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Factorization reveals interesting phenomena

1. pick a random f ∈ ℚ[t, x, y]
2. compute Δ = discx (discy (f ))
3. compute the irreducible factors of Δ

How to compute the irreducible factors of Δ?
1st step: factorization over 𝔽q, q odd
2nd step: factorization over ℚ ← today

L. Busé, B. Mourrain (2009). “Explicit Factors of Some Iterated Resultants and Discriminants”. In: Math.
Comp. 78.265, pp. 345–386. DOI: 10/ccjgkw
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Definitions
A polynomial f ∈ ℚ[x] is irreducible if it is not the product of two nonconstant
polynomials.

Theorem

Let f ∈ ℚ[x] be a monic polynomial. There are monic irreducible
polynomials g1, . . . , gr ∈ ℚ[x], unique up to permutation, such that f = g1 · · · gr .

Given f , we want the gi.
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General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K [x] is undecidable.

� No factorization algorithm for abstract fields.
We have to deal with specific properties of the base field.

What are the properties of ℚ?

B. L. van der Waerden (1930). “Eine Bemerkung über die Unzerlegbarkeit von Polynomen”. In: Math. Ann.
102.1, pp. 738–739. DOI: 10/dmdkm6
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1. Introduction

2. Integer and rational root finding
2.1 Naive algorithms
2.2 Better algorithms

3. Factorization
3.1 Reduction to the integer case
3.2 Modular algorithms
3.3 Faster recombination
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The problem

input f ∈ ℚ[x] nonzero
output {a ∈ ℚ | f (a) = 0}
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Reduction to finding integer roots of integer poly.

Lemma

Let f ∈ ℚ[x] be a monic polynomial and let m be a common denominator of the
coefficients. Then mdeg f f (x/m) is monic and has integer coefficients.

NB: 𝛼 is a zero of f (x) if and only if m𝛼 is a zero of mdeg f f (x/m).

Lemma

Let f ∈ ℤ[x] and 𝛼 ∈ ℚ. If f is monic and f (𝛼) = 0, then 𝛼 ∈ ℤ.

Proof. Let 𝛼 = a/b, with a and b coprime and f = xd +∑d
i=1 cix

d−i.
Then f (𝛼) = b−d (ad + b∑d

i=1 cia
d−ibi−1). If f (𝛼) = 0 then b divides ad . Since a and b

are coprime, this implies that b = ±1.
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Integer root finding: a well-known method

Lemma

Let f ∈ ℤ[x]. Let a ∈ ℤ. If f (a) = 0 then a divides f (0).

Proof. If f (x) = ∑d
k=0 ckx

k then f (0) = f (a) − a∑d
k=1 cka

k−1.

input f ∈ ℤ[x]
output {a ∈ ℤ | f (a) = 0}

1 def IntegerRoots(f ):
2 ±p1 · · · pr ← prime decomposition of f (0)
3 S ← ∅
4 for I ⊆ {1, . . . , r}:
5 a←∏

i∈I pi
6 if f (a) = 0 then S ← S ∪ {a}
7 If f (−a) = 0 then S ← S ∪ {−a}
8 return S
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Is it good?

Not really...
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A size bound

Lemma

Let f ∈ ℤ[x] such that f (0) ≠ 0 Let a ∈ ℤ. If f (a) = 0 then |a| ≤ |f (0) |.

input f ∈ ℤ[x]
output {a ∈ ℤ | f (a) = 0}

1 def IntegerRoots(f ):
2 if f (0) = 0:
3 return IntegerRoots(f (x)/x) ∪ {0}
4 else:
5 S ← ∅
6 for a ∈ {− |f (0) | , . . . , |f (0) |}:
7 if f (a) = 0 then S ← S ∪ {a}
8 return S
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Modular reduction

� To compute an integer a knowing an a priori bound |a| ≤ B, it is enough to
compute a (mod N ) for some N > 2B.

Lemma

Let f ∈ ℤ[x], f (0) ≠ 0. Let N > 2|f (0) |.
Let A = {a ∈ ℤ | f (a) = 0} and B = {b ∈ ℤ/Nℤ | f (b) = 0 (mod N )}
Then the reduction modulo N induces an injection A→ B.

Proof. The reduction modulo N defines a map A→ B. If a, a′ ∈ A and a = a′

(mod N ), then a = a′ or |a − a′| ≥ N , so at least one of a or a′ has absolute
value ≤ N/2. The latter possibility contradicts the bound on the elements of A.

