Polynomial factorization over Q MPRI – Efficient algorithms in computer algebra

Pierre Lairez

Factorization reveals interesting phenomena

- 1. pick a random $f \in \mathbb{Q}[t, x, y]$
- 2. compute $\Delta = \operatorname{disc}_x(\operatorname{disc}_y(f))$
- 3. compute the irreducible factors of Δ

Factorization reveals interesting phenomena

- 1. pick a random $f \in \mathbb{Q}[t, x, y]$
- 2. compute $\Delta = \operatorname{disc}_x(\operatorname{disc}_y(f))$
- 3. compute the irreducible factors of Δ

How to compute the irreducible factors of Δ ?

1st step: factorization over \mathbb{F}_q , q odd 2nd step: factorization over \mathbb{Q}

← today

L. Busé, B. Mourrain (2009). "Explicit Factors of Some Iterated Resultants and Discriminants". In: *Math. Comp.* 78.265, pp. 345–386. DOI: 10/ccjgkw

Definitions

A polynomial $f \in \mathbb{Q}[x]$ is *irreducible* if it is not the product of two nonconstant polynomials.

Theorem

Let $f \in \mathbb{Q}[x]$ be a monic polynomial. There are monic irreducible polynomials $g_1, \ldots, g_r \in \mathbb{Q}[x]$, unique up to permutation, such that $f = g_1 \cdots g_r$.

Given f, we want the g_i .

General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K[x] is undecidable.

General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K[x] is undecidable.

A No factorization algorithm for abstract fields. We have to deal with specific properties of the base field.

General factorization is undecidable

Theorem (Van der Waerden 1930)

There exists an effective field K such that irreducibility in K[x] is undecidable.

A No factorization algorithm for abstract fields. We have to deal with specific properties of the base field.

What are the properties of \mathbb{Q} ?

B. L. van der Waerden (1930). "Eine Bemerkung über die Unzerlegbarkeit von Polynomen". In: *Math. Ann.* 102.1, pp. 738–739. DOI: 10/dmdkm6

1. Introduction

- 2. Integer and rational root finding
 - 2.1 Naive algorithms
 - 2.2 Better algorithms

3. Factorization

- 3.1 Reduction to the integer case3.2 Modular algorithms
- 3.3 Faster recombination

The problem

input $f \in \mathbb{Q}[x]$ nonzero output $\{a \in \mathbb{Q} \mid f(a) = 0\}$

Reduction to finding integer roots of integer poly.

Lemma

Let $f \in \mathbb{Q}[x]$ be a monic polynomial and let m be a common denominator of the coefficients. Then $m^{\deg f} f(x/m)$ is monic and has integer coefficients.

NB: α is a zero of f(x) if and only if $m\alpha$ is a zero of $m^{\text{deg}f}f(x/m)$.

Reduction to finding integer roots of integer poly.

Lemma

Let $f \in \mathbb{Q}[x]$ be a monic polynomial and let m be a common denominator of the coefficients. Then $m^{\deg f} f(x/m)$ is monic and has integer coefficients.

NB: α is a zero of f(x) if and only if $m\alpha$ is a zero of $m^{\text{deg}f}f(x/m)$.

Lemma

Let
$$f \in \mathbb{Z}[x]$$
 and $\alpha \in \mathbb{Q}$. If f is monic and $f(\alpha) = 0$, then $\alpha \in \mathbb{Z}$.

Proof. Let $\alpha = a/b$, with a and b coprime and $f = x^d + \sum_{i=1}^d c_i x^{d-i}$. Then $f(\alpha) = b^{-d}(a^d + b \sum_{i=1}^d c_i a^{d-i} b^{i-1})$. If $f(\alpha) = 0$ then b divides a^d . Since a and b are coprime, this implies that $b = \pm 1$.

Integer root finding: a well-known method

Lemma

Let $f \in \mathbb{Z}[x]$. Let $a \in \mathbb{Z}$. If f(a) = 0 then a divides f(0).

Proof. If
$$f(x) = \sum_{k=0}^{d} c_k x^k$$
 then $f(0) = f(a) - a \sum_{k=1}^{d} c_k a^{k-1}$.

input $f \in \mathbb{Z}[x]$ output $\{a \in \mathbb{Z} \mid f(a) = 0\}$

Integer root finding: a well-known method

Lemma

Let
$$f \in \mathbb{Z}[x]$$
. Let $a \in \mathbb{Z}$. If $f(a) = 0$ then a divides $f(0)$.

Proof. If
$$f(x) = \sum_{k=0}^{d} c_k x^k$$
 then $f(0) = f(a) - a \sum_{k=1}^{d} c_k a^{k-1}$.

```
input f \in \mathbb{Z}[x]
output \{a \in \mathbb{Z} | f(a) = 0\}
def IntegerRoots(f):
```

```
2 \pm p_1 \cdots p_r \leftarrow prime decomposition of f(0)

3 S \leftarrow \varnothing

4 for I \subseteq \{1, \dots, r\}:

5 a \leftarrow \prod_{i \in I} p_i

6 if f(a) = 0 then S \leftarrow S \cup \{a\}

1 if f(-a) = 0 then S \leftarrow S \cup \{-a\}

8 return S
```

Is it good?

