ over ∆ via the untwisting operator and push-forward
via ∆∗ ↪→ ∆ [PS08, Proposition 11.3, p. 255]. Additionally the subbundles F p

extend to bundles F p
∆ on ∆ in such a way that:

Theorem 1.1.8.4 ([Sch73]). The tuple

w∗H∞ := (w∗H∆,0,Z, w∗F •∆(0), W(N, •))

is a MHS, called the Schmid limit MHS of H .

Remark 1.1.8.5. One may parametrize the pure Hodge structures of weight
k and with dim Fp fixed for every p on a given Z-module by a subvariety
of a product of Grassmanians by viewing each Fp as a point in a suitable
Grassmanian. This subvariety is called the period domain associated to HZ, k
and the collection dim F•. A VHS then induces a map into this variety called
the period map. The Hodge filtration of the Schmid limit MHS is then given by
the limit of this map (for details, see [Sch73] or [Gri70]).

1.2 Griffiths Residues

Our main sources for this section are [Gri69], [Ser19] and [Lai16].

1.2.1. The Griffiths residue map. Let fX ∈ C[z0, ..., zn+1]d be a homogenous
polynomial of degree d and suppose that the projective hypersurface X :=
{ fX = 0} ⊂ Pn+1 is smooth.

As our goal is to compute a period matrix for the Hodge structure on the
middle cohomology of X, we need a way to do linear algebra on the space
Hn(X, C), mainly to compute Picard-Fuchs equations. Griffiths residues are a
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way of representing the space Hn(X, C) and its Hodge filtration by a vector
space of polynomials. Let

V := H0(Pn+1 − X, ΩPn+1);

Vq := H0(Pn+1, ΩPn+1(q[X])).

Then one has

V =
⊕
q≥0

Vq.

Let volPn+1 be the standard volume form on Pn+1. Since

ΩPn+1 ∼= OPn+1(−n− 2)

we have

ΩPn+1(q[X]) ∼= ΩPn+1(qd) ∼= OPn+1(qd− n− 2)

and so

Lemma 1.2.1.1. Any element in Vq may be written as a quotient

p
f q
X

volPn+1 ; p ∈ C[z0, ..., zn+1]qd−n−2.

For a cycle γ ∈ Hn(X, Z), let τ(γ) be a thin tube around a representative
of γ. We have a well defined map

Hn+1(Pn+1 − X, C)→ PHn(X, C)

ω 7→
(

γ 7→ 1
2πi

∫
τ(γ)

ω

)
which turns out to be an isomorphism. By Serre duality and de Rham’s the-
orem we also have a natural map

V → Hn+1(Pn+1 − X, C).

Definition 1.2.1.2. The Griffiths residue map res is given by the composition of
the above two maps

res : V → Hn+1(Pn+1 − X, C)
∼−→ PHn(X, C)

By Stokes’ theorem any form of degree n on Pn+1 − X must map to an
element in the kernel of the residue map under the canonical derivation map
d on the corresponding de Rham-complex. This can however be strengthened
[Gri69, theorems 4.2, 4.3 and 8.1]:

Lemma 1.2.1.3. The Griffiths residue map res satisfies the following properties:
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1. res is surjective. Additionally

ker(res |Vq) = d
(

H0(Pn+1, Ωn
Pn+1((q− 1)[X]))

)
2. We have

res(Vq) = Fn−q+1PHn(X, C).

1.2.2. Griffiths-Dwork reduction. Define Wq := H0(Pn+1, Ωn
Pn+1(q[X])). Since

we will represent classes in the middle cohomology of X by a polynomial as
in lemma 1.2.1.1 we want to be able to decide when the differential form given
by such a polynomial lies in the kernel of the residue map, i.e. when it lies
in the space d

(⊕
k≥0 Wk

)
. To this end we observe the following: Let J( fX) be

the Jacobian ideal of fX in C[z0, ..., zn+1], i.e. the ideal generated by the first
partial derivatives of fX . Denote by ∂zj differentiation by zj. By lemma 1.2.1.3
the differential form given by an element p/ f q

X has residue 0 if and only if

p
f q
X
∈

n+1

∑
j=0

∂zj (C[z0, ..., zn+1, 1/ fX ]) .

Now observe that for polynomials bj

n+1

∑
j=0

∂zj

(
bj

f q−1
X

)
=

∑n+1
j=0 ∂zj bj

f q−1
X

− (q− 1)
∑n+1

j=0 bj∂zj fX

f q
X

.

Hence if p ∈ J( fX) then the differential form given by p/ f q
X is equivalent mod-

ulo exact forms to a form in Vq−1. Griffiths [Gri69] showed that the converse
also holds if the hypersurface given by fX is smooth. This gives us a reduc-
tion procedure to maximally reduce a differential form given by a polynomial
and decide whether it has residue 0. This procedure is called Griffiths-Dwork
reduction:

1. Compute a Gröbner basis G of J( fX).

2. Given any ω ∈ V, write ω = ∑r
q=1

pq

f q
X

volPn+1 where pq is homogenous

of degree qd− n− 2.

3. Compute the remainder qr of pr modulo J( fX) using G and write pr −
qr = ∑n+1

j=0 bj∂zj fX . By the previous observation, ω is equivalent modulo
exact forms to

ω′ =

(
qr

f r
X
+

pr−1 + qr−1

f r−1
X

+
r−2

∑
q=1

pq

f q
X

)
volPn+1

where qr−1 = 1
r−1 ∑n+1

j=0 ∂zj bj.
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4. Proceed inductively by applying the same reduction method to the term
of pole order r− 1 of ω′. Repeat until ω is fully reduced.

Denote the resulting differential form by [ω]GD. By the above characterization
of exact forms in V by Griffiths we then have

Lemma 1.2.2.1 ([Ser19]). Let ω ∈ V. Then res(ω) = 0 if and only if [ω]GD =
0. Hence a family [ω1]GD, ..., [ωk]GD ∈ V is linearly independent if and only if
res(ω1), ..., res(ωk) are linearly independent.



Chapter 2

Singularity Theory

Our main sources of exposition in this chapter are [Dim92], [Mil68] and [Kul98].
For this chapter, we fix the following conventions and definitions: Let

π : X → P1 be a pencil of projective hypersurfaces in Pn+1 as defined in
section 1.1.4. Let S ⊂ P1 be its set of singular values. Pick some singular
value s ∈ S, a complex parameter t centered at s and a disc ∆ around s such
that s is the only singular value of π in ∆. Let πs : X|∆ → ∆ be the restriction of
π to the family X over ∆. We assume that the fiber X0 := π−1

s ({s}) has finitely
many singular points, i.e. that the singular locus of X0 is zero-dimensional.
Fix any t0 ∈ ∆∗ := ∆− {s} and let T be the monodromy operator on the fiber
Hn(Xt0 , Z) at s.

The goal of this chapter is twofold:
We first want to discuss how, under the additional assumption that X|∆ is

smooth, the Jordan normal form of T depends, up to the discrepancy between
the geometric and algebraic multiplicity of the eigenvalue 1, only on the so-
called right equivalence types of the singular points of X0. This, together with
a computation of the number of singular points, the Milnor number and the
corank of X0 then allows us to make a prediction, before computing T, whether
there exists a polynomial q ∈ Z[x] such that rk(q(T)) = 1. Then q(T)v is a
scalar multiple of an integral cycle for any v not in the kernel of T.

We then give the theoretical foundation to compute a period matrix of X0
using a result by Steenbrink [Ste76]: If X0 is as above and X|∆ is smooth then
the MHS on Hn(X0, Z) coincides with the restriction of the Schmid limit MHS
on Hn(Xt0 , Z), where t0 ∈ ∆∗, to ker(T − Id).

