Polynomial factorization over finite fields MPRI – Efficient algorithms in computer algebra

Pierre Lairez

Factorization reveals interesting phenomena

- 1. pick a random $f \in \mathbb{Q}[t, x, y]$
- 2. compute $\Delta = \operatorname{disc}_x(\operatorname{disc}_y(f))$
- 3. compute the irreducible factors of Δ

How to compute the irreducible factors of Δ ?

1st step: factorization over \mathbb{F}_q , q odd 2nd step: factorization over \mathbb{Q}

 \leftarrow today

L. Busé, B. Mourrain (2009). "Explicit Factors of Some Iterated Resultants and Discriminants". In: *Math. Comp.* 78.265, pp. 345–386. DOI: 10/ccjgkw

Much easier than factorization over \mathbb{Z} !

 $\mathbb{F}_p[x]$ has many similarities with \mathbb{Z} :

- Euclidean division
- the degree in $\mathbb{F}_p[x]$ matches the logarithm of the absolute value in $\mathbb Z$
- similar data representation
- similar (fast) multiplication algorithms
- (sometimes) similar algorithms for matrices over $\mathbb{F}_p[x]$ or \mathbb{Z}

Factorization is where analogy breaks down!

General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K[x] is undecidable.

Proof

Take $K = \mathbb{Q}[\sqrt{p_{i_1}}, \sqrt{p_{i_2}}, \dots]$, where p_i is the *i*th prime number and i_1, i_2, \dots is an enumeration of the indices of the Turing machines that halt. For a given *i*, does $X^2 - p_i$ splits over K?

The example itself is irrelevant. Interesting conclusion:

A No factorization algorithm for abstract fields. We will deal with specific properties of finite fields.

B. L. van der Waerden (1930). "Eine Bemerkung über die Unzerlegbarkeit von Polynomen". In: *Math. Ann.* 102.1, pp. 738–739. DOI: 10/dmdkm6

1. Introduction

- 2. Basic algebra
 2.1 Finite fields
 2.2 Polynomials
- 3. Factorization algorithms
 3.1 Reduction to the squarefree case
 3.2 Berlekamp's approach
 3.3 Cantor and Zassenhaus' algorithm
 3.4 The full algorithm

4. Bonus

Finite fields I

Lemma

If K is a finite field, then |K| is a power of a prime number.

Proof

K is a \mathbb{F}_p -linear space, with $p = \operatorname{char} K$, so $|K| = |\mathbb{F}_p|^{\dim K}$.

We fix a prime number p and an algebraic closure $\overline{\mathbb{F}_p}$ of \mathbb{F}_p .

Lemma

For any
$$q = p^n$$
, the set $\{x \in \overline{\mathbb{F}_p} \mid x^q = x\}$ is a subfield of $\overline{\mathbb{F}_p}$.

Proof

It is closed under multiplication, inverse and addition because $x \mapsto x^q$ is a field endomorphism.

Finite field II

Definition

For any prime power $q = p^n$, $\mathbb{F}_q \doteq \{x \in \overline{\mathbb{F}_p} \mid x^q = x\}$

Theorem

For any finite field K, $K \simeq \mathbb{F}_{|K|}$.

Proof

Let $q = p^n = |K|$. Since K is a finite set, it is an algebraic extension of its prime field \mathbb{F}_p . So there is an embedding $\phi : K \hookrightarrow \overline{\mathbb{F}_p}$. Note that $K \simeq \phi(K)$. By Lagrange's theorem applied to the multiplicative group K^{\times} , we have $x^q = x$ for any $x \in K$. So $\phi(K) \subseteq \mathbb{F}_q$. By equality of cardinality, $\phi(K) = \mathbb{F}_q$.

Irreducible polynomials I

Let K be a field. A polynomial $f \in K[x]$ is *irreducible* (over K) if is not the product of two nonconstant polynomials.

Lemma

A polynomial $f \in K[x]$ is irreducible if and only if the quotient ring K[x]/(f) is a field.

Theorem

For any $f \in K[x]$, there are distinct monic irreducible polynomials g_1, \ldots, g_r and positive integers e_1, \ldots, e_r such that $f = lc(f)g_1^{e_1} \cdots g_r^{e_r}$. They are uniquely determined up to permutation.

The usual proof is very non constructive!

Squarefree polynomials I

A polynomial $f \in K[x]$ is squarefree if f is not divided by h^2 for any nonconstant $h \in K[x]$.

