
Polynomial factorization over finite fields
MPRI – Efficient algorithms in computer algebra

Pierre Lairez

Factorization reveals interesting phenomena

1. pick a random f ∈ ℚ[t, x, y]
2. compute Δ = discx (discy (f))
3. compute the irreducible factors of Δ

How to compute the irreducible factors of Δ?
1st step: factorization over 𝔽q, q odd ← today
2nd step: factorization over ℚ

L. Busé, B. Mourrain (2009). “Explicit Factors of Some Iterated Resultants and Discriminants”. In: Math.
Comp. 78.265, pp. 345–386. DOI: 10/ccjgkw

Polynomial factorization I | Introduction Page 1/41

https://doi.org/10/ccjgkw

Much easier than factorization over ℤ!
𝔽p [x] has many similarities with ℤ:
• Euclidean division
• the degree in 𝔽p [x] matches the logarithm of the absolute value in ℤ

• similar data representation
• similar (fast) multiplication algorithms
• (sometimes) similar algorithms for matrices over 𝔽p [x] or ℤ

Factorization is where analogy breaks down!

Polynomial factorization I | Introduction Page 2/41

General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K [x] is undecidable.

Proof
Take K = ℚ[√pi1,

√
pi2, . . .], where pi is the ith prime number and i1, i2, . . . is an

enumeration of the indices of the Turing machines that halt. For a given i, does X 2 − pi
splits over K? □

The example itself is irrelevant. Interesting conclusion:
� No factorization algorithm for abstract fields.

We will deal with specific properties of finite fields.

B. L. van der Waerden (1930). “Eine Bemerkung über die Unzerlegbarkeit von Polynomen”. In: Math. Ann.
102.1, pp. 738–739. DOI: 10/dmdkm6

Polynomial factorization I | Introduction Page 3/41

https://doi.org/10/dmdkm6

1. Introduction

2. Basic algebra
2.1 Finite fields
2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm

4. Bonus

Polynomial factorization I | Introduction Page 4/41

Finite fields I

Lemma

If K is a finite field, then |K | is a power of a prime number.

Proof
K is a 𝔽p-linear space, with p = charK , so |K | = |𝔽p |dimK . □

We fix a prime number p and an algebraic closure 𝔽p of 𝔽p.

Lemma

For any q = pn, the set {x ∈ 𝔽p | xq = x} is a subfield of 𝔽p.

Proof
It is closed under multiplication, inverse and addition because x ↦→ xq is a field
endomorphism.

Polynomial factorization I | Basic algebra Page 5/41

Finite field II

Definition

For any prime power q = pn, 𝔽q � {x ∈ 𝔽p | xq = x}

Theorem

For any finite field K , K ≃ 𝔽 |K | .

Proof
Let q = pn = |K |. Since K is a finite set, it is an algebraic extension of its prime field 𝔽p.
So there is an embedding𝜙 : K ↩→ 𝔽p. Note that K ≃ 𝜙 (K).
By Lagrange’s theorem applied to the multiplicative group K×, we have xq = x for
any x ∈ K . So𝜙 (K) ⊆ 𝔽q. By equality of cardinality,𝜙 (K) = 𝔽q. □

Polynomial factorization I | Basic algebra Page 6/41

Irreducible polynomials I

Let K be a field.
A polynomial f ∈ K [x] is irreducible (over K) if is not the product of two nonconstant
polynomials.

Lemma

A polynomial f ∈ K [x] is irreducible if and only if the quotient ring K [x]/(f) is a field.

Theorem

For any f ∈ K [x], there are distinct monic irreducible polynomials g1, . . . , gr and
positive integers e1, . . . , er such that f = lc(f)ge11 · · · g

er
r .

They are uniquely determined up to permutation.

The usual proof is very non constructive!

Polynomial factorization I | Basic algebra Page 7/41

Squarefree polynomials I

A polynomial f ∈ K [x] is squarefree if f is not divided by h2 for any
nonconstant h ∈ K [x].
Lemma

Let f ∈ K [x]. The following are equivalent:
1. f is squarefree;
2. the exponents in the irreducible factorization of f are 1;
3. the quotient ring K [x]/(f) is isomorphic to a product of fields;
4. zero is the only nilpotent element of K [x]/(f).