2.1 The Milnor Number and the Milnor Fibration
of a Singular Point

2.1.1. The Milnor Number. Fix a polynomial f ∈ C[x1, ..., xn+1]. Let V( f ) =
{p ∈ Cn+1 | f (p) = 0} be the zero locus of f .

22
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Definition 2.1.1.1. Let p ∈ V( f ) and let J( f ) be the jacobian ideal of f . The
Milnor number of f at p is defined by

µp( f ) := dimC

(
OCn+1,p/J( f )

)
.

Remark 2.1.1.2. Clearly, µp( f ) = 0 if f is smooth at p. Also, by the Nullstel-
lensatz, µp( f ) < ∞ if p is an isolated singular point of f .

For our purposes, we are interested in computing the number

µ( f ) = ∑
p∈V( f )

µp( f )

and the number of singular points nsing( f ) in V( f ). Both these numbers
are finite if the number of singular points in V( f ) is finite. Denote C[x] :=
C[x1, ..., xn+1].

Lemma 2.1.1.3. Suppose that V( f ) has finitely many singular points. Then the
number of singular points nsing( f ) in V( f ) is given by

nsing( f ) = dimC

C[x]√
( f , J( f ))

.

Proof. The algebra A := C[x]/
√
( f , J( f )) is reduced, artinian and has finitely

many maximal ideals. An easy application of the chinese remainder theorem
then shows that the number above coincides with the number of maximal
ideals in A.

Lemma 2.1.1.4 ([Bod04]). Suppose that V( f ) has finitely many singular points.
Then there exists m ∈N such that

µ( f ) = dimC(C[x]/( f m, J( f )).

Furthermore, if some k ∈N satisfies

dimC(C[x]/( f k, J( f )) = dimC(C[x]/( f k+1, J( f )),

then we can choose m = k in the above formula for µ( f ).

Proof. Assume for now that V( f ) contains exactly one singular point p with
corresponding maximal ideal m. Now, by the definition of µp( f ), it is enough
to show that there exists m ∈ N with f m ∈ J( f )C[x]m for the first part of the
lemma. By the Nullstellensatz there exists some k ∈N such that

mk ⊂ J( f )C[x]m ⊂ m

But since f ∈ m2 there exists m ∈ N such that f m ∈ J( f )C[x]m. This shows
the first claim of the lemma. If V( f ) contains more than one singular point,
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we simply apply the above argument to every singular point and take the
maximum over all k’s.

To prove the second part we move to the following more abstract situation:
Let R = C[x]m, let I ⊂ R be an ideal in R with mk ⊂ I ⊂ m for some k ∈ N.
Let f ∈ m. Suppose there exists l ∈N with

dimC R/( f l , I) = dimC R/( f l+1, I)

Then, since we are dealing with finite dimensional C-algebras, we have

f l ∈ ( f l+1, I)

This implies that for some a ∈ R

f l − a f l+1 = f l(1− a f ) ∈ I

But since 1− a f is a unit in R it follows that f l ∈ I, finishing the proof.

2.1.2. Isolated Hypersurface Singularities. Let us briefly define what we
mean by an isolated hypersurface singularity.

Definition 2.1.2.1. Let f be as above and assume that p ∈ V( f ) is an isolated
singular point of f . We call the tuple ( f , p) an isolated hypersurface singularity
(IHS) in Cn+1.

We now introduce a notion of isomorphisms of isolated hypersurface sin-
gularities:

Definition 2.1.2.2. Two isolated hypersurface singularities ( f , p) and (g, q) in
Cn+1 are said to be right equivalent if there exists an open neighborhood U of
p in Cn+1, an open neighborhood V of q in Cn+1 and a biholomorphic map
ψ : U → V such that ψ(p) = q and

g = f ◦ ψ.

2.1.3. The Milnor Fibration. The Milnor fibration is a powerful invariant as-
sociated to an IHS and serves us to describe the monodromy operator on
(co-)homology at a singular value of a pencil, if the corresponding fiber has
only isolated singular points.

Heuristically, if f is a local equation of X0 around p and p is the only
singular point of X0 then we should only observe nontrivial monodromy in a
small neighborhood of p in X|∆∗ . This idea is made precise by the theory of
the Milnor fibration of f :

Theorem 2.1.3.1 (Milnor’s fibration theorem, [Mil68]). Denote by Bε an open
ball around p in Cn+1, let ∆ denote a disc around 0 in C and let ∆∗ := ∆− {0}.
Then the map

ϕ : M := Bε ∩ f−1(∆∗)→ ∆∗;
varphi(x) := f (x),
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is a C∞-fibration for ε chosen so small that all fibers f−1(t), t ∈ ∆∗, are transversal
to Bε after possibly shrinking ∆. Its general fiber Mt, t ∈ ∆∗, is homotopy equivalent
to a bouquet of µp( f ) n-Spheres.

Definition 2.1.3.2. We call the map ϕ : M→ ∆∗ the Milnor fibration of f at p.

Remark 2.1.3.3. The Milnor fibration is only defined up to diffeomorphism
and potentially rescaling ∆. This is, however, enough for all applications.

Remark 2.1.3.4. Clearly, two right-equivalent IHS’s have diffeomorphic Mil-
nor fibrations.

2.1.4. The Corank of an Isolated Hypersurface Singularity. We introduce
another invariant of an isolated hypersurface singularity:

Definition 2.1.4.1. Let ( f , p) be an IHS in Cn+1. The corank of ( f , p) is the
corank of the Hessian matrix of f at p.

The corank of an isolated hypersurface singularity tells us how many vari-
ables are ”interesting”:

Theorem 2.1.4.2 (Generalized Morse lemma, [Arn98]). Let ( f , p) be an isolated
hypersurface singularity in Cn+1 of corank r. Then ( f , p) is right equivalent to (g, 0)
where g is of the form

g = h + x2
(n+1)−r + ... + x2

n+1

where h is a polynomial in C[x1, ..., xr], vanishing to order at least 3 in the point
0 ∈ Cn+1.

Clearly, we can compute the corank of an isolated hypersurface singularity
as follows:

Lemma 2.1.4.3. Let ( f , p) be as above. Assume that p is the only singular point of
f in V( f ). Let Mk, f be the ideal generated by the minors of order k of the Hessian
matrix of f . Then we have

corank( f , p) = n + 1−max{k | 1 /∈ ( f , J( f ), Mk, f )}.

2.1.5. The Milnor Fibration in a Global Setting. Let us now describe how
the Milnor fibration of an isolated hypersurface singularity plays a role in
a pencil of hypersurface in Pn+1 and how one may relate the MHS on X0
and the Schmid limit MHS of the VHS given by π : X → P1. For now, we
additionally assume that X0 has exactly one singular point p.

Lemma 2.1.5.1. Suppose that X|∆ is smooth. Let p ∈ X0 be an isolated singu-
lar point of X0 and let f be a local equation for X0 around p in local coordinates
x1, ..., xn+1. Then, after possibly shrinking ∆ and for a sufficiently small ball B
around p in X, the fibration πs|B−π−1

s (0) : B − π−1
s (0) → ∆∗ is diffeomorphic to

the Milnor fibration of f at p.
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Proof. In the local coordinate t we may write

X|∆ = {(z, t) ∈ Pn+1 × ∆ | f0(z)− t f1(z) = 0},

where f0, f1 ∈ C[z0, ..., zn+1]d for some d > 0 and X0 = { f0 = 0} ⊂ Pn+1.
Now, clearly, X|∆ is smooth if and only if f1(p) 6= 0. Thus we can choose a
local trivialization ofOPn+1(d) in an open ball B around p such that in the local
coordinates x1, ..., xn+1 given by this trivialization we have g1(x1, ..., xn+1) = 1
where g1 is a local equation for X1 := { f1 = 0}. Thus

X|B ∼= {(x, t) ∈ Cn+1 ×C | f (x) = t}.

The result follows after possibly shrinking B and ∆.