Not really...

A size bound

Lemma

Let $f \in \mathbb{Z}[x]$ such that $f(0) \neq 0$ Let $a \in \mathbb{Z}$. If f(a) = 0 then $|a| \leq |f(0)|$.

A size bound

Lemma

```
Let f \in \mathbb{Z}[x] such that f(0) \neq 0 Let a \in \mathbb{Z}. If f(a) = 0 then |a| \leq |f(0)|.
```

```
input f \in \mathbb{Z}[x]
    output \{a \in \mathbb{Z} \mid f(a) = 0\}
def IntegerRoots(f):
     if f(0) = 0:
            return IntegerRoots(f(x)/x) \cup {0}
     else:
            S \leftarrow \emptyset
           for a \in \{-|f(0)|, \ldots, |f(0)|\}:
                  if f(a) = 0 then S \leftarrow S \cup \{a\}
            return S
```

To compute an integer *a* knowing an a priori bound $|a| \le B$, it is enough to compute *a* (mod *N*) for some N > 2B.

To compute an integer *a* knowing an a priori bound $|a| \le B$, it is enough to compute *a* (mod *N*) for some N > 2B.

Lemma

Let $f \in \mathbb{Z}[x]$, $f(0) \neq 0$. Let N > 2|f(0)|. Let $A = \{a \in \mathbb{Z} \mid f(a) = 0\}$ and $B = \{b \in \mathbb{Z}/N\mathbb{Z} \mid f(b) = 0 \pmod{N}\}$ Then the reduction modulo N induces an injection $A \to B$.

To compute an integer *a* knowing an a priori bound $|a| \le B$, it is enough to compute *a* (mod *N*) for some N > 2B.

Lemma

Let $f \in \mathbb{Z}[x]$, $f(0) \neq 0$. Let N > 2|f(0)|. Let $A = \{a \in \mathbb{Z} \mid f(a) = 0\}$ and $B = \{b \in \mathbb{Z}/N\mathbb{Z} \mid f(b) = 0 \pmod{N}\}$ Then the reduction modulo N induces an injection $A \to B$.

Proof. The reduction modulo N defines a map $A \to B$. If $a, a' \in A$ and $a = a' \pmod{N}$, then a = a' or $|a - a'| \ge N$, so at least one of a or a' has absolute value $\le N/2$. The latter possibility contradicts the bound on the elements of A.

Reduction modulo *p*

input $f \in \mathbb{Z}[x]$ such that $f(0) \neq 0$ output $\{a \in \mathbb{Z} \mid f(a) = 0\}$ **def** IntegerRoots(f): $p \leftarrow$ a prime number such that p > 2|f(0)|[how?] $S \leftarrow \emptyset$ $U \leftarrow \left\{ u \in \mathbb{F}_p \, \middle| \, f(u) = 0 \right\} \quad \text{[how?]}$ for $u \in U$: compute $a \in \mathbb{Z}$ such that $a \equiv u \pmod{p}$ and $|a| \leq \frac{p}{2}$ **if** f(a) = 0: $S \leftarrow S \cup \{a\}$ return S

Polynomial factorization II | Integer and rational root finding

Hensel lifting I

† There is a great way to compute the roots of f modulo p^{2^l} .

 $input \ f \in \mathbb{Z}[x], a, y, N \in \mathbb{Z}$ $precondition \ f(a) = 0 \pmod{N} \text{ and } yf'(a) = 1 \pmod{N}$ $output \ \tilde{a} \in \mathbb{Z}$ $postcondition \ \tilde{a} = a \pmod{N} \text{ and } f(\tilde{a}) = 0 \pmod{N^2}$ $1 \ \text{def } HenselStep(f, a, y, N):$ $2 \ e \leftarrow f(a)$ $3 \ \tilde{a} \leftarrow a - ey$ $4 \ \text{return } \tilde{a}$

Proof. By hypothesis, $e = 0 \pmod{N}$, so $e^2 = 0 \pmod{N^2}$. Taylor's expansion yields

$$f(a - ey) = f(a) - eyf'(a) + e^2(\cdots)$$
$$= f(a) - e = 0 \mod N^2$$

Polynomial factorization II | Integer and rational root finding

Hensel lifting II

† There is a great way to compute the roots of f modulo p^{2^l} .