Polynomial factorization II | Integer and rational root finding Page 10/35



Modular reduction

� To compute an integer a knowing an a priori bound |a| ≤ B, it is enough to
compute a (mod N ) for some N > 2B.

Lemma

Let f ∈ ℤ[x], f (0) ≠ 0. Let N > 2|f (0) |.
Let A = {a ∈ ℤ | f (a) = 0} and B = {b ∈ ℤ/Nℤ | f (b) = 0 (mod N )}
Then the reduction modulo N induces an injection A→ B.

Proof. The reduction modulo N defines a map A→ B. If a, a′ ∈ A and a = a′

(mod N ), then a = a′ or |a − a′| ≥ N , so at least one of a or a′ has absolute
value ≤ N/2. The latter possibility contradicts the bound on the elements of A.

Polynomial factorization II | Integer and rational root finding Page 10/35



Modular reduction

� To compute an integer a knowing an a priori bound |a| ≤ B, it is enough to
compute a (mod N ) for some N > 2B.

Lemma

Let f ∈ ℤ[x], f (0) ≠ 0. Let N > 2|f (0) |.
Let A = {a ∈ ℤ | f (a) = 0} and B = {b ∈ ℤ/Nℤ | f (b) = 0 (mod N )}
Then the reduction modulo N induces an injection A→ B.

Proof. The reduction modulo N defines a map A→ B. If a, a′ ∈ A and a = a′

(mod N ), then a = a′ or |a − a′| ≥ N , so at least one of a or a′ has absolute
value ≤ N/2. The latter possibility contradicts the bound on the elements of A.

Polynomial factorization II | Integer and rational root finding Page 10/35



Reduction modulo p

input f ∈ ℤ[x] such that f (0) ≠ 0
output {a ∈ ℤ | f (a) = 0}

1 def IntegerRoots(f ):
2 p← a prime number such that p > 2|f (0) | [how?]
3 S ← ∅
4 U ←

{
u ∈ 𝔽p

�� f (u) = 0
}

[how?]
5 for u ∈ U :
6 compute a ∈ ℤ such that a ≡ u (mod p) and |a| ≤ p

2
7 if f (a) = 0:
8 S ← S ∪ {a}
9 return S
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Hensel lifting I

� There is a great way to compute the roots of f modulo p2
l
.

input f ∈ ℤ[x], a, y,N ∈ ℤ
precondition f (a) = 0 (mod N ) and yf ′(a) = 1 (mod N )

output ã ∈ ℤ
postcondition ã = a (mod N ) and f (ã) = 0 (mod N 2)
1 def HenselStep(f , a, y,N ):
2 e← f (a)
3 ã← a − ey
4 return ã

Proof. By hypothesis, e = 0 (mod N ), so e2 = 0 (mod N 2). Taylor’s expansion yields

f (a − ey) = f (a) − eyf ′(a) + e2(· · · )
= f (a) − e = 0 mod N 2
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Hensel lifting II

� There is a great way to compute the roots of f modulo p2
l
.

input f ∈ ℤ[x], a, y,N ∈ ℤ
precondition f (a) = 0 (mod N ) and yf ′(a) = 1 (mod N )

output ã ∈ ℤ, ỹ ∈ ℤ
postcondition ã = a (mod N ), ỹ = y (mod N ), f (ã) = 0 (mod N 2)

and ỹf ′(ã) = 1 (mod N 2)

1 def HenselStep(f , a, y,N ):
2 e← f (a)
3 ã← a − ey
4 e← yf ′(ã) − 1
5 ỹ ← y(1 − e)
6 return ã, ỹ

Proof. ỹf ′(ã) − 1 = (yf ′(ã) − 1) − eyf ′(ã) = e − e = 0 mod N 2.
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Hensel lifting III

input f ∈ ℤ[x], a,N ∈ ℤ, B > 0
precondition f (a) = 0 (mod N ) and f ′(a) invertible modulo N

output ã ∈ ℤ, M ∈ ℤ
postcondition f (ã) = 0 (mod M) and M > B
1 def HenselLift(f , a,N , B):
2 y ← f ′(a)−1 (mod N ) [How?]
3 whileN < B:
4 a, y ← HenselStep(f , a, y,N )
5 N ← N 2

