Polynomial factorization over finite fields
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Factorization reveals interesting phenomena

1. pickarandom f € Q[t, x, y]
2. compute A = disc,(disc, (f))
3. compute the irreducible factors of A

How to compute the irreducible factors of A?

1st step: factorization over [, g odd « today
2nd step: factorization over Q

L. Busé, B. Mourrain (2009). “Explicit Factors of Some Iterated Resultants and Discriminants”. In: Math.
Comp. 78.265, pp. 345-386. pOI: 10/ccjgkw
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Much easier than factorization over Z!

[, [x] has many similarities with Z:
® Euclidean division

the degree in [F,,[ x] matches the logarithm of the absolute value in Z

similar data representation

similar (fast) multiplication algorithms
* (sometimes) similar algorithms for matrices over [, [ x] or Z

Factorization is where analogy breaks down!



General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K[ x] is undecidable.

Proof

Take K = @[\/pil, \VDiys - - - |, where p; is the ith prime number and iy, iy, ... isan
enumeration of the indices of the Turing machines that halt. For a given i, does X2 — p;
splits over K? O
The example itself is irrelevant. Interesting conclusion:

A No factorization algorithm for abstract fields.
We will deal with specific properties of finite fields.

B. L. van der Waerden (1930). “Eine Bemerkung tiber die Unzerlegbarkeit von Polynomen”. In: Math. Ann.
102.1, pp. 738-739. pol: 10/dmdkm6
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Finite fields |

If K is a finite field, then |K| is a power of a prime number.

Proof
Kis a[Fj-linear space, with p = char K, so |K| = |[Fp|dlmK' 0

We fix a prime number p and an algebraic closure[F_pof .

Forany q = p", the set {x € [F_p | x4 = x} is a subfield of[F_p.

Proof
It is closed under multiplication, inverse and addition because x + x%is a field
endomorphism.
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Finite field Il

For any prime power g = p",[F, = {x € [F_p | x1 = x}

Theorem
For any finite field K, K ~ [Fg|.

Proof

Let ¢ = p" = |K|. Since K is a finite set, it is an algebraic extension of its prime field [,
So there is an embedding ¢ : K — [Fp Note that K ~ ¢(K).

By Lagrange’s theorem applied to the multiplicative group K*, we have x? = x for
any x € K. So ¢(K) < [F,. By equality of cardinality, ¢(K) = [,



Irreducible polynomials |

Let K be a field.
A polynomial f € K[x] isirreducible (over K) if is not the product of two nonconstant

polynomials.

Apolynomial f € K[x] is irreducible if and only if the quotient ring K[x]/(f) is a field.

Forany f € K[x], there are distinct monic irreducible polynomials g, . . ., g, and
positive integers ey, . . ., e, such that f = lc(f)g;" - - - g/
They are uniquely determined up to permutation.

The usual proof is very non constructive!



Squarefree polynomials |

A polynomial f € K|[x] is squarefree if f is not divided by h? for any
nonconstant h € K[ x].

Let f € K|[x]. The following are equivalent:
1. fissquarefree;
2. the exponents in the irreducible factorization of f are 1;
3. the quotient ring K[x]/(f) is isomorphic to a product of fields;
4. zero is the only nilpotent element of K[x]/(f).

For a polynomial f which factorsas c [ [; gfi, the squarefree part of f is [ [; gi.

A gcd(f,f) =1 = fissquarefree. The converse is not true.



Squarefree polynomials Il

Proof
Let f = ¢ [T, g;" be the irreducible factorization of f.

1 = 2.1f ¢; > 1then g2 divides f, so f is not squarefree.

2= 3.0ff =c[];githenK[x]/(f) = [1; K[x]/(gi). Since g;isirreducible,
K[x]/(g:) isafield.

3 = 4.Let(ay,...,ar) beanilpotent element of a product K; X - - - X K, of fields. That
is (af,...,a}) = (0,...,0) forsome n > 1. Since each K; is a field, this implies a; = 0.