Lemma

Let $f \in K[x]$. The following are equivalent:

- 1. *f* is squarefree;
- 2. the exponents in the irreducible factorization of f are 1;
- 3. the quotient ring K[x]/(f) is isomorphic to a product of fields;
- 4. zero is the only nilpotent element of K[x]/(f).

For a polynomial f which factors as $c \prod_i g_i^{e_i}$, the squarefree part of f is $\prod_i g_i$.

 A gcd $(f, f') = 1 \Rightarrow f$ is squarefree. The converse is not true.

Squarefree polynomials II

Proof

Let $f = c \prod_i g_i^{e_i}$ be the irreducible factorization of f.

 $1 \Rightarrow 2$. If $e_i > 1$ then g_i^2 divides f, so f is not squarefree.

2 \Rightarrow 3. If $f = c \prod_i g_i$ then $K[x]/(f) = \prod_i K[x]/(g_i)$. Since g_i is irreducible, $K[x]/(g_i)$ is a field.

 $3 \Rightarrow 4$. Let $(\alpha_1, \ldots, \alpha_r)$ be a nilpotent element of a product $K_1 \times \cdots \times K_r$ of fields. That is $(\alpha_1^n, \ldots, \alpha_r^n) = (0, \ldots, 0)$ for some $n \ge 1$. Since each K_i is a field, this implies $\alpha_i = 0$.

 $4 \Rightarrow 1$. Assume, for contradiction, that there is some nonconstant polynomial h such that $h^2|f$. Write $f = ah^2$. Then ah is nilpotent in K[x]/(f). By hypothesis, ah is zero in this ring. So ah is divisible by f. But $\deg(ah) < \deg(f)$.

- 1. Introduction
- Basic algebra
 Finite fields
 Polynomials
- 3. Factorization algorithms3.1 Reduction to the squarefree case3.2 Berlekamp's approach3.3 Cantor and Zassenhaus' algorithm3.4 The full algorithm

4. Bonus

Finite fields are perfect

Let $q = p^n$ be a prime power.

Lemma

On \mathbb{F}_q , the field endomorphism $\operatorname{Frob} : \alpha \mapsto \alpha^p$ is bijective with inverse $\operatorname{Frob}^{n-1} : \alpha \mapsto \alpha^{p^{n-1}}$.

Proof

Frob is injective, as any field endomorphism, and so bijective because \mathbb{F}_q is finite. Frob^{*n*}(α) = $\alpha^q = \alpha$ (Lagrange's theorem), so Frob⁻¹ = Frob^{*n*-1}.

Lemma

For any
$$f \in \mathbb{F}_q[x]$$
, if $f' = 0$, then $f = g^p$ for some $g \in \mathbb{F}_q[x]$.

Proof
Let
$$f = \sum_{i} a_{i} x^{i}$$
. If $f' = 0$, then $a_{i} = 0$ unless $p|i$
So $f = \sum_{i} a_{pi} x^{pi} = (\sum_{i} \operatorname{Frob}^{-1}(a_{pi}) x_{i})^{p}$.

Reduction to squarefree

def SquarefreePart(f):
if f and f' coprime:
return f
elif $f' = 0$:
compute g such that $f = g^p$
return <i>SquarefreePart</i> (<i>g</i>)
else:
$h \leftarrow f/\gcd(f, f')$
$g \leftarrow f/\gcd(f, h^{\deg f}) [g' = 0]$
return $h \cdot$ SquarefreePart (g)

Theorem

On input $f \in \mathbb{F}_q[x]$ nonzero of degree d, SquarefreePart outputs the squarefree part of f and performs $O(M(d) \log d + dp^{-1} \log q)$ operations in \mathbb{F}_q .

Recap

```
f \in \mathbb{F}_q[x]\int M(d) \log d + \frac{d}{p} \log q
squarefree part of f to do
irreducible factors of f \int dM(d) with the naive algorithm
 irreducible decomposition of f
```

1. Introduction

2. Basic algebra

2.1 Finite fields2.2 Polynomials

3. Factorization algorithms

3.1 Reduction to the squarefree case

3.2 Berlekamp's approach

3.3 Cantor and Zassenhaus' algorithm3.4 The full algorithm

4. Bonus

Berlekamp's irreducibility test

Let $f \in \mathbb{F}_q[x]$ squarefree. The map $Q : \alpha \mapsto \alpha^q$ is a \mathbb{F}_q -linear map on $\mathbb{F}_q[x]/(f)$.

Theorem (Berlekamp 1967)

 $\dim_{\mathbb{F}_q} \ker(Q - \mathrm{id})$ equals the number of irreducible factors of f.