 $\begin{array}{l} \textit{input } f \in \mathbb{Z}[x], a, y, N \in \mathbb{Z} \\ \textit{precondition } f(a) = 0 \pmod{N} \text{ and } yf'(a) = 1 \pmod{N} \\ \textit{output } \tilde{a} \in \mathbb{Z}, \tilde{y} \in \mathbb{Z} \\ \textit{postcondition } \tilde{a} = a \pmod{N}, \tilde{y} = y \pmod{N}, f(\tilde{a}) = 0 \pmod{N^2} \\ \textit{and } \tilde{y}f'(\tilde{a}) = 1 \pmod{N^2} \end{array}$

Hensel lifting II

† There is a great way to compute the roots of f modulo p^{2^l} .

input $f \in \mathbb{Z}[x]$, $a, v, N \in \mathbb{Z}$ precondition $f(a) = 0 \pmod{N}$ and $\gamma f'(a) = 1 \pmod{N}$ output $\tilde{a} \in \mathbb{Z}, \tilde{\gamma} \in \mathbb{Z}$ postcondition $\tilde{a} = a \pmod{N}$, $\tilde{y} = y \pmod{N}$, $f(\tilde{a}) = 0 \pmod{N^2}$ and $\tilde{v}f'(\tilde{a}) = 1 \pmod{N^2}$ **def** HenselStep(f, a, y, N): $e \leftarrow f(a)$ $\tilde{a} \leftarrow a - ev$ 4 $e \leftarrow v f'(\tilde{a}) - 1$ 5 $\tilde{y} \leftarrow y(1-e)$ return \tilde{a} , $\tilde{\gamma}$

Proof.
$$\tilde{y}f'(\tilde{a}) - 1 = (yf'(\tilde{a}) - 1) - eyf'(\tilde{a}) = e - e = 0 \mod N^2$$
.

Polynomial factorization II | Integer and rational root finding

Hensel lifting III

input $f \in \mathbb{Z}[x], a, N \in \mathbb{Z}, B > 0$ precondition $f(a) = 0 \pmod{N}$ and f'(a) invertible modulo N output $\tilde{a} \in \mathbb{Z}, M \in \mathbb{Z}$ postcondition $f(\tilde{a}) = 0 \pmod{M}$ and M > B**def** HenselLift(f, a, N, B): $\nu \leftarrow f'(a)^{-1} \pmod{N}$ [How?] while N < B: $a, y \leftarrow \text{HenselStep}(f, a, y, N)$ $N \leftarrow N^2$ return a, N

Hensel lifting: full algorithm

```
input f \in \mathbb{Z}[x] with f(0) \neq 0
   output \{a \in \mathbb{Z} \mid f(a) = 0\}
def IntegerRoots(f):
      B \leftarrow |f(0)|
     f \leftarrow f/\gcd(f, f')
 p \leftarrow 2
      while disc(f) = 0 \pmod{p}:
             p \leftarrow nextprime(p)
      S \leftarrow \emptyset
      U \leftarrow \left\{ u \in \mathbb{F}_p \,\middle|\, f(u) = 0 \right\}
      for u \in U:
             a, N \leftarrow \text{HenselLift}(f, a, p, 2B)
             if 2a > N then a \leftarrow a - N
             if f(a) = 0 then S \leftarrow S \cup \{a\} [do we need this?]
       return S
```

Outline

1. Introduction

Integer and rational root finding
 1 Naive algorithms
 2 Better algorithms

3. Factorization

3.1 Reduction to the integer case 3.2 Modular algorithms

3.3 Faster recombination

Lemma

If $g \in \mathbb{Q}[x]$ is irreducible, then $m^{\deg g}g(x/m)$ is irreducible, for any nonzero $m \in \mathbb{Q}$.

Lemma

If $g \in \mathbb{Q}[x]$ is irreducible, then $m^{\deg g}g(x/m)$ is irreducible, for any nonzero $m \in \mathbb{Q}$.

Lemma

If $f = g_1 \cdots g_r$ is the irreducible factorization of f, then $m^{\deg f} f(x/m) = \prod_i m^{\deg g_i} g_i(x/m)$ is the irreducible factorization of $m^{\deg f} f(x/m)$.

Lemma

If $g \in \mathbb{Q}[x]$ is irreducible, then $m^{\deg g}g(x/m)$ is irreducible, for any nonzero $m \in \mathbb{Q}$.

Lemma

If $f = g_1 \cdots g_r$ is the irreducible factorization of f, then $m^{\deg f} f(x/m) = \prod_i m^{\deg g_i} g_i(x/m)$ is the irreducible factorization of $m^{\deg f} f(x/m)$.

Lemma

Let $f \in \mathbb{Q}[x]$ be a monic polynomial and let m be a common denominator of the coefficients. Then $m^{\deg f} f(x/m)$ is monic and has integer coefficients.

Lemma

If $g \in \mathbb{Q}[x]$ is irreducible, then $m^{\deg g}g(x/m)$ is irreducible, for any nonzero $m \in \mathbb{Q}$.