We now describe how, in the situation of lemma 2.1.5.1, the monodromy
operator T on Hn(Xt0 , Z), t0 ∈ ∆∗, is almost entirely determined by the mono-
dromy operator Tloc on the cohomology of the Milnor fiber Mt0 ⊂ Xt0 where
Mt0 := Xt0 ∩ B with B defined as in lemma 2.1.5.1. First of all, one may give
an explicit geometric description of the space ker(T − Id), namely the local
invariant cycles theorem [de 15]:

Theorem 2.1.5.2. One has Hn(X0, Z) ∼= Hn(X|∆, Z) via a retraction by deforma-
tion. The map

Hn(X0, Z)→ Hn(Xt0 , Z)

given by the composition of this isomorphism and the restriction map, i.e. the map
Hn(X|∆, Z)→ Hn(Xt0 t, Z) given by the inclustion Xt0 ↪→ X, surjects to the kernel
of T− Id.

Moreover, X0 is homeomorphic to a cone over X0 ∩ ∂B with vertex p
[Kul98]. Hence

Ȟk(X0, Z) ∼= Hk(Xt0 , Mt0 ; Z) ∀k,

where Ȟk(X0, Z) is the k-th reduced cohomology group and Hk(Xt0 , Mt0 ; Z)
denotes the k-th relative cohomology group of the pair (Xt0 , Mt0). This is since
X∆ − B → ∆ is a smooth fibration. Now, since Mt0 is homotopy equivalent
to a bouquet of n-spheres, we have Hk(Mt0 , Z) = 0 unless k = 0 or k = n.
The long exact sequence of the pair (Xt0 , Mt0) hence yields the commutative
diagram (see e.g. [Rah16, remark 4.2.3])

0 Hn(X0, Z) Hn(Xt0 , Z) Hn(Mt0 , Z) ...

0 Hn(X0, Z) Hn(Xt0 , Z) Hn(Mt0 , Z) ...

Id T Tloc (1)

with exact rows where the diagram commutes again because of the smooth-
ness of the fibration X|∆ − B→ ∆ [Kul98]. Now we have



27 A Few Computationally Useful Cases

Lemma 2.1.5.3. The Jordan normal form of T is determined up to the geometric
multiplicity of the eigenvalue 1 by the right equivalence type of the hypersurface sin-
gularity given by X0 and p.

Proof. This immediately follows from the above diagram. Let ι : Mt0 ↪→ Xt0
be the inclusion map. If v ∈ Hn(Xt0 , Z) is a generalized eigenvector for
some eigenvalue λ 6= 1 of T, then ι∗v 6= 0 by Theorem 2.1.5.2. We have
(T − λ Id)kv = 0 for some k so the same holds for Tloc instead of T by the
commutativity of the above diagram. But Tloc only depends on the right equi-
valence class of the isolated hypersurface singularity given by X0 and p.

Remark 2.1.5.4. All of these observations apply analogously if X0 carries fi-
nitely many, but more than one, singular point. In this case the Jordan Normal
form of T carries several distinct blocks, each associated to an operator Tloc on
the cohomology of the Milnor fibration of a distinct singular point of X0.

According to [Ste76], there exists a MHS on Hn(Mt0 , Z), such that the first
(or second) row of the diagram (1) becomes an exact sequence of MHS’s where
Hn(X0, Z) carries the canonical MHS and Hn(Xt0 , Z) carries the Schmid limit
MHS. This will enable us to compute the MHS on Hn(X0, Z) if X0 carries fi-
nitely many singular points. More precisely, using this together with theorem
2.1.5.2 and remark 2.1.5.4 yields

Theorem 2.1.5.5. Suppose that X|∆ is smooth and suppose that X0 carries finitely
many isolated singular points. Then the MHS on Hn(X0, Z) is isomorphic to the
Schmid limit MHS restricted to ker(T − Id).

2.2 A Few Computationally Useful Cases

We discuss a few special isolated hypersurface singularities that can occur in
a pencil of projective hypersurfaces that will be computationally useful to us.

2.2.1. The Simple Node. The simplest isolated hypersurface singularity is
the so-called simple node:

Definition 2.2.1.1. The simple node is the (up to right equivalence) unique
isolated hypersurface singularity with Milnor number 1.

Remark 2.2.1.2. This turns out to be well-defined: Any hypersurface singular-
ity in Cn+1 with Milnor number 1 turns out to have corank n + 1 and is thus
is given by the equation

x2
1 + ... + x2

n+1 = 0

after a suitable change of coordinates by theorem 2.1.4.2.

Observe that if a pencil carries an X as in remark 2.2.1.3 at a singular value
s then the monodromy operator T at s on homology satisfies

rk(T − Id) = 1
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by the commutative diagram in section 2.1.5. This is since, in this case, the
map Hn(Xt0 , Z)→ Hn(Mt0 , Z) turns out to be surjective [Voi02]. In particular,
for any complex cycle γ not in the kernel of T − Id,

(T − Id)γ

is a scalar multiple of an integral cycle. This enables us to compute periods in
theory.

Remark 2.2.1.3. A general singular hypersurface X ⊂ Pn+1 of fixed degree d
carries exactly one singular point which is a simple node: The set of hyper-
surfaces of degree d in Pn+1 are parametrized by a projective space Pn,d of
dimension (

n + d + 1
d

)
.

This projective space carries the discriminant variety Dn,d of singular hypersur-
faces in Pn+1. Dn,d carries the set D0

n,d of hypersufaces X as above which turns
out to be Zariski open in Dn,d [Voi02, vol. 2, p. 45].

Pencils of projective hypersurfaces which only carry the types of singular
hypersurfaces as in the previous remark are called Lefschetz pencils:

Definition 2.2.1.4. A Lefschetz pencil is a pencil of projective hypersurfaces
π such that the corresponding line in Pn,d intersects Dn,d transversally and
intersects Dn,d in D0

n,d.

It follows from remark 2.2.1.3 that a general pencil through a fixed smooth
hypersurface is a Lefschetz pencil.

It is important to note, however, that Lefschetz pencils are computationally
impractical. This is due to the following

Theorem 2.2.1.5 ([Voi02]). The monodromy representation on a primitive homology
group arising from a Lefschetz pencil is irreducible.

It immediately follows that the Picard-Fuchs equations of a Lefschetz pen-
cil must have maximal order: The map pω defined as in section 1.1.6 must be
bijective as the kernel of it is a monodromy equivariant subspace. This makes
the Picard-Fuchs equations in this case ”too big” to handle computationally
in reasonable time.

2.2.2. Simple Surface Singularities. Suppose that the hypersurface we are
interested in computing periods for lies in P3. There is a special class of
isolated hypersurface singularities in C3 which will come in handy in this
case:

Definition 2.2.2.1. A simple surface singularity is an isolated hypersurface sin-
gularity in C3 such that the intersection form on the middle homology of its
Milnor fiber is negative definite.
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Remark 2.2.2.2. There are many equivalent definitions for simple surface sin-
gularities. Among them is an explicit list of right equivalence types. See
[Dur79] for details.

Suppose now that we are in the situation of section 2.1.5 with n = 2 and
that the central fiber X0 together with its unique singular point p defines
a simple surface singularity of odd Milnor number µ. It follows that Tloc
must have eigenvalue 1 or -1 since Tloc acts on Hn(Mt0 , C) which is of odd
dimension µ. We can, however, exclude the occurence of the eigenvalue 1 for
Tloc by the following theorem:

Theorem 2.2.2.3 ([Arn98]). The monodromy on the homology of the Milnor fiber of
an isolated hypersurface singularity has eigenvalue 1 if and only if the intersection
product on the homology of the Milnor fiber degenerates.