Proof

Decompose $\mathbb{F}_q[x]/(f)$ as $L_1 \times \cdots \times L_r$, where each L_i is an algebraic extension of \mathbb{F}_q . Each factor L_i is stable under Q. In particular

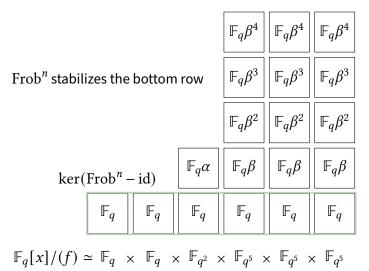
$$\ker(Q - \mathrm{id}) \simeq \prod_{i} \ker(Q - \mathrm{id})|_{L_{i}}$$
$$= \prod_{i} \{ \alpha \in L_{i} \mid \alpha^{q} = \alpha \} = \mathbb{F}_{q}^{r}. \quad \Box$$

Corollary

Irreducibility in $\mathbb{F}_q[x]$ is decidable with $O(d^{\omega} + dM(d) \log q)$ operations in \mathbb{F}_q , where d is the degree.

Polynomial factorization I | Factorization algorithms

The quotient ring of a squarefree polynomial



Factorization: a trivial but key idea

Lemma

Let $f \in K[x]$ be a squarefree polynomial. Let $f = g_1 \cdots g_r$ be its irreducible decomposition. Let $\eta \in K[x]/(f)$ and (η_1, \dots, η_r) the corresponding tuple under the isomorphism $K[x]/(f) \simeq K[x]/(g_1) \times \cdots \times K[x]/(g_r)$. Then $gcd(f, \eta) = \prod_{i \text{ s.t. } \eta_i=0} g_i$.

Proof $\eta_i = 0 \Leftrightarrow g_i | \eta.$

\dot{\mathbf{r}}_{\mathbf{r}} We want to find an η with some but not all zero components.

Squares in \mathbb{F}_q

Assumption: *q* is odd

Lemma

Let
$$S_{+} = \{ \alpha \in \mathbb{F}_{q}^{\times} \mid \alpha^{\frac{q-1}{2}} = 1 \}$$
 and $S_{-} = \{ \alpha \in \mathbb{F}_{q}^{\times} \mid \alpha^{\frac{q-1}{2}} = -1 \}.$

Then

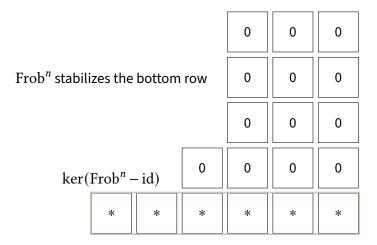
1. $\#S_+ = \#S_- = \frac{q-1}{2}$

2.
$$\mathbb{F}_q^{\times}$$
 is the disjoint union of S_+ and S_- .

Proof

As the zero set of polynomials of degree $\frac{q-1}{2}$, S_+ and S_- contain at most $\frac{q-1}{2}$ elements each. For any $\alpha \in \mathbb{F}_q^{\times}$, $1 = \alpha^{q-1} = (\alpha^{\frac{q-1}{2}})^2$, so $\mathbb{F}_q^{\times} = S_+ \cup S_-$. The union is clearly disjoint. For cardinality reasons, $\#S_+ = \#S_- = \frac{q-1}{2}$.

Berlekamp's idea for factorization



1. Compute $ker(Frob^n - id)$

- Choose a uniformly distributed random element in it
- 3. Elevate to the power $\frac{q-1}{2}$

4. Add 1

5. Takes the gcd with f

 $\mathbb{F}_q[x]/(f) \simeq \mathbb{F}_q \times \mathbb{F}_q \times \mathbb{F}_{q^2} \times \mathbb{F}_{q^5} \times \mathbb{F}_{q^5} \times \mathbb{F}_{q^5}$

Assumption: *q* is odd

1. Introduction

2. Basic algebra

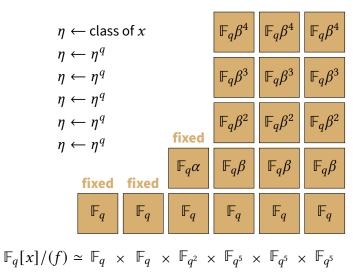
2.1 Finite fields2.2 Polynomials

3. Factorization algorithms

3.1 Reduction to the squarefree case3.2 Berlekamp's approach3.3 Cantor and Zassenhaus' algorithm3.4 The full algorithm

4. Bonus

Distinct-degree factorization



A formula for irreducible polynomials I

As usual, let $q = p^n$ be a prime power.