6 return a,N
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Hensel lifting: full algorithm

input f ∈ ℤ[x] with f (0) ≠ 0
output {a ∈ ℤ | f (a) = 0}

1 def IntegerRoots(f ):
2 B← |f (0) |
3 f ← f /gcd(f , f ′)
4 p← 2
5 while disc(f ) = 0 (mod p):
6 p← nextprime(p)
7 S ← ∅
8 U ←

{
u ∈ 𝔽p

�� f (u) = 0
}

9 for u ∈ U :
10 a,N ← HenselLift(f , a, p, 2B)
11 if 2a > N then a← a − N
12 if f (a) = 0 then S ← S ∪ {a} [do we need this?]
13 return S
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Outline

1. Introduction

2. Integer and rational root finding
2.1 Naive algorithms
2.2 Better algorithms

3. Factorization
3.1 Reduction to the integer case
3.2 Modular algorithms
3.3 Faster recombination
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Reduction to the integer case

Lemma

If g ∈ ℚ[x] is irreducible, then mdeg gg(x/m) is irreducible, for any nonzero m ∈ ℚ.

Lemma

If f = g1 · · · gr is the irreducible factorization of f ,
then mdeg f f (x/m) = ∏

i mdeg gigi (x/m) is the irreducible factorization
of mdeg f f (x/m).

Lemma

Let f ∈ ℚ[x] be a monic polynomial and let m be a common denominator of the
coefficients. Then mdeg f f (x/m) is monic and has integer coefficients.

Gauss Lemma

Let f ∈ ℤ[x]. If f is monic, then every monic polynomial g ∈ ℚ[x] which divides f has
integer coefficients.
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Kronecker’s algorithm

Let f ∈ ℤ[x] monic.
Observation: if g ∈ ℤ[x] divides f , then g(n) divides f (n) for all n ∈ ℤ.

input f ∈ ℤ[x] monic
output the irreducible factorization of f

1 def Factor(f ):
2 pick I ⊂ ℤ such that #I = deg f and f (i) ≠ 0 for i ∈ I
3 for every sequence (𝜎i)i∈I ∈ ℤI such that 𝜎i divides f (i):
4 compute g ∈ ℚ[x] such that g is monic and g(i) = 𝜎i for i ∈ I
5 if g divides f :
6 return Factor(g) · Factor(f /g)
7 return f

� We can do much better!
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A size bound

For f =
∑d

i=0 cix
i, let ∥f ∥2 =

(
c20 + · · · + c2d

) 1
2

and ∥f ∥∞ = max {|c0 |, . . . , |cd |}.

Lemma (Landau-Mignotte)

Let f , g ∈ ℤ[x] monic such that g divides f . Then ∥g∥∞ ≤ ∥g∥2 ≤ 2deg g ∥f ∥2.

Lead to a naive factorization algorithm, but not worth stating it.
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Modular reduction

Lemma

Let f ∈ ℤ[x] monic and p > 2deg f +1∥f ∥2 be a prime number.
Let A = {g ∈ ℤ[x] | g monic and divides f }
and B =

{
ḡ ∈ 𝔽p [x]

�� ḡ monic and divides f̄ (mod p)
}

Then the reduction modulo p induces an injection A→ B.

� Irreducible divisors of f may not be mapped to irreducible factors of f̄

If f̄ is squarefree and if f̄ = g1 . . . gr is the irreducible decomposition of f̄ , then the map

S ⊆ {1, . . . , r} ↦→
∏
i∈S

gi ∈ B

is a bijection.
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A factorization algorithm (Musser 1971)

input f ∈ ℤ[x] squarefree and monic
output an irreducible factor of f

1 def Factor(f ):
2 pick a prime p > 2deg f +1∥f ∥2 such that disc(f ) ≠ 0 (mod p)
3 g1, . . . , gr ← irreducible factors of f (mod p)
4 for k from 1 to ⌊r/2⌋:
5 for S ⊆ {1, . . . , r}with #S = k:
6 h̄←∏

i∈S gi
7 compute h ∈ ℤ[x] with ∥h∥∞ <

p
2 and h = h̄ (mod p)

8 if h divides f in ℤ[x]:
9 return h

10 return f
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Combinatorial blowup

Lemma (Swinnerton-Dyer polynomials)

Let pn be the nth prime number and let fn =
∏(x ± √2 ± √3 ± · · · ± √pn) ∈ ℤ[x].

The polynomial fn has degree 2n, is irreducible and is a product of polynomials of degree
at most 2 modulo any prime p.

How do we compute these polynomials?

Why do they split into factors of degree at most two over 𝔽p (for any prime p)?