For a polynomial f which factors as c
∏

i g
ei
i , the squarefree part of f is

∏
i gi.

� gcd(f , f ′) = 1⇒ f is squarefree. The converse is not true.

Polynomial factorization I | Basic algebra Page 8/41

Squarefree polynomials II

Proof
Let f = c

∏
i g

ei
i be the irreducible factorization of f .

1⇒ 2. If ei > 1 then g2i divides f , so f is not squarefree.

2⇒ 3. If f = c
∏

i gi then K [x]/(f) = ∏
i K [x]/(gi). Since gi is irreducible,

K [x]/(gi) is a field.

3⇒ 4. Let (𝛼1, . . . , 𝛼r) be a nilpotent element of a product K1 × · · · × Kr of fields. That
is (𝛼n

1 , . . . , 𝛼
n
r) = (0, . . . , 0) for some n ≥ 1. Since each Ki is a field, this implies 𝛼i = 0.

4⇒ 1. Assume, for contradiction, that there is some nonconstant polynomial h such
that h2 |f . Write f = ah2. Then ah is nilpotent in K [x]/(f). By hypothesis, ah is zero in
this ring. So ah is divisible by f . But deg(ah) < deg(f). □

Polynomial factorization I | Basic algebra Page 9/41

1. Introduction

2. Basic algebra
2.1 Finite fields
2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm

4. Bonus

Polynomial factorization I | Factorization algorithms Page 10/41

Finite fields are perfect

Let q = pn be a prime power.

Lemma

On 𝔽q, the field endomorphism Frob : 𝛼 ↦→ 𝛼p is bijective with
inverse Frobn−1 : 𝛼 ↦→ 𝛼pn−1 .

Proof
Frob is injective, as any field endomorphism, and so bijective because 𝔽q is finite.
Frobn(𝛼) = 𝛼q = 𝛼 (Lagrange’s theorem), so Frob−1 = Frobn−1. □

Lemma

For any f ∈ 𝔽q [x], if f ′ = 0, then f = gp for some g ∈ 𝔽q [x].

Proof
Let f =

∑
i aixi. If f ′ = 0, then ai = 0 unless p|i.

So f =
∑

i apixpi = (
∑

i Frob−1(api)xi)p.

Polynomial factorization I | Factorization algorithms Page 11/41

Reduction to squarefree
1 def SquarefreePart(f):
2 if f and f ′ coprime:
3 return f
4 elif f ′ = 0:
5 compute g such that f = gp

6 return SquarefreePart(g)
7 else:
8 h← f /gcd(f , f ′)
9 g ← f /gcd(f , hdeg f) [g′ = 0]

10 return h · SquarefreePart(g)

Theorem

On input f ∈ 𝔽q [x] nonzero of degree d, SquarefreePart outputs the squarefree part of f
and performs O(M (d) log d + dp−1 log q) operations in 𝔽q.

Polynomial factorization I | Factorization algorithms Page 12/41

Recap

f ∈ 𝔽q [x]

squarefree part of f

irreducible factors of f

irreducible decomposition of f

M (d) log d + d
p log q

� to do

dM (d) with the naive algorithm

Polynomial factorization I | Factorization algorithms Page 13/41

1. Introduction

2. Basic algebra
2.1 Finite fields
2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm

4. Bonus

Polynomial factorization I | Factorization algorithms Page 14/41

Berlekamp’s irreducibility test

Let f ∈ 𝔽q [x] squarefree.
The map Q : 𝛼 ↦→ 𝛼q is a 𝔽q-linear map on 𝔽q [x]/(f).
Theorem (Berlekamp 1967)

dim𝔽q ker(Q − id) equals the number of irreducible factors of f .