Lemma

Let
$$\mathcal{P}_d = \{g \in \mathbb{F}_q[x] \mid g \text{ is monic, irreducible and of degree } d\}$$
.
For any $d \ge 1$,

$$x^{q^d} - x = \prod_{s \mid d} \prod_{g \in \mathcal{P}_s} g.$$

A complete description of the irreducible polynomials over \mathbb{F}_q !

Proof

A formula for irreducible polynomials II

Let $g \in \mathcal{P}_s$ for some divisor s of d. The quotient ring $\mathbb{F}_q[x]/(g)$ is a field of cardinality q^s . In particular, its generator $\alpha \doteq [x]$ satisfies $\alpha = \alpha^{q^s} = \alpha^{q^d}$. So g divides $x^{q^d} - x$. It follows that $\prod_{s|d} \prod_{g \in \mathcal{P}_s} g$ divides $x^{q^d} - x$.

Conversely, let g be an irreducible factor of $x^{q^d} - x$. The quotient ring $\mathbb{F}_q[x]/(g)$ is a field and its generator $\alpha = [x]$ satisfy $\alpha^{q^d} = \alpha$. So it is a subfield of \mathbb{F}_{q^d} and therefore isomorphic to some \mathbb{F}_{q^s} , for some divisor s of d. It follows that the minimal polynomial of α (that is g) has degree s.

To conclude, observe that the l.h.s. is squarefree (its derivative is -1).

Distinct-degree factorization, the algorithm

input $f \in \mathbb{F}_{q}[x]$ monic and squarefree *output* $g_1, \ldots, g_s \in \mathbb{F}_q[x]$ such that $f = g_1 \cdots g_s$ and the irreducible factors of g_i have degree *i*. **def** DistinctDegreeFactor(f): $s \leftarrow 0$ $\eta \leftarrow x$ while f is not constant: $s \leftarrow s + 1$ $\eta \leftarrow \eta^q \mod f \quad [\eta = x^{q^s} \mod f]$ $g_s \leftarrow \gcd(\eta - x, f)$

The algorithm is correct and performs $O(dM(d) \log d + dM(d) \log q)$ operations in \mathbb{F}_q .

 $f \leftarrow f/g_s$ return (g_1, \ldots, g_s)

Cantor and Zassenhaus' idea

Assumption: *q* is odd

 $= 0 \quad \Leftrightarrow \mathfrak{A} \quad \Leftrightarrow \mathfrak{A} \quad \Leftrightarrow \mathfrak{A} \quad \Leftrightarrow \mathfrak{A}$

*	*	*	*	*
*	*	*	*	*
*	*	*	*	*

$$\mathbb{F}_q[\mathbf{x}]/(f) \simeq \mathbb{F}_{q^3} \times \mathbb{F}_{q^3} \times \mathbb{F}_{q^3} \times \mathbb{F}_{q^3} \times \mathbb{F}_{q^3}$$

1. pick η at random

2.
$$\eta \leftarrow \eta^{\frac{q^3-1}{2}}$$

3. $f = \operatorname{gcd}(f, \eta) \operatorname{gcd}(f, \eta - 1) \operatorname{gcd}(f, \eta + 1)$

Polynomial factorization I | Factorization algorithms

Cantor and Zassenhaus' theorem I

Assumption: *q* is odd

Theorem (Cantor, Zassenhaus 1981)

Let $f \in \mathbb{F}_q[x]$ of degree d such that all irreducible factors of f have degree s < d. (Note that s|d.)

Let $\eta \in \mathbb{F}_q[x]$ be a polynomial of degree less than d. Then

1.
$$f = \gcd(f, \eta) \cdot \gcd(f, \eta^{\frac{q^s-1}{2}} - 1) \cdot \gcd(f, \eta^{\frac{q^s-1}{2}} + 1)$$

2. for at least 50% of the q^d possible choices of η , the factorization above is nontrivial.

D. G. Cantor, H. Zassenhaus (1981). "A New Algorithm for Factoring Polynomials over Finite Fields". In: *Math. Comput.* 36.154, pp. 587–592. DOI: 10/b652qb

Cantor and Zassenhaus' theorem II

Proof

We just proved the first point.