Lemma

If $f = g_1 \cdots g_r$ is the irreducible factorization of f, then $m^{\deg f} f(x/m) = \prod_i m^{\deg g_i} g_i(x/m)$ is the irreducible factorization of $m^{\deg f} f(x/m)$.

Lemma

Let $f \in \mathbb{Q}[x]$ be a monic polynomial and let m be a common denominator of the coefficients. Then $m^{\deg f} f(x/m)$ is monic and has integer coefficients.

Gauss Lemma

Let $f \in \mathbb{Z}[x]$. If f is monic, then every monic polynomial $g \in \mathbb{Q}[x]$ which divides f has integer coefficients.

Kronecker's algorithm

```
Let f \in \mathbb{Z}[x] monic.
Observation: if g \in \mathbb{Z}[x] divides f, then g(n) divides f(n) for all n \in \mathbb{Z}.
```

```
input f \in \mathbb{Z}[x] monic
```

output the irreducible factorization of \boldsymbol{f}

```
\begin{array}{l} \operatorname{def} \mathit{Factor}(f) \texttt{:} \\ \mathsf{pick} \ I \subset \mathbb{Z} \ \mathsf{such} \ \mathsf{that} \ \#I = \deg f \ \mathsf{and} \ f(i) \neq 0 \ \mathsf{for} \ i \in I \\ \mathsf{for} \ \mathsf{every} \ \mathsf{sequence} \ (\sigma_i)_{i \in I} \in \mathbb{Z}^I \ \mathsf{such} \ \mathsf{that} \ \sigma_i \ \mathsf{divides} \ f(i) \texttt{:} \\ \mathsf{compute} \ g \in \mathbb{Q}[x] \ \mathsf{such} \ \mathsf{that} \ g \ \mathsf{is} \ \mathsf{monic} \ \mathsf{and} \ g(i) = \sigma_i \ \mathsf{for} \ i \in I \\ \mathsf{if} \ g \ \mathsf{divides} \ f \texttt{:} \\ \mathsf{return} \ \mathit{Factor}(g) \cdot \mathit{Factor}(f/g) \\ \mathsf{return} \ f \end{array}
```

Kronecker's algorithm

```
Let f \in \mathbb{Z}[x] monic.
Observation: if g \in \mathbb{Z}[x] divides f, then g(n) divides f(n) for all n \in \mathbb{Z}.
```

```
input f \in \mathbb{Z}[x] monic
```

output the irreducible factorization of \boldsymbol{f}

```
def Factor(f):
```

```
pick I \subset \mathbb{Z} such that \#I = \deg f and f(i) \neq 0 for i \in I
```

```
for every sequence (\sigma_i)_{i \in I} \in \mathbb{Z}^I such that \sigma_i divides f(i):
```

```
compute g \in \mathbb{Q}[x] such that g is monic and g(i) = \sigma_i for i \in I
if g divides f:
```

```
return Factor(g) \cdot Factor(f/g)
```

return f

A We can do much better!

A size bound

For
$$f = \sum_{i=0}^{d} c_i x^i$$
, let $||f||_2 = \left(c_0^2 + \dots + c_d^2\right)^{\frac{1}{2}}$ and $||f||_{\infty} = \max\{|c_0|, \dots, |c_d|\}.$

Lemma (Landau-Mignotte)

Let $f, g \in \mathbb{Z}[x]$ monic such that g divides f. Then $||g||_{\infty} \leq ||g||_{2} \leq 2^{\deg g} ||f||_{2}$.

A size bound

For
$$f = \sum_{i=0}^{d} c_i x^i$$
, let $||f||_2 = \left(c_0^2 + \dots + c_d^2\right)^{\frac{1}{2}}$ and $||f||_{\infty} = \max\{|c_0|, \dots, |c_d|\}.$

Lemma (Landau-Mignotte)

Let $f, g \in \mathbb{Z}[x]$ monic such that g divides f. Then $||g||_{\infty} \leq ||g||_{2} \leq 2^{\deg g} ||f||_{2}$.

Lead to a naive factorization algorithm, but not worth stating it.

Lemma

Let $f \in \mathbb{Z}[x]$ monic and $p > 2^{\deg f+1} ||f||_2$ be a prime number. Let $A = \{g \in \mathbb{Z}[x] \mid g \text{ monic and divides } f\}$ and $B = \{\bar{g} \in \mathbb{F}_p[x] \mid \bar{g} \text{ monic and divides } \bar{f} \pmod{p}\}$ Then the reduction modulo p induces an injection $A \to B$.

Lemma

Let $f \in \mathbb{Z}[x]$ monic and $p > 2^{\deg f+1} ||f||_2$ be a prime number. Let $A = \{g \in \mathbb{Z}[x] \mid g \text{ monic and divides } f\}$ and $B = \{\bar{g} \in \mathbb{F}_p[x] \mid \bar{g} \text{ monic and divides } \bar{f} \pmod{p}\}$ Then the reduction modulo p induces an injection $A \to B$.

lacksquare Irreducible divisors of f may not be mapped to irreducible factors of $ar{f}$

If \bar{f} is squarefree and if $\bar{f} = g_1 \dots g_r$ is the irreducible decomposition of \bar{f} , then the map

$$S \subseteq \{1, \ldots, r\} \quad \mapsto \quad \prod_{i \in S} g_i \in B$$

is a bijection.