Proof
Decompose 𝔽q [x]/(f) as L1 × · · · × Lr , where each Li is an algebraic extension of 𝔽q.
Each factor Li is stable under Q. In particular

ker(Q − id) ≃∏
i ker(Q − id) |Li

=
∏

i {𝛼 ∈ Li | 𝛼q = 𝛼} = 𝔽 r
q . □

Corollary

Irreducibility in 𝔽q [x] is decidable with O(d𝜔 + dM (d) log q) operations in 𝔽q, where d
is the degree.
E. R. Berlekamp (1967). “Factoring Polynomials Over Finite Fields”. In: Bell Syst. Tech. J. 46.8,
pp. 1853–1859. DOI: 10/gm96m7

Polynomial factorization I | Factorization algorithms Page 15/41

https://doi.org/10/gm96m7

The quotient ring of a squarefree polynomial

𝔽q

𝔽q

𝔽q

𝔽q

𝔽q

𝔽q2

𝔽q𝛼

𝔽q

𝔽q5

𝔽q𝛽

𝔽q𝛽
2

𝔽q𝛽
3

𝔽q𝛽
4

𝔽q

𝔽q5

𝔽q𝛽

𝔽q𝛽
2

𝔽q𝛽
3

𝔽q𝛽
4

𝔽q

𝔽q5

𝔽q𝛽

𝔽q𝛽
2

𝔽q𝛽
3

𝔽q𝛽
4

× × × × ×𝔽q [x]/(f) ≃

ker(Frobn − id)

Frobn stabilizes the bottom row

Polynomial factorization I | Factorization algorithms Page 16/41

Factorization: a trivial but key idea

Lemma

Let f ∈ K [x] be a squarefree polynomial.
Let f = g1 · · · gr be its irreducible decomposition.

Let𝜂 ∈ K [x]/(f) and (𝜂1, . . . , 𝜂r) the corresponding tuple under the isomorphism
K [x]/(f) ≃ K [x]/(g1) × · · · × K [x]/(gr).

Then gcd(f , 𝜂) =
∏

i s.t. 𝜂i=0
gi.

Proof
𝜂i = 0⇔ gi |𝜂. □

� We want to find an𝜂 with some but not all zero components.

Polynomial factorization I | Factorization algorithms Page 17/41

Squares in 𝔽q

� Assumption: q is odd

Lemma

Let S+ =
{
𝛼 ∈ 𝔽 ×q

��� 𝛼 q−1
2 = 1

}
and S− =

{
𝛼 ∈ 𝔽 ×q

��� 𝛼 q−1
2 = −1

}
.

Then
1. #S+ = #S− =

q−1
2

2. 𝔽 ×q is the disjoint union of S+ and S−.

Proof
As the zero set of polynomials of degree q−1

2 , S+ and S− contain at most q−1
2 elements

each.
For any 𝛼 ∈ 𝔽 ×q , 1 = 𝛼q−1 = (𝛼

q−1
2)2, so 𝔽 ×q = S+ ∪ S−. The union is clearly disjoint. For

cardinality reasons, #S+ = #S− =
q−1
2 .

Polynomial factorization I | Factorization algorithms Page 18/41

Berlekamp’s idea for factorization

∗

𝔽q

∗

𝔽q

∗

𝔽q2

0

∗

𝔽q5

0

0

0

0

∗

𝔽q5

0

0

0

0

∗

𝔽q5

0

0

0

0

× × × × ×𝔽q [x]/(f) ≃

ker(Frobn − id)

Frobn stabilizes the bottom row

� Assumption: q is odd

1. Compute ker(Frobn − id)
2. Choose a uniformly

distributed random element
in it

3. Elevate to the power q−1
2

4. Add 1
5. Takes the gcd with f

Polynomial factorization I | Factorization algorithms Page 19/41

1. Introduction

2. Basic algebra
2.1 Finite fields
2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm

4. Bonus

Polynomial factorization I | Factorization algorithms Page 20/41

Distinct-degree factorization

𝔽q

𝔽q

𝔽q

𝔽q

𝔽q

𝔽q2

𝔽q𝛼

𝔽q

𝔽q5

𝔽q𝛽

𝔽q𝛽
2

𝔽q𝛽
3

𝔽q𝛽
4

𝔽q

𝔽q5

𝔽q𝛽

𝔽q𝛽
2

𝔽q𝛽
3

𝔽q𝛽
4

𝔽q

𝔽q5

𝔽q𝛽

𝔽q𝛽
2

𝔽q𝛽
3

𝔽q𝛽
4

× × × × ×𝔽q [x]/(f) ≃

𝜂 ← class of x
𝜂 ← 𝜂q

fixed fixed

𝜂 ← 𝜂q

fixed

𝜂 ← 𝜂q

𝜂 ← 𝜂q

𝜂 ← 𝜂q

Polynomial factorization I | Factorization algorithms Page 21/41

A formula for irreducible polynomials I

As usual, let q = pn be a prime power.