Moreover, one can use spectral theory of singularities to show that in this
case the eigenvalue -1 occurs with multiplicity 1 [Arn98]. It follows that if
p ∈ Z[x] is the characteristic polynomial of T and q(x) := p(x)/(x− 1) ∈ Z[x]
then

rk q(T) = 1.

Furthermore spectral theory additionally yields

Lemma 2.2.2.4. Suppose that X0 has exactly one singular points and that X0 together
with its singular point defines a simple surface singularity. Then T has eigenvalue
−1 if and only if the Milnor number µ of X0 is odd. Furthermore, T is diagonizable.

Proof. We use the notation of 2.1.5. Spectral theory shows that Tloc is always
diagonizable and has eigenvalue −1 if and only if µ is odd (see [Arn98] for
details). But the same must then hold for T since the morphism Hn(Xt0 , Z)→
Hn(Mt0 , Z) in the commutative diagram (1) is surjective by theorem 2.2.2.3.

We can compute the corank of the IHS defined by X0 and p to detect a
certain class of simple surface singularities:

Definition 2.2.2.5. We define the singularity An := ( f , 0) for n ∈N where

f = xn+1
1 + x2

2 + x2
3.

By the generalized Morse lemma 2.1.4.2, these are precisely the surface
singularities in C3 of corank 1 and can thus be detected computationally, using
lemma 2.1.4.3. Additionally

Lemma 2.2.2.6 ([Dur79]). The singularities An are simple for every n ∈N.

Furthermore, one can use an explicit classification list to show

Lemma 2.2.2.7 ([Dur79]). Any IHS in C3 of Milnor number ≤ 8 is simple.



Chapter 3

Using Pencils of
Hypersurfaces to Compute
Period Matrices

3.1 The Smooth Case

We now give a rough description of our method to compute periods of a
smooth hypersurface X ⊂ Pn+1 cut out by some homogeneous polynomial
fX ∈ Q[z0, ..., zn+1]. We start by fixing an arbitrary homogeneous fY ∈ Q[z0, ..., zn+1]
of the same degree as fX and cutting out a hypersurface Y ⊂ Pn+1 with
Y 6= X. Let π : X→ P1 be the pencil determined by the equation

t fX + (1− t) fY = 0; t ∈ C.

The overall computational strategy is now as follows: Let H be the primitive
cohomology bundle associated to π. Suppose that the monodromy operator
on H∗t0

= PHn(X, C) at some singular value s of π is given by a matrix T in
terms of some basis α1, ..., αm of PHn(X, C) which are represented by ”period
coordinates”

(〈αi, ω1〉, ..., 〈αi, ωm〉)

where the ωk are as in definition 1.1.2.4. Suppose that there is some polyno-
mial q with integral coefficients such that

rk(q(T)) = 1.

Suppose that v is not in the kernel of q(T). Then

q(T)v

30
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is a scalar multiple of an integral vector w since T preserves PHn(X, Z). Let
q(T)v = λw. Then q(T)v is a period for the basis λω1, ..., λωm which obviously
still satisfies the requirements for a basis of PHn(X, C) given in definition
1.1.2.4. Thus we will from now on refer to scalar multiples of integral vectors
as integral vectors as well. We have three likely situations where this happens:

1. The singular fiber associated to T carries exactly one singular point
which is a simple node. In this case we have rk(T− Id) = 1 (see section
2.2.1).

2. T has eigenvalue −1 with multiplicity 1. In this case q is the character-
istic polynomial of T divided by x + 1.

3. The Jordan normal form of T has a single Jordan block of maximal size.
In this case

q(x) = (xl − 1)k

for suitable l and k.

Ideally, we want to predict any of these situations before doing any potentially
expensive computation of Picard-Fuchs equations or analytic continuation.
The first situation can be detected by a Milnor number computation by the
definition of the simple node. If n = 2 the second situation can sometimes
be predicted using singularity theory (see section 3.1.1) by a computation of
numbers of singular points and milnor numbers of singular fibers occuring in
π.

If a computation of the Milnor number and number of singular points of
a singular fiber Xs of π does not yield enough information to decide if the
first or second situation occurs or if we are not in the surface case, we can still
predict the Jordan normal of T to some extent by computing a few Picard-
Fuchs equations (see section 3.1.3) thus detecting the third situation.

3.1.1. Computing the Singular Values, their Associated Number of Singular
Points and their Milnor Numbers. To compute the singular values of π, we
need to compute those values of t where the Jacobian of

ft = t fX + (1− t) fY

w.r.t. the variables z0, ..., zn+1 has a zero. This is a simple matter of computing
the saturation of the corresponding jacobian ideal w.r.t. the ideal (z0, ..., zn+1)
and elimination using Gröbner bases. The singular values are then repres-
ented as roots of a polynomial p ∈ Q[t]. We compute its factorization into
irreducible factors

p = p1...pl

over Q and compute the number of singular points ns of a singular fiber Xs
by computing the Hilbert polynomial of the ideal√

( fi, J( fi))



Using Pencils of Hypersurfaces to Compute Period Matrices 32

(see lemma 2.1.1.3) where pi(s) = 0 and fi is the image of ft in the field
Q[t]/(pi). Similarly, to compute the Milnor number µs of Xs (i.e. the sum
of all Milnor numbers of all singular points of Xs) we compute the Hilbert
polynomial of the ideal

( f k
i , J( fi))

where k is chosen as in Lemma 2.1.1.4.

Remark 3.1.1.1. We found during our experiments that, to keep the degree
and order of the Picard-Fuchs equations as low as possible, using pencils with
few singular values was usually the best choice. In this case the time it took to
compute the above Hilbert polynomials was negligible in comparison to the
time it took to compute Picard-Fuchs equations and monodromy operators.

Analogously, we can compute the corank cs of the singular fiber Xs if
ns = 1 using lemma 2.1.4.3.

Suppose that the singular locus of Xs is zero-dimensional and suppose
that we are in the surface case, i.e. X ⊂ P3. Suppose that we have computed
the number of singular points ns of Xs, the Milnor number µs of Xs and the
corank cs of Xs if ns = 1 and µs is odd. Now we want to check whether the
monodromy operator T can be used to compute a an integral vector.

1. If ns = 1 and µs = 1 then Xs carries a simple node and we can use T to
compute an integral vector since rk(T− Id) = 1 (see section 2.2.1). Note
that this works even if n 6= 2.

2. If ns = 1 and µs ≤ 8 is odd, then Xs carries a unique singular point
which is simple by lemma 2.2.2.7. Therefore T has eigenvalue −1 with
multiplicity 1 and we can use T to compute an integral vector. If ns = 1
and µs ≤ 8 is even then neither of the three situations mentioned at the
beginning of this chapter occurs (see lemma 2.2.2.4) and we can discard
Xs.

3. If ns = 1, µs ≥ 9 is odd and cs = 1 then Xs carries a unique singular
point which is simple by lemma 2.2.2.6 and theorem 2.1.4.2. T can be
used to compute an integral vector as in item 1.

4. Note that the Milnor number µp(Xs) of any singular point p of Xs by
definition satisfies

µp(Xs) ≤ µs − ns + 1.

This is because µs = ∑p∈Sing(X0)
µp(Xs). If ns = 2, µs is even and

µp(Xs) ≤ 8 using the above inequality, then we cannot use T for period
computation as the eigenvalue −1 occurs with multiplicity 0 or more
than 1 by Remark 2.1.5.4. This is since in this case Xs carries two singu-
lar points, both of which define simple singularities and both of which
have either odd or even Milnor number. We discard Xs in this case.



33 The Smooth Case

5. if ns = µs > 1 then Xs carries ns simple nodes (i.e. multiple copies of
A1). Therefore we can discard Xs because the Jordan normal form of T
is of the form (

− Id 0
0 Id

)
by lemma 2.2.2.4 where the − Id-block is of size ns.