The problem of recombination seems clause to combinatorial NP-complete problems,
like SUBSET-SUM.
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Is reducibility in NP? in P?

Recall that a decision problem is in NP (resp. coNP) if additional data and a
polynomial-time computation can convince you that an instance satisfies (resp. does
not satisfy) the problem.

REDUCIBLE
input f ∈ ℤ[x]

output YES if f is not irreducible, NO otherwise

REDUCIBLE is in NP. Why?

Do you think reducible is NP-complete?

REDUCIBLE is in coNP (Cantor 1981).

Do you know other problems in NP ∩ coNP?

Computing the irreducible factorization is in P! (A. K. Lenstra, H. W. Lenstra, Lovàsz 1982)
Fantastic breakthrough!
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Hensel lifting for factorization (Zassenhaus 1969)

input f , g, h, u, v ∈ ℤ[x] and N > 0
precondition f = gh (mod N ) and 1 = ug + vh (mod N )

output g̃, h̃, ũ, b̃ ∈ ℤ[x]
postcondition •̃ = • (mod N ), f = g̃h̃ (mod N 2) and 1 = ũg̃ + ṽh̃ (mod N 2)

1 def HenselStep(f , g, h, u, v,N ):
2 e← f − gh
3 q, a←QuoRem(ue, h)
4 b← ve + gq
5 g̃ ← g + b; h̃← h + a
6 e← 1 − ug − vh
7 q, a←QuoRem(ue, h)
8 b← ve + gq
9 ũ← u + a; ṽ ← v + b

10 return g̃, h̃, ũ, ṽ
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Hensel lifting for factorization (Zassenhaus 1969)

input f , g, h ∈ ℤ[x], p prime and B > 0
precondition f = gh (mod p) and f is squarefree mod. p

output g̃, h̃ ∈ ℤ[x] and l > 0
postcondition •̃ = • (mod p), f = g̃h̃ (mod pl) and pl > B
1 def HenselLift(f , g, h, p, B):
2 u, v ← ExtendedEuclideanAlgorithm(g, h)
3 l ← 1
4 while pl ≤ B:
5 g, h, u, v ← HenselStep(f , g, h, u, v, pl)
6 l ← 2l
7 return g, h, l

Polynomial factorization II | Factorization Page 25/35



Lifting many factors

input f ∈ ℤ[X ], g1, . . . , gr ∈ ℤ[x], p prime and B > 0
precondition f = g1 · · · gr (mod p) and f is squarefree modulo p

output g̃1, . . . , g̃r ∈ ℤ[x] and l > 0
postcondition •̃ = • (mod p), f = g̃1 · · · g̃r (mod pl) and pl > B

1 def MultiHenselLift(f , (gi)1≤i≤r, p, B):
2 if r = 1 then return f :
3 else:
4 s← ⌊r/2⌋
5 L, R← HenselLift(f , g1 · · · gs, gs+1 · · · gr, p, B)
6 g1, . . . , gs ← MultiHenselLift(L, (g1, . . . , gs), p, B)
7 gs+1, . . . , gr ← MultiHenselLift(R, (gs+1, . . . , gr), p, B)
8 return g1, . . . , gr and l
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Recombination is the main issue

The recombination problem

input f ∈ ℤ[x], and g1, . . . , gr ∈ ℤ/plℤ[x]
precondition f is squarefree modulo p, pl ≫ 1 and f = g1 · · · gr (mod pl)

problem find a non trivial S ⊆ [r] such that
∏

i∈S gi lifts in ℤ[x] into a divisor of f .

� We still have the exponential blowup for the recombination!
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Linearizing the problem

“ log f = log g1 + · · · + log gr”
f ′

f
=
g′1
g1
+ · · · + g′r

gr

f ′ =
fg′1
g1
+ · · · + fg′r

gr

Let g ∈ ℤ[x] be a monic divisor of f . Then g =
∏

i∈S gi (mod pl) for some S ⊆ [r].
Moreover

fg′

g
=
∑︁
i

𝛿i∈S
fg′i
gi
+ ple.
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More size bounds

Lemma

Let f ∈ ℤ[x] monic and let g ∈ ℤ[x] be a monic divisor.
Then ∥fg−1g′∥2 ≤ deg(f )2deg f −1∥f ∥2.