Lemma

LetPd =
{
g ∈ 𝔽q [x]

�� g is monic, irreducible and of degree d
}

.
For any d ≥ 1,

xq
d − x =

∏
s |d

∏
g∈Ps

g.

A complete description of the irreducible polynomials over 𝔽q!

Proof

Polynomial factorization I | Factorization algorithms Page 22/41

A formula for irreducible polynomials II

Let g ∈ Ps for some divisor s of d. The quotient ring 𝔽q [x]/(g) is a field of cardinality qs.
In particular, its generator 𝛼 � [x] satisfies 𝛼 = 𝛼qs = 𝛼qd . So g divides xq

d − x.
It follows that

∏
s |d

∏
g∈Psg divides xq

d − x.

Conversely, let g be an irreducible factor of xq
d − x. The quotient ring 𝔽q [x]/(g) is a

field and its generator 𝛼 = [x] satisfy 𝛼qd = 𝛼 . So it is a subfield of 𝔽qd and therefore
isomorphic to some 𝔽qs , for some divisor s of d. It follows that the minimal polynomial
of 𝛼 (that is g) has degree s.
To conclude, observe that the l.h.s. is squarefree (its derivative is−1).

Polynomial factorization I | Factorization algorithms Page 23/41

Distinct-degree factorization, the algorithm

input f ∈ 𝔽q [x] monic and squarefree
output g1, . . . , gs ∈ 𝔽q [x] such that f = g1 · · · gs and the irreducible factors of gi

have degree i.
1 def DistinctDegreeFactor(f):
2 s← 0
3 𝜂 ← x
4 while f is not constant:
5 s← s + 1
6 𝜂 ← 𝜂q mod f [𝜂 = xq

s mod f]
7 gs ← gcd(𝜂 − x, f)
8 f ← f /gs
9 return (g1, . . . , gs)

Theorem

The algorithm is correct and performs O(dM (d) log d + dM (d) log q) operations in 𝔽q.

Polynomial factorization I | Factorization algorithms Page 24/41

Cantor and Zassenhaus’ idea

� Assumption: q is odd

∗

𝔽q3

∗

∗

∗

𝔽q3

∗

∗

∗

𝔽q3

∗

∗

∗

𝔽q3

∗

∗

∗

𝔽q3

∗

∗

= 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0= 0 ∈ S+ ∈ S+ ∈ S− ∈ S+

× × × ×𝔽q [x]/(f) ≃

1. pick𝜂 at random

2. 𝜂 ← 𝜂
q3−1
2

3. f = gcd(f , 𝜂) gcd(f , 𝜂 − 1) gcd(f , 𝜂 + 1)
Polynomial factorization I | Factorization algorithms Page 25/41

Cantor and Zassenhaus’ theorem I

� Assumption: q is odd

Theorem (Cantor, Zassenhaus 1981)

Let f ∈ 𝔽q [x] of degree d such that all irreducible factors of f have degree s < d. (Note
that s |d.)
Let𝜂 ∈ 𝔽q [x] be a polynomial of degree less than d.
Then

1. f = gcd(f , 𝜂) · gcd(f , 𝜂
qs−1
2 − 1) · gcd(f , 𝜂

qs−1
2 + 1)

2. for at least 50% of the qd possible choices of𝜂, the factorization above is nontrivial.

D. G. Cantor, H. Zassenhaus (1981). “A New Algorithm for Factoring Polynomials over Finite Fields”. In:
Math. Comput. 36.154, pp. 587–592. DOI: 10/b652qb

Polynomial factorization I | Factorization algorithms Page 26/41

https://doi.org/10/b652qb

Cantor and Zassenhaus’ theorem II
Proof
We just proved the first point.
Concerning the second point, let𝜂 ∈ 𝔽q [x]/(f) and (𝜂1, . . . , 𝜂r) its decomposition
in
∏

i 𝔽q [x]/(gi) = (𝔽qs)r , where f = g1 · · · gr . We have a trivial factorization if and
only if the𝜂i are all zero, or all in S+ or all in S−. Therefore