Remark 3.1.1.2. Note that the above criteria may not be enough to decide
whether any of the three situations mentioned at the beginning of this chapter
occurs. For example the IHS D9 of Milnor number 9 and corank 2 is simple
and can thus be used to compute an integral vector in the sense of item 3
above. On the other hand the IHS X9, also of Milnor number 9 and corank 2,
turns out to not be useful in the sense of the three situations mentioned at the
beginning of this chapter (see [Arn98] for a definition of D9 and X9).

If the above criteria fail or if we are not in the surface case then we have
theorem 3.1.3.5 to fall back on. We do, however, need to compute a few Picard-
Fuchs equations to apply this theorem.

3.1.2. Picard–Fuchs Equations: Implementational Details. We give some of

the details on how differential operators in C(t)
[

d
dt

]
and analytic computa-

tion for them are implemented. Our main computational tool is the package
Numerical Evalutation of D-finite Functions for ore_algebra written by Marc Mez-
zarobba [Mez16] 1. This package enables us to both compute analytic continu-
ation matrices to arbitrary precision with exact error bounds and to compute
a collection of canonical local monomials (see definition 3.1.2.1) at a singular point
of a Picard-Fuchs equation, all of which are regular by theorem 1.1.7.2. Let
D ∈ C(t)

[
d
dt

]
. Let k := ord(D). Internally, a solution f to the equation

D f = 0 at a regular point p ∈ C is represented by its Taylor coefficients about
p: (

f (p), f ′(p), ...,
1

(k− 1)!
f (k−1)(p)

)
This uniquely determines f as a solution to D f = 0.

Conversely, at a regular singular point q ∈ C a solution to the equation
D f = 0 may be uniquely written as an expansion

f (t) =
k

∑
i=1

aigi(t), ai ∈ C

where the gi are as in definition 1.1.7.1. They are power series in terms of
monomials of the form

mi(t) = (t− q)ν log(t− q)k

1marc.mezzarobba.net/code/ore_algebra_analytic/

marc.mezzarobba.net/code/ore_algebra_analytic/
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where ν ranges over the roots of the so-called indicial polynomial of D at q
and k is less than the multiplicity of the root ν (see [Mez16] for details).

Definition 3.1.2.1. We call the collection of mi(t) as above the collection of
canonical local monomials of D at q.

f is then represented by the vector

(a1, ..., ak).

3.1.3. Differentially Generated Bases. We introduce certain bases of a fiber
of the primitive cohomology bundle associated to pencils of projective hy-
persurface. These bases consist of differentials of sections of the primitive
cohomology bundle associated to a pencil, evaluated at the fiber in question.
Computing such a basis will allow us to both

1. Predict the Jordan normal form of a monodromy operator on primitive
homology at a singular value of the pencil before doing any analytic
continuation using the regularity of the Picard-Fuchs equations.

2. Compute the monodromy operator on primitive homology at any smooth
value of the pencil by analytic continuation using section 1.1.6.

We use the same notation as at the beginning of this chapter. Let H be the
VHS associated to the primitive cohomology bundle of π. Fix any smooth
value t0 ∈ P1 of π. Let s be a singular value of π. Suppose that we have
computed sections ω1(t), ..., ωm(t) of the VHS H generating the associated
vector bundle H at t0 = 1, representing Griffiths residues of monomials of
suitable degree in C[z]/J( fX). We use the notation

ω := ω(t0)

for a section ω of the cohomology bundle.

Definition 3.1.3.1. We introduce the following notation for a section ω(t) of
the primitive cohomology bundle of π:

ω(k)(t) :=
1
k!

(
d
dt

)k
ω(t).

Now we can perform the following two steps:

1. We compute the Picard-Fuchs equationsDω1 , ...,Dωk of a subset ω1(t), ..., ωk(t)
of the above set of sections, such that

ω1(t), ω
(1)
1 (t), ..., ω

(ord(Dω1 )−1)
1 (t), ω2(t), ω

(1)
2 (t), ..., ω

(ord(Dωk )−1)
k (t) (∗)

generate H at t0. This can be done by repeatedly differentiating and
applying GD-reduction, using lemma 1.2.2.1. Observe that, for any α ∈
PHn(Xt0 , C),

〈α, ω
(j)
i 〉
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is equal to the j-th Taylor coefficient of the solution 〈α, ωi(t)〉 to Dωi f =

0, i.e. each ω
(j)
i corresponds to a ”Taylor coordinate” of Dωi .

2. Pick a subset B consisting of sections ω
(jl)
il

(t) as in (∗) such that B gives
a basis of PHn(Xt0 , C) when evaluated at t0. The point is that now each
form in B uniquely corresponds to a ”Taylor coordinate” corresponding
to some differential operator.

Definition 3.1.3.2. We call a set of sections B as above a differentially generated
basis of X at t0.

Recall that all eigenvalues of a monodromy operator at a singular value
are roots of unity by theorem 1.1.4.3.

First of all, we need the following two lemmas.

Lemma 3.1.3.3. Applying the untwisting operator to a cycle γ ∈ PHn(X, C) cor-
responds to substituting log(t) = 0 in the representation of γ given by the functions
〈γ, ω

(jl)
il

(t)〉 associated to γ.

Proof. The functions 〈γ, ω
(jl)
il

(t)〉 have to become singlevalued after applying
the untwisting operator by lemma 1.1.8.2. This means that after applying
the untwisting operator, these funtions can no longer contain any logarithmic
terms. On the other hand, by definition 1.1.8.1, the untwisting operator only
adds multiples of powers of log(t).

Lemma 3.1.3.4. Let A and B be two square matrices of the same size such that
AB = BA. If ker(A) ⊆ ker(B) then ker(Ak) ⊆ ker(Bk) for every k ∈N.

Proof. This is an easy proof by induction.

We can then put restrictions on the Jordan normal form of the monodromy
operator at any singular value s as follows: Let D1, ...,Dm be the differential
operators corresponding to the indices il in the notation as above. Let M be
the collection of canonical local monomials occuring in the solution spaces of
the Di at s. Let nβ,k be the number of canonical local monomials inM of the
form

(t− s)α/β logj−1(t− s), j = 1, ..., k.

where α, β ∈ Z are coprime. Furthermore, let Iβ,k be the set of indices il where
such monomials occur in sol(Dil ) at s for fixed β and k. Let

mβ,k := ∑
i∈Iβ,k

|{j | 0 ≤ j ≤ ord(Di)− 1, ω
(j)
i (t) /∈ B}|

where | · | denotes the cardinality of a set.
We are now ready to prove the following
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Theorem 3.1.3.5. Let T be the monodromy operator on PHn(Xt0 , C) at s. Denote
by

Eig(λ, k) = {δ ∈ PHn(Xt0 , C) | (T − λ Id)kδ = 0}

the generalized eigenspace of index k for an eigenvalue λ of T. Denote by E the set of
all eigenvalues of T of multiplicative order β. Then

nβ,k −mβ,k ≤ ∑
λ∈E

dim Eig(λ, k) ≤ nβ,k.

Proof. Step (i): We assume first that T is unipotent, i.e. that the only eigenvalue
of T is λ = 1. Hence β = 1. We claim that γ ∈ Eig(1, k) if and only if the only
canonical local monomials in M appearing in the functions 〈γ, ω

(jl)
il

(t)〉 are

of the form (t− s)α logj−1(t− s) for α ∈ Z and j = 1, ..., k. Let us prove the
only if-direction by induction over k. Assume therefore that γ ∈ Eig(1, k). The
statement is clear if k = 1 since in this case γ has to be singlevalued. Assume
the statement is true for every l ∈ {1, ..., k− 1}. Let

N = log(T) =
r−1

∑
k=1

(−1)k+1 (T − Id)k

k

where r is chosen minimally such that (T − Id)r = 0. By definition 1.1.8.1 of
the untwisting operator ϕ we then have

ϕ(γ)(t) = γ + α1 log(t)Nγ + ... + αk−1 logk−1(t)Nk−1γ (3.1)

where αj = (−1)j 1
j!(2πi)j . Note that Nkγ = 0 since N may be written as a sum

over powers of (T − Id)k. Also note that

Niγ ∈ Eig(1, k− i) ∀i = 0, ..., k− 1

by a similar argument. By the induction hypothesis the functions 〈Niγ, ω
(jl)
il

(t)〉
associated to Niγ can therefore only contain canonical local monomials of the
form

(t− s)α logj−1(t− s); α ∈ Z, j = 1, ..., k− i− 1.