4 = 1. Assume, for contradiction, that there is some nonconstant polynomial /& such
that h?|f. Write f = ah®. Then ahis nilpotentin K[x]/(f). By hypothesis, ah s zero in
this ring. So ahis divisible by f. But deg(ah) < deg(f).



3. Factorization algorithms
3.1 Reduction to the squarefree case
3.2 Berlekamp’s approach
3.3 Cantor and Zassenhaus’ algorithm
3.4 The full algorithm



Finite fields are perfect

Let g = p" be a prime power.

On [y, the field endomorphism Frob : o — af is bijective with
inverse Frob™ ! : > a?" .

Proof
Frob is injective, as any field endomorphism, and so bijective because [ is finite.
Frob"(a) = a? = & (Lagrange’s theorem), so Frob™! = Frob™ . O

Forany f € Fy[x],if f' = 0, then f = gP for some g € Fy[x].

Proof .
Let f = 3 aix'. If f* = 0, then a; = 0 unless p]i.
Sof =X apix?' = (X;Frob™" (api)x;)P.
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Reduction to squarefree

def SquarefreePart(f):

if f and f’ coprime:
return f

elif f' = 0:
compute g such that f = g?
return SquarefreePart(g)

else:
h— flged(f, )
g « flged(f, hel) (g = 0]
return h - SquarefreePart(g)

Theorem

Oninput f € Fy[x] nonzero of degree d, SquarefreePart outputs the squarefree part of f
and performs O(M(d) log d + dp~" log q) operations in [F,.



Recap
fe [Fq[x]

>M(d) logd +$logg
squarefree part of f

A to do
irreducible factors off)

dM(d) with the naive algorithm

irreducible decomposition of f
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Berlekamp’s irreducibility test

Let f € Fy[x] squarefree.
Themap Q : @ — afisaF -linear map on Fy[x]/(f).

Theorem (Berlekamp 1967)

dimg, ker(Q — id) equals the number of irreducible factors of f.

Proof
Decompose [Fy[x]/(f) as Ly X - - - X L,, where each L; is an algebraic extension of [F,.
Each factor L; is stable under Q. In particular

ker(Q - id) = [T, ker(Q - id)|,
:Hi{aeLilaqza}z[Fg. O

Corollary

Irreducibility in [, [ x] is decidable with O(d“ + dM(d) log q) operations in [y, where d
is the degree.
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The quotient ring of a squarefree polynomial

Fof* || Fof* || Fop?

Frob” stabilizes the bottom row | FgB° || Fgf? || Fof?

Fof? || Fof? || Fof?

Foa || I, F o
ker(Frob™ —id) 1 b of o

F

q [Fq [Fq [Fq qu

5

Folx]/(f) = Fqg x Fyg x Fg x Fg x Fgs x Fgs



Factorization: a trivial but key idea

Let f € K|[x] be a squarefree polynomial.
Let f = g1 - - - g, beitsirreducible decomposition.

Let neK[x /(f) and (71, . . ., 1) the corresponding tuple under the isomorphism
/(f)’“ x]/(g1) X --- X K[x]/(gr)-

Thengcd(f,r])z 1_[ gi-

ist. n;=0

Proof
ni=0s gin.

B We want to find an 5 with some but not all zero components.



Squaresin [,

A Assumption: qis odd

=i =i

LetS, = {a € [F;< a'T = 1} and S_ = {a € [F;< a'T = —1}.
Then

1. #S+ = #S_ = q;l

2. [y is the disjoint union of S and S_.
Proof
As the zero set of polynomials of degree S+ and S_ contain at most q— elements
each. -
Foranya € FX,1=a%! = (a7 )?,s0 Fy = S+ U S_. The union s clearly disjoint. For

cardinality reasons, #S, = #S_ = - L



Berlekamp’s idea for factorization

0 0 0
Frob” stabilizes the bottom row 0 0 0
0 0 0

3. Elevate to the power -
4, Add 1

ker(Frob™ —id)

Folx]/(f) = Fqg x Fg x Fe x Fps x Fp x Fgs

A Assumption: gis odd

1. Compute ker(Frob" —id)
. Choose a uniformly

distributed random element
init

q—1
2

. Takes the gcd with f
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Distinct-degree factorization

| e |
| 5 |
nenl

| e ]
N ni fixed

":q[x]/(f) = I]:q X qu X [qu X ﬂ:qs X |Fq5 % |Fq5

n < class of x
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A formula for irreducible polynomials |

As usual, let g = p" be a prime power.