Prob(trivial factorization) = 1 + #Sr+ + #Sr−
total number of choices

= q−d
(
1 + 2

(
qs − 1
2

) r)
≤ q−d

(
21−r (qs)r

)
= 21−r ≤ 1

2
. □

Polynomial factorization I | Factorization algorithms Page 27/41

Cantor and Zassenhaus’ algorithm

input f ∈ 𝔽q [x] squarefree, s < deg f such that the irreducible factors of f
have degree s

output the irreducible factors of f
1 def CZ(f , s):
2 if s = deg f :
3 return {f }
4 else:
5 pick a0, . . . , adeg f −1 ∈ 𝔽q uniformly at random
6 𝜂 ← a0 + a1x + · · · + adeg f −1xdeg f −1

7 𝜂 ← 𝜂
qs−1
2 mod f

8 g0 ← gcd(f , 𝜂)
9 g+ ← gcd(f , 𝜂 − 1)

10 g− ← gcd(f , 𝜂 + 1) [g− = f /g0/g+]
11 return CZ(g0, s) ∪ CZ(g+, s) ∪ CZ(g−, s)

Polynomial factorization I | Factorization algorithms Page 28/41

Application/exercise

Let p = 261 − 1.
Compute u ∈ 𝔽p such that u2 = 5.

Polynomial factorization I | Factorization algorithms Page 29/41

Complexity analysis

Excluding recursive calls, each call performs:
• O(M (d) log d) ops in 𝔽q for the gcd computations
• O(M (d)s log q) ops in 𝔽q for the exponentiation

A recursive call is trivial if the degree of its argument has not decreased. On average,
there is no more than 50% trivial calls. There are O(d) nontrivial calls. So there
are O(d) calls on average.
This leads to a O(sdM (d) log q + dM (d) log d) total average complexity.

� This is not a tight analysis!

Polynomial factorization I | Factorization algorithms Page 30/41

Refined complexity analysis

Imagine a biased dice with 3 facets:
• a facet ○␣ with probability q−s ≤ 1

3
• two equiprobable facets + and −

Game

Draw r columns. At each turn, draw one dice for each column, and append the symbol
to the column. Stop when each column is different.

Lemma

The game stops after O(log r) iterations on average.

Proof
The probability that the columns i and j are equal after k iterations is at most 2−k. The
probability that the columns are not all different after k iterations is at most r22−k. □

Polynomial factorization I | Factorization algorithms Page 31/41

Let us play

0 1 2 3 4 5 6 7 8 9

○␣ ○␣ − ○␣ ○␣ − + + + −
+ + + + + + ○␣ + ○␣ +
− + − − − ○␣ ○␣ + + +
○␣ ○␣ ○␣ ○␣ − ○␣ − − ○␣ ○␣
− − ○␣ + − + + + ○␣ ○␣

(Probably more ○␣ than what would happen in practice.)

Polynomial factorization I | Factorization algorithms Page 32/41

Another view of the game

g0 · · · g9 g2g5g9 g2g5g9 g2
g5
g9

g0g1g3g4 g0g1g3g4 g0g3g4 g0g3 g0
g3

g4
g1

g6g7g8 g7
g6g8 g6

g8

○␣

−

+

+

+

○␣

+

○␣

−

+

−

+

○␣

+

○␣

−

−

+

This is the tree of recursive calls in CZ algorithm.
The tree has height O(log r) on average. The sum of the cost of all computations at a
given depth is O(M (d)s log q +M (d) log d).
Total average complexity: O ((M (d)s log q +M (d) log d) log r).

Polynomial factorization I | Factorization algorithms Page 33/41

1. Introduction

2. Basic algebra
2.1 Finite fields
2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm

4. Bonus

Polynomial factorization I | Factorization algorithms Page 34/41

The full algorithm...
1 def Factor(f):
2 fsquarefree ← SquarefreePart(f)
3 g1, . . . , gs ← DistinctDegreeFactor(fsquarefree)
4 I ← ∅
5 for i ∈ {1, . . . , s}:
6 I ← I ∪ CZ(gi, i)
7 J ← ∅
8 for g ∈ I:
9 e← 0

10 while true:
11 f ← f /g
12 e← e + 1
13 if g does not divides f :
14 break
15 J ← J ∪ {(g, e)}
16 returnJ
Polynomial factorization I | Factorization algorithms Page 35/41

...and its complexity

Theorem (Cantor, Zassenhaus 1981)

The algorithm above, on input f ∈ 𝔽q [x], outputs the irreducible factorization of f after

O(dM (d) (log d + log q)) = Õ(d2 log q)

operations in 𝔽q, where d = deg f .