Concerning the second point, let $\eta \in \mathbb{F}_q[x]/(f)$ and (η_1, \ldots, η_r) its decomposition in $\prod_i \mathbb{F}_q[x]/(g_i) = (\mathbb{F}_{q^s})^r$, where $f = g_1 \cdots g_r$. We have a trivial factorization if and only if the η_i are all zero, or all in S_+ or all in S_- . Therefore

$$Prob(trivial factorization) = \frac{1 + \#S_{+}^{r} + \#S_{-}^{r}}{\text{total number of choices}}$$
$$= q^{-d} \left(1 + 2\left(\frac{q^{s} - 1}{2}\right)^{r}\right)$$
$$\leq q^{-d} \left(2^{1-r}(q^{s})^{r}\right) = 2^{1-r} \leq \frac{1}{2}. \quad \Box$$

Cantor and Zassenhaus' algorithm

input $f \in \mathbb{F}_q[x]$ squarefree, $s < \deg f$ such that the irreducible factors of f have degree s

output the irreducible factors of f

def CZ(f, s): if $s = \deg f$: return $\{f\}$

else:

pick
$$a_0, \ldots, a_{\deg f-1} \in \mathbb{F}_q$$
 uniformly at random
 $\eta \leftarrow a_0 + a_1 x + \cdots + a_{\deg f-1} x^{\deg f-1}$
 $\eta \leftarrow \eta^{\frac{q^s-1}{2}} \mod f$
 $g_0 \leftarrow \gcd(f, \eta)$
 $g_+ \leftarrow \gcd(f, \eta-1)$
 $g_- \leftarrow \gcd(f, \eta+1) \quad [g_- = f/g_0/g_+]$
return $CZ(g_0, s) \cup CZ(g_+, s) \cup CZ(g_-, s)$

Application/exercise

Let $p = 2^{61} - 1$. Compute $u \in \mathbb{F}_p$ such that $u^2 = 5$.

Complexity analysis

Excluding recursive calls, each call performs:

- $O(M(d) \log d)$ ops in \mathbb{F}_q for the gcd computations
- $O(M(d) \operatorname{slog} q)$ ops in \mathbb{F}_q for the exponentiation

A recursive call is *trivial* if the degree of its argument has not decreased. On average, there is no more than 50% trivial calls. There are O(d) nontrivial calls. So there are O(d) calls on average.

This leads to a $O(sdM(d) \log q + dM(d) \log d)$ total average complexity.

A This is not a tight analysis!

Refined complexity analysis

Imagine a biased dice with 3 facets:

- a facet **O** with probability $q^{-s} \leq \frac{1}{3}$
- two equiprobable facets 🔁 and 🖨

Game

Draw *r* columns. At each turn, draw one dice for each column, and append the symbol to the column. Stop when each column is different.

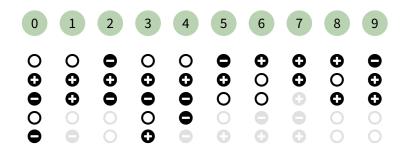
Lemma

The game stops after $O(\log r)$ iterations on average.

Proof

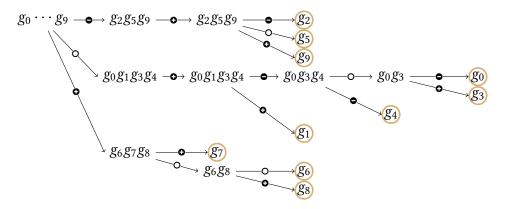
The probability that the columns *i* and *j* are equal after *k* iterations is at most 2^{-k} . The probability that the columns are not all different after *k* iterations is at most $r^2 2^{-k}$.

Let us play



(Probably more **O** than what would happen in practice.)

Another view of the game



This is the tree of recursive calls in CZ algorithm.

The tree has height $O(\log r)$ on average. The sum of the cost of all computations at a given depth is $O(M(d) s \log q + M(d) \log d)$.

Total average complexity: $O((M(d) s \log q + M(d) \log d) \log r)$.

1. Introduction

2. Basic algebra

2.1 Finite fields2.2 Polynomials

3. Factorization algorithms

3.1 Reduction to the squarefree case3.2 Berlekamp's approach3.3 Cantor and Zassenhaus' algorithm3.4 The full algorithm

4. Bonus

The full algorithm...

def Factor(f): $f_{\text{squarefree}} \leftarrow SquarefreePart(f)$ $g_1, \ldots, g_s \leftarrow DistinctDegreeFactor(f_{squarefree})$ $I \leftarrow \emptyset$ for $i \in \{1, ..., s\}$: $I \leftarrow I \cup CZ(g_i, i)$ $\mathcal{I} \leftarrow \emptyset$ for $g \in I$: $e \leftarrow 0$ while true: $f \leftarrow f/g$ $e \leftarrow e+1$ if g does not divides f: break $\mathcal{J} \leftarrow \mathcal{J} \cup \{(g, e)\}$ return \mathcal{J}

...and its complexity

Theorem (Cantor, Zassenhaus 1981)

The algorithm above, on input $f \in \mathbb{F}_q[x]$, outputs the irreducible factorization of f after

$$O(dM(d)(\log d + \log q)) = \tilde{O}(d^2 \log q)$$

operations in \mathbb{F}_q , where $d = \deg f$.