Let Py = {g € Fy[x] | g is monic, irreducible and of degree d}.
Foranyd > 1,

# == e

sld gePs

A complete description of the irreducible polynomials over [/

Proof



A formula for irreducible polynomials I

S

Let g € P for some divisor s of d. The quotient ring Fy[x]/(g) is a field of cardinality g°.
In particular, its generator a = [x] satisfies @ = a? = a? . so g divides X1 — x.
it follows that [T [Tgep,g divides x4° - x.

Conversely, let g be anirreducible factor of x?" - x. The quotient ring Fy[x]/(g) isa
field and its generator & = [ x] satisfy a? = a. Soitis a subfield of[F d and therefore
isomorphic to some [, for some divisor s of d. It follows that the mlnlmal polynomial
of & (that is g) has degree s.

To conclude, observe that the l.h.s. is squarefree (its derivative is —1).



Distinct-degree factorization, the algorithm

input f € [Fy[x] monic and squarefree

output gi,...,8s € Fy[x] suchthat f = g; - - - gs and the irreducible factors of g;
have degree i.
def DistinctDegreeFactor(f):

s<—0

nex

while f is not constant:
s—s+1
nend mod f [7=x7 modf]
gs < ged(n = x, f)
feflgs

return (g,...,gs)

Theorem
The algorithm is correct and performs O(dM(d) log d + dM(d) log q) operations in [
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Cantor and Zassenhaus’ idea

A Assumption: qisodd

=0 &9 &9 €9

&9

*

*

* *
% *
* *

[Fq[x]/(f) =~ ﬂ:q3 X [Fqs X [Fqs X ﬂ:q3 X ﬂ:q3

1. pick n atrandom
£-1

2.nenz

3. f=ged(f.n) ged(f,n — 1) ged(f,n+1)




Cantor and Zassenhaus’ theorem |
A Assumption: gis odd

Theorem (Cantor, Zassenhaus 1981)

Let f € [F4[x] of degree d such that all irreducible factors of f have degree s < d. (Note
that s|d.)

Letn € [Fy[x] be a polynomial of degree less than d.
Then

g Py
1. f=ged(fn)-ged(fin = —1) - ged(fin = +1)
2. for at least 50% of the q® possible choices of , the factorization above is nontrivial.


https://doi.org/10/b652qb

Cantor and Zassenhaus’ theorem Il

Proof

We just proved the first point.

Concerning the second point, let 7 € Fy[x]/(f) and (71, .. .,7,) its decomposition
in [1;Fqlx]/(gi) = (Fg)", where f = g1 - - - g-. We have a trivial factorization if and
only if the n; are all zero, or allin S; or allin S_. Therefore

1+#S) +#S”
total number of choices

i)

< q—d (zl—r(qS)r) — ol-r <

Prob(trivial factorization) =

N | =



Cantor and Zassenhaus’ algorithm

input f € Fy[x] squarefree, s < deg f such that the irreducible factors of f
have degree s

output theirreducible factors of f

def CZ(f, s):
if s =degf:
return {f}
else:
pick ao, . . ., ddeg f-1 € g uniformly at random
ne—a+ax+---+ adegf_lxdegf_l
ne<n 21 mod f
8o < ged(f,n)
g+ < ged(fin-1)
g- < ged(fon+1) [g-=//g/g+]
return CZ(go, s) U CZ(g+, s) U CZ(g-, s)



Application/exercise

Letp = 261 — 1.
Compute u € Fp such that u* = 5.