Major open question

Can we factor polynomials over 𝔽q in deterministic polynomial time?

J. von zur Gathen, V. Shoup (1992). “Computing Frobenius Maps and Factoring Polynomials”. In: Comput
Complexity 2.3, pp. 187–224. DOI: 10/dmbbhb
E. Kaltofen, V. Shoup (1998). “Subquadratic-Time Factoring of Polynomials over Finite Fields”. In: Math.
Comp. 67.223, pp. 1179–1197. DOI: 10/c3ttb3
K. S. Kedlaya, C. Umans (2011). “Fast Polynomial Factorization and Modular Composition”. In: SIAM J.
Comput. 40.6, pp. 1767–1802. DOI: 10/fxv98c
Polynomial factorization I | Factorization algorithms Page 36/41

https://doi.org/10/dmbbhb
https://doi.org/10/c3ttb3
https://doi.org/10/fxv98c

1. Introduction

2. Basic algebra
2.1 Finite fields
2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm

4. Bonus

Polynomial factorization I | Bonus Page 37/41

The iterated Frobenius algorithm

input f ∈ 𝔽q [x],𝜂 ∈ 𝔽q [x], and ≤ s ≤ deg f , with deg𝜂 < deg f
output 𝜂, 𝜂q, 𝜂q

2
, . . . , 𝜂q

s mod f
1 def IteratedFrobenius(f , 𝜂, s):
2 𝛾0 ← x
3 𝛾1 ← xq mod f
4 while i ≤ s:
5 for j ∈ {1, . . . , i}: [multipoint evaluation over the ring 𝔽q [x]/(f)]
6 𝛾i+j ← 𝛾i (𝛾j) mod f
7 i← 2i
8 for i ∈ {0, . . . , s}: [multipoint evaluation again]
9 𝛼i ← 𝜂 (𝛾i) mod f

10 return 𝛼0, . . . , 𝛼s

Polynomial factorization I | Bonus Page 38/41

What is going on?

1. For any𝜂 ∈ 𝔽q [x],𝜂q
j ≡ 𝜂 (xqj) ≡ 𝜂 (xqj (mod f)) mod f

2. Let𝛾i = xq
i mod f .

Using with𝜂 = 𝛾i, we have𝛾i+j ≡ (xq
i)qj ≡ 𝛾i (𝛾j) mod f

Theorem

Algorithm IteratedFrobenius is correct and performs O(M (d)2 log(d)2 +M (d) log q)
operations in 𝔽q.

We can use this algorithm to improve the complexity of distinct-degree and
equal-degree factorization.

Polynomial factorization I | Bonus Page 39/41

The iterated Frobenius algorithm

input f ∈ 𝔽q [x],𝜂 ∈ 𝔽q [x], and s ≥ 1, with deg𝜂 < deg f

output 𝜂
qs−1
2 mod f

1 def SuperFastExponentiation(f , 𝜂, s):
2 𝛼0, . . . , 𝛼s−1 ← IteratedFrobenius(f , 𝜂, s − 1)
3 return (𝛼0 · · ·𝛼s−1)

q−1
2 mod f

NB:𝜂
qs−1
2 =

(s−1∏
i=0

𝜂q
i
) q−1

2

Theorem

Algorithm SuperFastExponentiation is correct and
performs O(M (d)2(log d)2 +M (d) log q) operations in 𝔽q.

Polynomial factorization I | Bonus Page 40/41

Final complexity result

Theorem (von zur Gathen, Shoup 1992)

The algorithm explained above, on input f ∈ 𝔽q [x], outputs the irreducible factorization
of f after

Õ(d2 + d log q)

operations in 𝔽q, where d = deg f .

Polynomial factorization I | Bonus Page 41/41

	Introduction
	Basic algebra
	Finite fields
	Polynomials

	Factorization algorithms
	Reduction to the squarefree case
	Berlekamp's approach
	Cantor and Zassenhaus' algorithm
	The full algorithm

	Bonus