A factorization algorithm (Musser 1971)

input $f \in \mathbb{Z}[x]$ squarefree and monic *output* an irreducible factor of f

def Factor(f):

pick a prime $p > 2^{\deg f+1} ||f||_2$ such that $\operatorname{disc}(f) \neq 0 \pmod{p}$ $g_1, \ldots, g_r \leftarrow \operatorname{irreducible} \operatorname{factors} \operatorname{of} f \pmod{p}$ for k from 1 to $\lfloor r/2 \rfloor$: for $S \subseteq \{1, \ldots, r\}$ with #S = k: $\bar{h} \leftarrow \prod_{i \in S} g_i$ compute $h \in \mathbb{Z}[x]$ with $||h||_{\infty} < \frac{p}{2}$ and $h = \bar{h} \pmod{p}$ if h divides f in $\mathbb{Z}[x]$: return hreturn f

Lemma (Swinnerton-Dyer polynomials)

Let p_n be the *n*th prime number and let $f_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{p_n}) \in \mathbb{Z}[x]$. The polynomial f_n has degree 2^n , is irreducible and is a product of polynomials of degree at most 2 modulo any prime p.

Lemma (Swinnerton-Dyer polynomials)

Let p_n be the *n*th prime number and let $f_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{p_n}) \in \mathbb{Z}[x]$. The polynomial f_n has degree 2^n , is irreducible and is a product of polynomials of degree at most 2 modulo any prime p.

How do we compute these polynomials?

Lemma (Swinnerton-Dyer polynomials)

Let p_n be the nth prime number and let $f_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{p_n}) \in \mathbb{Z}[x]$. The polynomial f_n has degree 2^n , is irreducible and is a product of polynomials of degree at most 2 modulo any prime p.

How do we compute these polynomials?

Why do they split into factors of degree at most two over \mathbb{F}_p (for any prime p)?

Lemma (Swinnerton-Dyer polynomials)

Let p_n be the nth prime number and let $f_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{p_n}) \in \mathbb{Z}[x]$. The polynomial f_n has degree 2^n , is irreducible and is a product of polynomials of degree at most 2 modulo any prime p.

How do we compute these polynomials?

Why do they split into factors of degree at most two over \mathbb{F}_p (for any prime p)?

The problem of recombination seems clause to combinatorial NP-complete problems, like SUBSET-SUM.

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

REDUCIBLE

input $f \in \mathbb{Z}[x]$ output YES if f is not irreducible, NO otherwise

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

REDUCIBLE

input $f \in \mathbb{Z}[x]$ output YES if f is not irreducible, NO otherwise

REDUCIBLE is in NP. Why?

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

REDUCIBLE

input $f \in \mathbb{Z}[x]$ output YES if f is not irreducible, NO otherwise

REDUCIBLE is in NP. Why?

Do you think reducible is NP-complete?

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

REDUCIBLE

input $f \in \mathbb{Z}[x]$ output YES if f is not irreducible, NO otherwise

REDUCIBLE is in NP. Why?

Do you think reducible is NP-complete?

```
REDUCIBLE is in coNP (Cantor 1981).
```

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

REDUCIBLE

input $f \in \mathbb{Z}[x]$ output YES if f is not irreducible, NO otherwise

REDUCIBLE is in NP. Why?

Do you think reducible is NP-complete?

```
REDUCIBLE is in coNP (Cantor 1981).
```

Do you know other problems in NP \cap coNP?

Recall that a decision problem is in NP (resp. coNP) if additional data and a polynomial-time computation can convince you that an instance satisfies (resp. does not satisfy) the problem.

REDUCIBLE

input $f \in \mathbb{Z}[x]$ output YES if f is not irreducible, NO otherwise

REDUCIBLE is in NP. Why?

Do you think reducible is NP-complete?

```
REDUCIBLE is in coNP (Cantor 1981).
```

Do you know other problems in NP \cap coNP?