But by lemma 3.1.3.3 ϕ has to cancel the logarithmic terms in the functions
〈γ, ω

(jl)
il

(t)〉 associated to γ. A comparison of coefficients in 3.1 for the func-

tions 〈ϕ(γ)(t), ω
(jl)
il

(t)〉 then shows that the functions 〈γ, ω
(jl)
il

(t)〉 can only
contain canonical local monomials of the form

(t− s)α logj−1(t− s); α ∈ Z, j = 1, ..., k− 1,
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proving the only-if-direction of the claim. Now for the if-direction: Suppose
that the only canonical local monomials occuring in the functions 〈γ, ω

(jl)
il

(t)〉
are of the form (t− s)α logj−1(t− s) for α ∈ Z and j = 1, ..., k. In this case we
have

ϕ(γ)(t) = γ + α1 log(t)Nγ + ... + αk logr−1(t)Nr−1γ.

But again by lemma 3.1.3.3 this expression has to cancel the logarithmic terms
in the functions 〈γ, ω

(jl)
il

(t)〉. A comparison of coefficients as above then forces

Nkγ = 0 which shows that γ ∈ Eig(1, k) by lemma 3.1.3.4.
Step (ii): Now let

V = {δ ∈ PHn(X, C) | 〈δ, ω
(jl)
il
〉 = 0 ∀l such that il /∈ I1,k}

= C〈ω(jl)
il
| ω

(jl)
il

(t) ∈ B, il ∈ I1,k〉∗.

By construction we now have an injection

p1,k :=
⊕

i∈I1,k

pωi : V ↪→ V′ :=
⊕

i∈I1,k

sol(Dωi )

where the pωi are defined as in section 1.1.6. By construction we also have

dim V = dim V′ −m1,k.

Now let W ⊂ V′ be the supspace of functions which only contain canonical
local monomials of the form (t− s)α logj−1(t− s) for α ∈ Z and j = 1, ..., k.
Clearly dim W = n1,k. By the first step of the proof we have

Eig(1, k) ⊂ V and
p1,k(Eig(1, k)) ⊂W.

On the one hand it then follows that

dim(Eig(1, k)) = dim(p1,k(Eig(1, k))) ≤ dim W = n1,k

and on the other hand we have

dim(Eig(1, k)) = dim(p1,k(Eig(1, k)))
= dim(p1,k(V) ∩W)

≥ dim V + dim W − dim V′ = n1,k −m1,k

where the second equality holds again by step (i). This proves the result for
β = 1. If β 6= 1 then we restrict to the local subsystem on a disc around s
given by Vβ :=

⊕
λ∈E,k∈N Eig(λ, k) and the action of T on Vβ. We then pull

back this local subsystem by w 7→ t = wβ, reducing to the unipotent case.
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Remark 3.1.3.6. The utility of theorem 3.1.3.5 is twofold: If we are in the
surface case (i.e. X ⊂ P3) then we can still predict the Jordan normal form of
T if computation of the singularity-theoretic invariants as in section 3.1.1 does
not let us decide whether T will be useful for computing an integral vector.
Secondly, theorem 3.1.3.5 is true in any dimension.

3.1.4. Computing Monodromy on Primitive Homology. As in the previous
section we fix ω1(t), ..., ωm(t) and a differentially generated basis B obtained
from the ωi(t). We represent B by a matrix B whose rows are the coordinates
of the forms ω1, ..., ωm, where again ωi := ωi(t0), in terms of the basis B eval-
uated at t0. Let pil : PHn(X, C) → sol1(Dωil

) be given by pil (α) := 〈α, ωil (t)〉
for each index il appearing in B. We represent each pil (ω

∗
k ) by a column vector

of Taylor coefficients as in section 3.1.2 and define the matrix

Ail :=
(

pil (ω
∗
1 ), ..., pil (ω

∗
m)
)

Let Til be the monodromy (analytic continuation) operator at s associated to
Dωil

given as a matrix in terms of the standard unit basis. Let

T′il := Til Ail .

It follows that

Lemma 3.1.4.1. Let T′ be the matrix obtained from the T′il by taking the jl’th rows of
Til for each index pair (il , jl) appearing in B. Then the matrix

T := B−1T′

is the matrix of the monodromy operator on PHn(X, C) at s in terms of the basis
ω∗1 , ..., ω∗m.

Proof. This follows from the construction of B, the compatability between ana-
lytic continuation and monodromy (see section 1.1.6) and the fact that solu-
tions to Picard-Fuchs equations are internally represented by their Taylor co-
ordinates (see section 3.1.2).

This enables us to compute the monodromy T at s on PHn(X, C) while
computing as little analytic continutation matrices as possible.

3.2 Computing the MHS of a Singular Hypersur-
face

We sketch how to compute the MHS on the middle cohomology of a singular
projective hypersurface if it only has finitely many singular points.
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3.2.1. Computing the Hodge Filtration of the Schmid Limit MHS. Suppose
that we are given a singular hypersurface X0 ⊂ Pn+1 cut out by a homogenous
polynomial f0 of degree d. Suppose additionally that X0 has only finitely
many singular points. We want to use theorem 2.1.5.5 to compute the MHS
on Hn(X0, Z). To do that, we fix a pencil of hypersurfaces given by

t f1 + (1− t) f0 = 0.

where f1 is homogenous of the same degree as f0, X1 := { f1 = 0} is smooth
and the space X|∆ is smooth for a small disc ∆ around 0 ∈ C. Suppose
additionally that we are given a period matrix

P(1) =
(
〈γj, ωi(1)〉

)
1≤i,j≤m

where ω1(t), ..., ωm(t) generate the primitive cohomology bundle of X|∆. Sup-
pose also that we are given the monodromy operator T on Hn(X1, Z) at 0 as
a matrix T in terms of the basis γ1, ..., γm. Let HZ := PHn(X1, Z) and denote
by

H := (HZ, F•∞, W•)

the Schmid limit MHS of the primitive cohomology bundle induced by X|∆.
We want to compute a matrix parametrizing the Hodge filtration of the Schmid
limit MHS, i.e.

P∞ =
(
〈γj, ωi,∞〉

)
1≤i,j≤m .

where for all p there exists an mp such that ω1,∞, ..., ωmp ,∞ are a basis of Fp
∞.

To do that we use remark 1.1.8.5.
Let Dωi be the Picard-Fuchs operators associated to the ωi and define

δi := ord(Dωi ).

Let hi1(t), ..., hiδi (t) be the basis of solutions for Dωi f = 0 given by initial
values at t0 = 1 equal to the standard unit vectors. Let Pi(t) be the i-th row
of the period matrix P(t). Observe that

Pi(t) = (hi1(t), ..., hiδi (t))


Pi(1)
P ′i (1)

...
P (δi−1)

i (1)

 .