Complexity analysis

Excluding recursive calls, each call performs:

* O(M(d)logd) opsin [F, for the gcd computations

* O(M(d)slog q) opsin [, for the exponentiation
Arecursive callis trivial if the degree of its argument has not decreased. On average,
there is no more than 50% trivial calls. There are O(d) nontrivial calls. So there

are O(d) calls on average.
This leads to a O(sdM(d) log q + dM(d) log d) total average complexity.

A Thisisnota tight analysis!



Refined complexity analysis

Imagine a biased dice with 3 facets:
* afacet O with probability g~ < 3
* two equiprobable facets @ and @

Draw r columns. At each turn, draw one dice for each column, and append the symbol
to the column. Stop when each column is different.

The game stops after O(log r) iterations on average.

Proof
The probability that the columns i and j are equal after k iterations is at most 27k The

probability that the columns are not all different after k iterations is at most réa-k,



Let us play

00000
000
000

00000

0000
OX+X |
00O

X+

(Probably more Q than what would happen in practice.)

+XOX +)

000



Another view of the game

8089 —e— 828589 —o— 828589 —e——(82

\) Qg\ g5
\ 8
80818354 —0- 50818384 —e— £o8384 —0— o83 ————180
[+ \ \° o—_ 23
[+) \g4

\ gl
868788 —o—(87
-

Oo— 8683 <g*>g6

This is the tree of recursive calls in CZ algorithm.

The tree has height O(log r) on average. The sum of the cost of all computations at a
given depth is O(M(d)slog g + M(d) log d).

Total average complexity: O ((M(d)slog q + M(d) log d) logr).
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The full algorithm...

def Factor(f):

fsquarefree <— SquarefreePart(f)

81, - .-, &s < DistinctDegreeFactor (fsquarefree)
I«

foriec {1,...,s}:
I — _[ U CZ(g,', l)
g — @
forge I:
e« 0
while true:
f<flg
e—e+1
if g does not divides f:
break
J —IJU{(ge}
return



...and its complexity

Theorem (Cantor, Zassenhaus 1981)

The algorithm above, on input f € [Fy[x], outputs the irreducible factorization of f after
O(dM(d)(log d +log q)) = O(d*log q)

operations in [Fy, where d = deg f.

Can we factor polynomials over [, in deterministic polynomial time?


https://doi.org/10/dmbbhb
https://doi.org/10/c3ttb3
https://doi.org/10/fxv98c
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The iterated Frobenius algorithm

input f € Fy[x],n € Fg[x],and < s < deg f, withdegn < deg f

output 17,17‘1,17‘12,...,17‘15 mod f
def iteratedFrobenius(f,n, s):
Yo &= X
y1 < x? mod f
whilei < s:
forje {1,...,i}: [multipoint evaluation overthering Fy[x]/(f) ]
Yitejy < vi(y;) mod f
i 2i
foric {0,...,s}: [multipointevaluation again]
ai < n(yi) mod f
return «y, . .., o



What is going on?

1. Foranyn € [Fq[x],ryqj = q(xqi) = r;(xqi (mod f)) mod f
2. Lety; = x? mod f. o
Using with = y;, we have yiy; = (x9)7 = yi(y;) mod f

Theorem

Algorithm IteratedFrobenius is correct and performs O(M(d)? log(d)? + M(d) log q)
operations in .

We can use this algorithm to improve the complexity of distinct-degree and
equal-degree factorization.



The iterated Frobenius algorithm

input f € Fy[x],n € Fy[x],and s > 1,withdegn < deg f

S—1
output r;qT mod f
def SuperFastExponentiation(f,n, s):
Qo, - - ., 0ts—1 < lteratedFrobenius(f,n,s — 1)

—1
return (aq - --as_l)qT mod f

Algorithm SuperFastExponentiation is correct and
performs O(M(d)?(log d)? + M(d) log q) operations in Fg.



Final complexity result

Theorem (von zur Gathen, Shoup 1992)

The algorithm explained above, on input f € [F4[x], outputs the irreducible factorization
of f after

O(d? + dlog q)

operations in [Fy, where d = deg f.
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