Computing the irreducible factorization is in P! (A. K. Lenstra, H. W. Lenstra, Lovàsz 1982) **Fantastic breakthrough!**

Polynomial factorization II | Factorization

Hensel lifting for factorization (Zassenhaus 1969)

input $f, g, h, u, v \in \mathbb{Z}[x]$ and N > 0precondition $f = gh \pmod{N}$ and $1 = ug + vh \pmod{N}$ output $\tilde{g}, \tilde{h}, \tilde{u}, \tilde{b} \in \mathbb{Z}[x]$ nectoordition $\tilde{g} = g \pmod{N}$ for $\tilde{g}, \tilde{h} \pmod{N}$

postcondition $\tilde{\bullet} = \bullet \pmod{N}$, $f = \tilde{g}\tilde{h} \pmod{N^2}$ and $1 = \tilde{u}\tilde{g} + \tilde{v}\tilde{h} \pmod{N^2}$

Hensel lifting for factorization (Zassenhaus 1969)

input f, g, h, u, $v \in \mathbb{Z}[x]$ and N > 0precondition $f = gh \pmod{N}$ and $1 = ug + vh \pmod{N}$ output $\tilde{g}, \tilde{h}, \tilde{u}, \tilde{b} \in \mathbb{Z}[x]$ postcondition $\tilde{\bullet} = \bullet \pmod{N}$, $f = \tilde{g}\tilde{h} \pmod{N^2}$ and $1 = \tilde{u}\tilde{g} + \tilde{v}\tilde{h} \pmod{N^2}$ **def** HenselStep(f, g, h, u, v, N): $e \leftarrow f - gh$ $q, a \leftarrow \text{QuoRem}(ue, h)$ $b \leftarrow ve + gq$ $\tilde{g} \leftarrow g + b; h \leftarrow h + a$ $e \leftarrow 1 - ug - vh$ $q, a \leftarrow \text{QuoRem}(ue, h)$ $b \leftarrow ve + gq$ $\tilde{u} \leftarrow u + a; \tilde{v} \leftarrow v + b$ return $\tilde{g}, \tilde{h}, \tilde{u}, \tilde{v}$

Hensel lifting for factorization (Zassenhaus 1969)

input f, g, $h \in \mathbb{Z}[x]$, p prime and B > 0precondition $f = gh \pmod{p}$ and f is squarefree mod. p output $\tilde{g}, \tilde{h} \in \mathbb{Z}[x]$ and l > 0postcondition $\tilde{\bullet} = \bullet \pmod{p}, f = \tilde{g}\tilde{h} \pmod{p^l}$ and $p^l > B$ **def** HenselLift(f, g, h, p, B): $u, v \leftarrow \text{ExtendedEuclideanAlgorithm}(g, h)$ $l \leftarrow 1$ while $p^l \leq B$: g, h, u, v \leftarrow HenselStep (f, g, h, u, v, p^l) $1 \leftarrow 21$ return g, h, l

Lifting many factors

input $f \in \mathbb{Z}[X], g_1, \dots, g_r \in \mathbb{Z}[x], p$ prime and B > 0precondition $f = g_1 \cdots g_r \pmod{p}$ and f is squarefree modulo poutput $\tilde{g}_1, \dots, \tilde{g}_r \in \mathbb{Z}[x]$ and l > 0postcondition $\tilde{\bullet} = \bullet \pmod{p}, f = \tilde{g}_1 \cdots \tilde{g}_r \pmod{p^l}$ and $p^l > B$

Lifting many factors

input $f \in \mathbb{Z}[X], g_1, \ldots, g_r \in \mathbb{Z}[x], p$ prime and B > 0precondition $f = g_1 \cdots g_r \pmod{p}$ and f is squarefree modulo p output $\tilde{g}_1, \ldots, \tilde{g}_r \in \mathbb{Z}[x]$ and l > 0postcondition $\tilde{\bullet} = \bullet \pmod{p}$, $f = \tilde{g}_1 \cdots \tilde{g}_r \pmod{p^l}$ and $p^l > B$ **def** MultiHenselLift $(f, (g_i)_{1 \le i \le r}, p, B)$: if r = 1 then return f: else: $s \leftarrow |r/2|$ $L, R \leftarrow \text{HenselLift}(f, g_1 \cdots g_s, g_{s+1} \cdots g_r, p, B)$ $g_1, \ldots, g_s \leftarrow MultiHenselLift(L, (g_1, \ldots, g_s), p, B)$ $g_{s+1}, \ldots, g_r \leftarrow MultiHenselLift(R, (g_{s+1}, \ldots, g_r), p, B)$ return g_1, \ldots, g_r and l

Recombination is the main issue

The recombination problem

input $f \in \mathbb{Z}[x]$, and $g_1, \ldots, g_r \in \mathbb{Z}/p^l \mathbb{Z}[x]$ precondition f is squarefree modulo $p, p^l \gg 1$ and $f = g_1 \cdots g_r \pmod{p^l}$ problem find a non trivial $S \subseteq [r]$ such that $\prod_{i \in S} g_i$ lifts in $\mathbb{Z}[x]$ into a divisor of f.

A We still have the exponential blowup for the recombination!

Linearizing the problem

Let $g \in \mathbb{Z}[x]$ be a monic divisor of f. Then $g = \prod_{i \in S} g_i \pmod{p^l}$ for some $S \subseteq [r]$. Moreover

$$\frac{fg'}{g} = \sum_{i} \delta_{i \in S} \frac{fg'_i}{g_i} + p^l e.$$

More size bounds

Lemma

Let $f \in \mathbb{Z}[x]$ monic and let $g \in \mathbb{Z}[x]$ be a monic divisor. Then $||fg^{-1}g'||_2 \le \deg(f)2^{\deg f-1}||f||_2$.