Note that the derivatives P (k)
i (1) are readily computed using Griffiths residues:

Griffiths-Dwork reduction (see section 1.2.2) allows us to write each derivative
ω
(j)
i (1) in coordinates w.r.t. the basis ω1(1), ..., ωm(1). Let gi1(t), ..., giδi (t) be

the local basis of solutions for Dωi at s = 0 whose coordinates in terms of
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the local canonical monomials correspond to the standard unit vectors. Marc
Mezzarobba’s code [Mez16] allows us to approximate a matrix Ai to arbitrary
precision with rigorous error bounds such that

(hi1(t), ..., hiδi (t)) = (gi1(t), ..., giδi (t))Ai

hence

Pi(t) = (gi1(t), ..., giδi (t))Ai


Pi(1)
P ′i (1)

...
P (δi−1)

i (1)

 . (∗)

Using this identity, we can then write down the p-th coordinate of the period
map (see remark 1.1.8.5) in Plücker coordinates by taking the p × p-minors
of the submatrix of P(t) = (Pi(t))

m
i=1 consisting of the first mp rows where

dim FpPHn(X, C) = mp. Applying the untwisting operator corresponds to
substituting log(t) = 0 in this representation of the period map by lemma
3.1.3.3.

Let, in this representation,

ϕp(t) := [φ1(t) : ... : φnp(t)] ∈ Gr(mp, PHn(X, C))

be the p-th coordinate of the period map after applying the untwisting oper-
ator where np is the number of p× p-minors as above. We then take

lim
t→0

ϕp(t) = lim
t→0

[φ1(t) : ... : φnp(t)]

as follows: Denote by valt(φi(t)) the valuation of φi(t) w.r.t. t. Let r :=
mini valt(φi(t)). Then at least one of the entries of

[t−rφ1(t) : ... : t−rφnp(t)]

contains a constant part so that we may take its limit by substituting t = 0. We
have then obtained the Hodge filtration of the Schmid limit MHS as a point

ϕ(0) := (ϕp(0))n
p=0 ∈

n

∏
p=0

Gr(mp, PHn(X, C))

in a product of Grassmanians.
We now discuss how to compute the matrix P∞. By the definition of

Plücker coordinates, each ϕp(0) corresponds to the projective line spanned by
a multivector

v(p) := [v(p)
1 : ... : v(p)

mp ]

which we have expressed in coordinates w.r.t. the basis

ei1 ∧ ...∧ eimp
, 1 ≤ i1 < ... < imp ≤ m
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where ei denotes the i-th unit vector. This multivector corresponds to the
subspace

Fp
∞ = {w ∈ PHn(X, C) | w ∧ v(p) = 0}

where the condition

w ∧ v(p) = 0

may be expressed as a linear system of equations by a comparison of coeffi-
cients. Note that because

Fp+1
∞ ⊂ Fp

∞ ∀p

we have

w ∧ v(p+1) = 0 ⇒ w ∧ v(p) = 0.

This means that we can build the matrix P∞ by computing a basis of solutions
w1, ..., wmn for

w ∧ v(n) = 0

then adding dim Fn+1
∞ − dim Fn

∞ linearly independent solutions to

w ∧ v(n−1) = 0

such that w1, ..., wmn−1 are linearly independent and so on until we have reached
F0

∞. Then we may set

P∞ = (wi)
m
i=1,

i.e. the wi form the rows of P∞.

Remark 3.2.1.1. Of course the entries of the linear systems of equations arising
by going from Plücker coordinates back to a period matrix are inexact. We do
however know their exact rank. The linear independence of solutions may
for example be checked by a singular value decomposition with exact error
bounds, i.e. by using a SVD to compute ranks of matrices with error terms.

3.2.2. Computing the Weight Filtration. Note that T has integral entries by
definition. We thus easily compute the minimal l ∈ N such that Tl is unipo-
tent and the minimal index r ∈N such that

(Tl − Id)r = 0.

Then we compute

N := log(T) =
r−1

∑
k=1

(−1)k+1 Tl − Id
k

.
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Note that N has rational entries. Using the definition 1.1.8.3 of the spaces
W(N, k) and Gaussian elimination we then compute a series of matrices

Wk ∈ Qm×lk ; k = 0, ..., 2n− 1

where lk = dim W(N, k), whose columns are a basis of the space W(N, k)∗ in
terms of the basis γ1, ..., γm. Then

P∞Wk

parametrizes the weight k part of the Schmid limit MHS.

3.2.3. Computing the MHS on the Central Fiber. By theorem 2.1.5.5 we
now need to only pull down the Schmid limit MHS to ker(T − Id). Since
T has integral entries we compute a matrix M whose columns are a basis of
ker(T − Id) in terms of the γ1, ..., γm. Next we compute matrices W ′k whose
columns are a basis of the spaces W(N, k)∗ ∩ ker(T− Id) in terms of the basis
of ker(T − Id) given by the columns of M. Note that this only needs to
be done for k = 0, ..., n − 1 since X0 is projective (see remark 1.1.3.2). Let
l := dim (ker(T − Id)). We then obtain the MHS on Hn(X0, Z) as follows:

1. Compute P∞ M. We have rk(P∞ M) = l. We then remove rows from this
matrix until the resulting matrix is a square matrix, still of rank l. Even
though P∞ M has entries with error terms the rank can be checked in
each step by using a singular value decomposition as in remark 3.2.1.1.
By construction, the resulting matrix P(X0) is a period matrix paramet-
rizing the Hodge filtration of the MHS on Hn(X0, Z).

2. The weight k part of this MHS is given by

P(X0)W ′k.

3.3 Examples

To demonstrate our method we now give, for a few smooth quartic hyper-
surfaces in P3, a pencil that can be used to compute an integral vector in the
sense of chapter 3. Afterwards, we compute more integral vectors by com-
puting the remaining monodromy matrices of our pencil and applying them
to our integral vector. We then send randomly generated pencils through
the hypersurface of interest, carry over our basis of primitive cohomology,
compute all monodromy matrices and apply them to the integral vectors we
have so far obtained until we have computed 21 linearly independent integral
vectors. We note that computation of the Picard-Fuchs equations and mono-
dromy matrices is usually faster if the polynomials defining a pencil only
differ by one or two monomials. We hence made sure that this occurs while
randomly generating the pencils after having exhausted all the monodromy
matrices coming from our first pencil.
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For each example we record the time it took to compute a differentially
generated basis and its associated Picard-Fuchs equations as well the time
to compute the respective monodromy matrix that can be used to compute
an integral vector in the first pencil. We also record the time it took to get
from one integral vector to a basis of integral vectors, using other monodromy
matrices.

After we have obtained a full period matrix, we check our result by com-
puting the Picard rank of the hypersurface in question using the obtained
periods of a holomorphic form as in [LS19]. Recall that the period matrix
we obtain is a period matrix for our originial basis of primitive cohomology
scaled by some unknown λ ∈ C (i.e. we get periods of the form λω where ω
is our original holomorphic form and λ is unknown).

In each case we compute sections of the primitive cohomology bundle of
the respective pencil by choosing monomials m1, ..., mm in Q[x, y, z, w] of suit-
able degree such that their residues give a basis of the primitive cohomology
at t = 1. By the compatibility between pole order and Hodge filtration (see
lemma 1.2.1.3) they then automatically give a basis of the primitive cohomo-
logy at t = 1 as in definition 1.1.2.4. In the first and third example, we give the
structure of a resulting differentially generated basis to illustrate the concept.

All computations have been performed using the computer algebra system
SageMath [Dev20] on a Lenovo ThinkPad T450s with code written by the
author. To find analytic continuation paths for monodromy computations we
used code adapted from

github.com/emresertoz/PeriodSuite/blob/master/voronoi_path.sage.

3.3.1. The Fermat Hypersurface. Let f1 = x4 + y4 + z4 + w4. To demonstrate
the prediction of the Jordan normal form of a monodromy matrix via theorem
3.1.3.5 we put f0 := x4 + x2y2 + y4 + xyzw. f0 defines a projective hypersurface
with a non-isolated singular locus so that we cannot apply any of the results
in chapter 2. We let π : X→ P1 be the pencil of projective hypersurfaces given
by the equation

(1− t) f0 + t f1 = 0; t ∈ C.