Major open question

Can we factor polynomials over \mathbb{F}_q in deterministic polynomial time?

J. von zur Gathen, V. Shoup (1992). "Computing Frobenius Maps and Factoring Polynomials". In: *Comput Complexity* 2.3, pp. 187–224. DOI: 10/dmbbhb E. Kaltofen, V. Shoup (1998). "Subquadratic-Time Factoring of Polynomials over Finite Fields". In: *Math. Comp.* 67.223, pp. 1179–1197. DOI: 10/c3ttb3 K. S. Kedlaya, C. Umans (2011). "Fast Polynomial Factorization and Modular Composition". In: *SIAM J. Comput.* 40.6, pp. 1767–1802. DOI: 10/fxv98c Polynomial factorization 1 | Factorization algorithms

1. Introduction

Basic algebra
 1 Finite fields
 2.2 Polynomials

3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp's approach
3.3 Cantor and Zassenhaus' algorithm
3.4 The full algorithm

4. Bonus

The iterated Frobenius algorithm

input $f \in \mathbb{F}_q[x], \eta \in \mathbb{F}_q[x]$, and $\leq s \leq \deg f$, with $\deg \eta < \deg f$ output $n, n^q, \eta^{q^2}, \ldots, \eta^{q^s} \mod f$ **def** IteratedFrobenius (f, η, s) : $\gamma_0 \leftarrow x$ $y_1 \leftarrow x^q \mod f$ while i < s: for $i \in \{1, ..., i\}$: [multipoint evaluation over the ring $\mathbb{F}_q[x]/(f)$] $\gamma_{i+i} \leftarrow \gamma_i(\gamma_i) \mod f$ $i \leftarrow 2i$ for $i \in \{0, \ldots, s\}$: [multipoint evaluation again] $\alpha_i \leftarrow \eta(\gamma_i) \mod f$ return $\alpha_0, \ldots, \alpha_s$

What is going on?

1. For any $\eta \in \mathbb{F}_q[x]$, $\eta^{q^i} \equiv \eta(x^{q^i}) \equiv \eta(x^{q^i} \pmod{f}) \mod f$ 2. Let $\gamma_i = x^{q^i} \mod f$. Using with $\eta = \gamma_i$, we have $\gamma_{i+j} \equiv (x^{q^i})^{q^j} \equiv \gamma_i(\gamma_j) \mod f$

Theorem

Algorithm IteratedFrobenius is correct and performs $O(M(d)^2 \log(d)^2 + M(d) \log q)$ operations in \mathbb{F}_q .

We can use this algorithm to improve the complexity of distinct-degree and equal-degree factorization.

The iterated Frobenius algorithm

input
$$f \in \mathbb{F}_q[x], \eta \in \mathbb{F}_q[x]$$
, and $s \ge 1$, with $\deg \eta < \deg f$
output $\eta^{\frac{q^s-1}{2}} \mod f$

- **def** SuperFastExponentiation (f, η, s) :
- $\alpha_0, \dots, \alpha_{s-1} \leftarrow \textit{IteratedFrobenius}(f, \eta, s-1)$
- return $(\alpha_0 \cdots \alpha_{s-1})^{\frac{q-1}{2}} \mod f$

NB:
$$\eta^{\frac{q^s-1}{2}} = \left(\prod_{i=0}^{s-1} \eta^{q^i}\right)^{\frac{q-1}{2}}$$

Theorem

Algorithm SuperFastExponentiation is correct and performs $O(M(d)^2(\log d)^2 + M(d)\log q)$ operations in \mathbb{F}_q .

Final complexity result

Theorem (von zur Gathen, Shoup 1992)

The algorithm explained above, on input $f \in \mathbb{F}_q[x]$, outputs the irreducible factorization of f after

 $\tilde{O}(d^2 + d\log q)$

operations in \mathbb{F}_q , where $d = \deg f$.