More size bounds

Lemma

Let $f \in \mathbb{Z}[x]$ monic and let $g \in \mathbb{Z}[x]$ be a monic divisor. Then $||fg^{-1}g'||_2 \le \deg(f)2^{\deg f-1}||f||_2$.

Lemma (Hadamard bound)

Let
$$f, g \in \mathbb{Z}[x]$$
. Then $|\operatorname{res}(f, g)| \le ||f||_2^{\deg g} ||g||_2^{\deg f}$.

Some Euclidean lattices

Let $f \in \mathbb{Z}[x]$ be a squarefree monic polynomial of degree d and let $g_1, \ldots, g_r \in \mathbb{Z}/p^l \mathbb{Z}[x]$ be the lifts of the irreducible factors of f modulo p. Let $E = \mathbb{Z}^r \times \mathbb{Z}[x]_{\leq d} \simeq \mathbb{Z}^{r+d}$.

Let L be the (full rank) subgroup of \tilde{E} generated by

- $(e_i, f \frac{g'_i}{g_i})$, for $1 \le i < r$;
- $(0, p^l x^j)$, for $0 \le j < d$.

Let $B = d2^{d-1} ||f||_2$. Define the following norm on L: $||(u, h)||_2 = (d^{-1}B^2 ||u||_2^2 + ||h||_2^2)^{\frac{1}{2}}$. For $A \ge 0$, let L_A be the subgroup of L generated by elements of norm $\le A$. Let W be the subgroup of L generated by the $(\mathbf{n}, f\frac{h'}{h})$, where $h \in \mathbb{Z}[x]$ is a monic divisor of f and $h = \prod_i g_i^{n_i} \pmod{p}$.

Short vectors

Lemma (van Hoeij 2002)

- 1. $W \subseteq L_{2B}$ "divisors yield short vectors"
- 2. Let C > B. If $p^l > d^{d+1}C^dB^d$, then $L_C \subseteq W$. "short vectors come from divisors"

In particular, $W = L_{2B} = L_C$.

Short vectors

Lemma (van Hoeij 2002)

- 1. $W \subseteq L_{2B}$ "divisors yield short vectors"
- 2. Let C > B. If $p^l > d^{d+1}C^dB^d$, then $L_C \subseteq W$. "short vectors come from divisors"

In particular, $W = L_{2B} = L_C$.

Mind the arbitrary gap between *B* and *C*!

Short vectors

Lemma (van Hoeij 2002)

- 1. $W \subseteq L_{2B}$ "divisors yield short vectors"
- 2. Let C > B. If $p^l > d^{d+1}C^dB^d$, then $L_C \subseteq W$. "short vectors come from divisors"

In particular, $W = L_{2B} = L_C$.

i Mind the arbitrary gap between *B* and *C*!

Proof of 1. Come from the bound on $||f\frac{h'}{h}||_2$.

M. van Hoeij (Aug. 1, 2002). "Factoring Polynomials and the Knapsack Problem". In: *Journal of Number Theory* 95.2, pp. 167–189. DOI: 10/cnzkv3 K. Belabas, M. van Hoeij, J. Klüners, A. Steel (2009). "Factoring Polynomials over Global Fields". In: *J. Théor. Nombres Bordeaux* 21.1, pp. 15–39. DOI: 10/b28w8q

Proof of 2. Let $(\mathbf{n}, q) \in L$ such that $d^{-1}B^2 ||\mathbf{n}||_2^2 + ||q||_2^2 \leq C^2$. We say that $i \sim j$ if g_i and g_j are part of the same irreducible factor of f in $\mathbb{Z}[x]$. To prove that $(\mathbf{n}, q) \in W$, it is enough to prove that $i \sim j \Rightarrow n_i = n_j$.

Proof of 2. Let $(\mathbf{n}, q) \in L$ such that $d^{-1}B^2 ||\mathbf{n}||_2^2 + ||q||_2^2 \leq C^2$. We say that $i \sim j$ if g_i and g_j are part of the same irreducible factor of f in $\mathbb{Z}[x]$. To prove that $(\mathbf{n}, q) \in W$, it is enough to prove that $i \sim j \Rightarrow n_i = n_j$.

NB: $n_i = 0 \Leftrightarrow g_i$ divides q.

Proof of 2. Let $(\mathbf{n}, q) \in L$ such that $d^{-1}B^2 ||\mathbf{n}||_2^2 + ||q||_2^2 \leq C^2$. We say that $i \sim j$ if g_i and g_j are part of the same irreducible factor of f in $\mathbb{Z}[x]$. To prove that $(\mathbf{n}, q) \in W$, it is enough to prove that $i \sim j \Rightarrow n_i = n_j$.