Let ω1(t), ..., ω21(t) be the collection of sections of the primitive cohomology
bundle computed as described above. We then compute a differentially gen-
erated basis: In this case one is of the format

ω1(1), ..., ω
(4)
1 (1), ω2(1), ω

(1)
2 (1), ω3(1),

ω
(1)
3 (1), ω4(1), ω

(1)
4 (1), ω5(1), ..., ω

(3)
5 (1),

ω6(1), ω
(1)
6 (1), ω8(1), ω

(1)
8 (1), ω9(1), ω

(1)
9 (1).

The computation of this basis and the computation of the respective Picard-
Fuchs equations took 10.58 seconds. In the language of theorem 3.1.3.5 we

github.com/emresertoz/PeriodSuite/blob/master/voronoi_path.sage
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find the following corresponding collection of canonical local monomials at
t0 = 0 where in this case we computed mβ,k = 0 for all β:

1
2

log2 (t) , log (t) , 1, t, t2, 1, t,
1

t
1
4

, t
9
4 ,

1

t
1
4

, t
1
4 ,

1√
t
,
√

t, t
3
2 , t

5
2 ,

1

t
3
4

, t
3
4 ,

1

t
1
4

, t
1
4 , 1, t.

Hence, by theorem 3.1.3.5, the monodromy operator T on primitive homology
at 0 has exactly one Jordan block of size 3. The only eigenvalues of T are 2nd
and 4th roots of unity also by theorem 3.1.3.5. We hence have

rk(T4 − Id)2 = 1

i.e. T can be used to compute an integral vector of the Fermat hypersurface
X := { f1 = 0}. Computing T as in section 3.1.4 took 28.84 seconds.

To compute a full period matrix of the Fermat hypersurface we needed
all the monodromy matrices associated to π as well as 7 additional randomly
generated pencils and their respective monodromy matrices. This took the
total computation time for a full period matrix to roughly 37 minutes.

Each monodromy matrix in this example was computed with a target error
bound of 10−100.

We find the following periods for a holomorphic form on the Fermat hy-
persurface:

(−128.0,−64.0 + 64.0i,−64.0 + 64.0i, 704.0 + 320.0i,
− 64.0− 64.0i,−192.0 + 64.0i, 128.0i,−160.0 + 32.0i,
− 96.0 + 96.0i,−32.0 + 96.0i,−224.0 + 96.0i,−160.0 + 32.0i,
− 64.0 + 128.0i,−256.0 + 128.0i,−256.0− 128.0i,
− 192.0 + 192.0i,−352.0− 32.0i,−64.0 + 192.0i,
128.0 + 128.0i,−160.0,−160.0).

In this case, ignoring the error bounds of the period vector that was put out,
all of these periods are of the form a + bi with a, b ∈ Z. With these periods,
we find that the Picard rank of the Fermat hypersurface is 20, confirming the
known result.

3.3.2. A 5-nomial. To demonstrate the singularity-theoretic approach developed
in Chapter 2 we put f1 = 2w4 + x4 + y4 + y3z + 4z4 and f0 = f1 − 2x3z. Let
again π : X→ P1 be the pencil given by the equation

(1− t) f0 + t f1 = 0; t ∈ C.

Using the method described in section 3.1.1 we find that this pencil has 8
singular fibers, all of which have exactly one isolated singular point. 4 of
these have Milnor number 6 and the 4 others have Milnor number 3. By
lemma 2.2.2.7 each of the fibers with Milnor number 3 carries the singularity
A3. Hence any of the Monodromy operators at these 4 fibers can be used to
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compute a period vector by lemma 2.2.2.6: Each monodromy operator at the
values where the A3’s occur has eigenalue −1 with multiplicity 1.

In this case the computation of a differentially generated basis at t0 = 1
took 20.48 seconds and the computation of one of the monodromy operators
with eigenvalue −1 with multiplicity 1 took 37.86 seconds. We find that some-
times a large number of additional randomly generated pencils is required to
get to a full basis of integral vectors after having obtained one integral vector:
In this case we needed 12 additional randomly generated pencils, taking the
total computation time for a full period matrix of X := { f1 = 0} to roughly
70 minutes.

We find the following (rounded) periods for a holomorphic form on X:

(54606.754, 603.32348 + 54003.431i, 603.32348 + 603.32348i,
54606.754, 54003.431 + 603.32348i, 54606.754− 54606.754i,
54606.754 + 54606.754i, 27605.039− 301.66174i, 27605.039 + 27001.715i,
603.32348 + 27303.377i, 27605.039− 301.66174i, 301.66174 + 301.66174i,
27303.377− 27906.701i, 603.32348,−26700.054− 26700.054i,−26700.054,
− 26700.054− 27303.377i,−26700.054− 26700.054i,−26700.054,
− 26398.392− 301.66174i, 603.32348).

Computing the Picard rank of X with these periods gave a Picard rank of
18. This confirms the Picard rank of X given in the quartic database pierre.
lairez.fr/quarticdb/.

3.3.3. A Difficult 5-nomial. Let f1 := xy3 + z4 + x3w + y2zw + xw3. This is
one of the examples given in [HKS20] for which the authors were unable to
compute a period matrix in any reasonable time. Here, computations are
significantly more expensive than in the last two examples: We could not find
a single pencil through f1 where the Picard-Fuchs equations have order less
than 20. One of the more manageable pencils we could find was given by

t f1 + (1− t) f0 = 0; t ∈ C,

where f0 := f1 − xw3. This pencil has 12 singular fibers, 11 of which have ex-
actly one singular point which is a simple node. The remaining singular fiber
has exacly one singular point of Milnor number 10. Any of the monodromy
operators at the values where the simple nodes occur can be used to compute
an integral vector (see section 2.2.1). In this case one differentially generated
basis is of the format

ω1(1), ..., ω
(19)
1 (1), ω2(1)

with notation as above. We hence had to compute two Picard-Fuchs equations,
namely the PF-equation of ω1(t) and the one of ω2(t). This took roughly 14
minutes. The computation of one of the monodromy matrices T using this

pierre.lairez.fr/quarticdb/
pierre.lairez.fr/quarticdb/
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basis as in section 3.1.4 took roughly 11 minutes. An integral vector is hence
given by

w := (T − Id)v

for any v not in the kernel of (T − Id). We chose such a w, computed the
remaining monodromy matrices and applied them to w. This took roughly
134 minutes. We note that in this case we had to increase the target error
bound during analytic continuation to 10−200: Putting in 10−100 caused the
computed monodromy matrices to have error bounds of about 10300, making
them unusable.

In this case we only needed one additional randomly generated pencil to
obtain a full period matrix. Computation of the needed Picard-Fuchs equa-
tions for this pencil took roughly 10 minutes and computation of all the mono-
dromy matrices took roughly 78 minutes.

The thus obtained periods of a holomorphic form on X := { f1 = 0} are

(0.0000000,−0.03022660 + 0.003431382i,−0.02743533− 0.01161599i,
− 0.06763545− 0.01486758i,−0.06729886 + 0.0004327823i,
− 0.08611067− 0.01785912i,−0.08971974− 0.03133698i,
− 0.09879659− 0.01734328i,−0.07728164− 0.02878898i,
− 0.07156117− 0.04509659i,−0.05856580− 0.02877231i,
− 0.04660392− 0.02475775i,−0.01338820− 0.03067981i,
− 0.01663474 + 0.009457657i,−0.06486841− 0.03921600i,
− 0.06881764 + 0.009609022i,−0.07589850 + 0.006222306i,
− 0.1036695− 0.009209903i,−0.005560690 + 0.006579079i,
− 0.002920762− 0.02605885i,−0.03835328− 0.006622818i).

Using these periods, we find that X has Picard rank 2. This confirms the likely
Picard rank of X given in [HKS20].
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