Lemma (Hadamard bound)

Let f , g ∈ ℤ[x]. Then |res(f , g) | ≤ ∥f ∥deg g
2 ∥g∥deg f

2 .
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Some Euclidean lattices
Let f ∈ ℤ[x] be a squarefree monic polynomial of degree d and
let g1, . . . , gr ∈ ℤ/plℤ[x] be the lifts of the irreducible factors of f modulo p.

Let E = ℤr × ℤ[x]<d ≃ ℤr+d .

Let L be the (full rank) subgroup of Ẽ generated by

• (ei, f
g′i
gi
), for 1 ≤ i < r ;

• (0, plx j), for 0 ≤ j < d.

LetB = d2d−1∥f ∥2. Define the following norm on L: ∥(u, h)∥2 =
(
d−1B2∥u∥22 + ∥h∥22

) 1
2 .

For A ≥ 0, let LA be the subgroup of L generated by elements of norm ≤ A.

Let W be the subgroup of L generated by the (n, f h′
h ), where h ∈ ℤ[x] is a monic

divisor of f and h =
∏

i g
ni
i (mod p).

Polynomial factorization II | Factorization Page 30/35



Short vectors

Lemma (van Hoeij 2002)

1. W ⊆ L2B
“divisors yield short vectors”

2. Let C > B. If pl > dd+1CdBd , then LC ⊆ W .
“short vectors come from divisors”

In particular, W = L2B = LC .

� Mind the arbitrary gap between B and C!

Proof of 1. Come from the bound on ∥f h′
h ∥2.

M. van Hoeij (Aug. 1, 2002). “Factoring Polynomials and the Knapsack Problem”. In: Journal of Number
Theory 95.2, pp. 167–189. DOI: 10/cnzkv3
K. Belabas, M. van Hoeij, J. Klüners, A. Steel (2009). “Factoring Polynomials over Global Fields”. In: J.
Théor. Nombres Bordeaux 21.1, pp. 15–39. DOI: 10/b28w8q
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The core proof

Proof of 2. Let (n, q) ∈ L such that d−1B2∥n∥22 + ∥q∥22 ≤ C2.
We say that i ∼ j if gi and gj are part of the same irreducible factor of f in ℤ[x]. To
prove that (n, q) ∈ W , it is enough to prove that i ∼ j ⇒ ni = nj .

NB: ni = 0⇔ gi divides q.

Let 1 ≤ i ≤ r . Let h be the irreducible factor of f containing gi. Consider q̃ = q − nih.
Note that ∥q̃∥ ≤ (d + 1)C.

In ℤ/plℤ[x], q̃ is a multiple of gi. So res(h, q̃) = 0 (mod pl).
But | res(h, q̃) | ≤ (d + 1)dCdBd < pl , so res(h, q̃) = 0.
Since h is irreducible, it follows that h divides q̃.
It follows that nj = 0 for any j ∼ i.
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Computing short vectors

Computing LB given a basis of L is, in general, NP-hard.
However...

Theorem (A. K. Lenstra, H. W. Lenstra, Lovàsz 1982)

If LB = L2dB, then we can compute LB in polynomial time.
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The final factorization algorithm

input f ∈ ℤ[x] monic squarefree
output h1, . . . , hs ∈ ℤ[x] the irreducible factors of f

1 def Factor(f ):
2 p← a prime number such that disc(f ) ≠ 0 (mod p)
3 g1, . . . , gr ← Factor(f mod p)
4 d ← deg f ; B← d2d−1∥f ∥2;C ← 2r+dB
5 l ← d (logp (d + 1) + logp C + logp B)
6 g̃1, . . . , g̃r ← MultiHenselLift(f , (g1, . . . , gr), pl)
7 L← Lattice

{
(ei, fg−1i g′i)

}
1≤i≤r ∪

{
(0, plx j)

}
0≤j<d ⊂ ℤr × ℤ[x]<d

8 F ← basis of LB [with LLL, because LB = L2r+dB]
9 {(ni, ri)}1≤i≤s ← the row-reduced echelon form of F

10 return
(
Liftℤ

(∏r
j=1 g

nij
j

))
1≤i≤s
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The final complexity result

Theorem (Belabas, van Hoeij, Klüners, Steel 2009)

We can compute the irreducible factors of f ∈ ℤ[x] in Õ(d8 + d6(log∥f ∥∞)2).

K. Belabas, M. van Hoeij, J. Klüners, A. Steel (2009). “Factoring Polynomials over Global Fields”. In: J.
Théor. Nombres Bordeaux 21.1, pp. 15–39. DOI: 10/b28w8q
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