NB: $n_i = 0 \Leftrightarrow g_i$ divides q.

Let $1 \le i \le r$. Let h be the irreducible factor of f containing g_i . Consider $\tilde{q} = q - n_i h$. Note that $\|\tilde{q}\| \le (d+1)C$.

Proof of 2. Let $(\mathbf{n}, q) \in L$ such that $d^{-1}B^2 ||\mathbf{n}||_2^2 + ||q||_2^2 \leq C^2$. We say that $i \sim j$ if g_i and g_j are part of the same irreducible factor of f in $\mathbb{Z}[x]$. To prove that $(\mathbf{n}, q) \in W$, it is enough to prove that $i \sim j \Rightarrow n_i = n_j$.

NB: $n_i = 0 \Leftrightarrow g_i$ divides q.

Let $1 \le i \le r$. Let h be the irreducible factor of f containing g_i . Consider $\tilde{q} = q - n_i h$. Note that $\|\tilde{q}\| \le (d+1)C$.

In $\mathbb{Z}/p^l \mathbb{Z}[x]$, \tilde{q} is a multiple of g_i . So res $(h, \tilde{q}) = 0 \pmod{p^l}$.

Proof of 2. Let $(\mathbf{n}, q) \in L$ such that $d^{-1}B^2 ||\mathbf{n}||_2^2 + ||q||_2^2 \leq C^2$. We say that $i \sim j$ if g_i and g_j are part of the same irreducible factor of f in $\mathbb{Z}[x]$. To prove that $(\mathbf{n}, q) \in W$, it is enough to prove that $i \sim j \Rightarrow n_i = n_j$.

NB: $n_i = 0 \Leftrightarrow g_i$ divides q.

Let $1 \le i \le r$. Let h be the irreducible factor of f containing g_i . Consider $\tilde{q} = q - n_i h$. Note that $\|\tilde{q}\| \le (d+1)C$.

In $\mathbb{Z}/p^l\mathbb{Z}[x]$, \tilde{q} is a multiple of g_i . So $\operatorname{res}(h, \tilde{q}) = 0 \pmod{p^l}$.

But $|\operatorname{res}(h, \tilde{q})| \leq (d+1)^d C^d B^d < p^l$, so $\operatorname{res}(h, \tilde{q}) = 0$. Since *h* is irreducible, it follows that *h* divides \tilde{q} . It follows that $n_i = 0$ for any $j \sim i$.

Computing short vectors

Computing L_B given a basis of L is, in general, NP-hard. However...

Computing short vectors

Computing L_B given a basis of L is, in general, NP-hard. However...

Theorem (A. K. Lenstra, H. W. Lenstra, Lovàsz 1982)

If $L_B = L_{2^d B}$, then we can compute L_B in polynomial time.

The final factorization algorithm

input $f \in \mathbb{Z}[x]$ monic squarefree output $h_1, \ldots, h_s \in \mathbb{Z}[x]$ the irreducible factors of f **def** Factor(f): $p \leftarrow$ a prime number such that $\operatorname{disc}(f) \neq 0 \pmod{p}$ $g_1, \ldots, g_r \leftarrow Factor(f \mod p)$ $d \leftarrow \deg f; B \leftarrow d2^{d-1} ||f||_2; C \leftarrow 2^{r+d}B$ $l \leftarrow d(\log_p(d+1) + \log_p C + \log_p B)$ $\tilde{g}_1, \ldots, \tilde{g}_r \leftarrow MultiHenselLift(f, (g_1, \ldots, g_r), p^l)$ $L \leftarrow \text{Lattice}\left\{\left(e_{i}, fg_{i}^{-1}g_{i}'\right)\right\}_{1 \le i \le r} \cup \left\{\left(0, p^{l}x^{j}\right)\right\}_{0 \le i \le d} \subset \mathbb{Z}^{r} \times \mathbb{Z}[x]_{\le d}$ $F \leftarrow \text{basis of } L_B$ [with LLL, because $L_B = L_{2^{r+d}B}$] $\{(\mathbf{n}_i, r_i)\}_{1 \le i \le s} \leftarrow$ the row-reduced echelon form of F return $\left(\text{Lift}_{\mathbb{Z}} \left(\prod_{j=1}^{r} g_{j}^{n_{ij}} \right) \right)_{1 \leq i \leq j}$

The final complexity result

Theorem (Belabas, van Hoeij, Klüners, Steel 2009)

We can compute the irreducible factors of $f \in \mathbb{Z}[x]$ in $\tilde{O}(d^8 + d^6(\log \|f\|_{\infty})^2)$.

K. Belabas, M. van Hoeij, J. Klüners, A. Steel (2009). "Factoring Polynomials over Global Fields". In: J. *Théor. Nombres Bordeaux* 21.1, pp. 15–39. DOI: 10/b28w8q