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Euclidean lattices

Definition

An Euclidean lattice is a discrete subgroup of ℝn (with its usual norm).
An Euclidean lattice is a group ℤn with a positive definite quadratic form.

A famous NP-hard problem

Input A lattice Λ ⊆ ℤn

Output f ∈ Λ nonzero such that ∥f ∥ = min {∥g∥ | g ∈ Λ nonzero}

A polynomial-time solvable problem

Input A lattice Λ ⊆ ℤn

Output f ∈ Λ nonzero such that ∥f ∥ ≤ 2 n−1
2 min {∥g∥ | g ∈ Λ nonzero}
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Volume and ith minimum
Let L be a lattice with basis f1, . . . , fr .
For B > 0, let LB = ⟨x ∈ L | ∥x∥ ≤ B⟩.

Volume

vol(L)2 = det
(
fi · fj

)
1≤i,j≤r

k th minimum

𝜆k (L) = min {B | rk LB ≥ k}

= min
{
max
1≤i≤k

∥vi∥
���� v1, . . . , vk ∈ L linearly independent

}
.
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Gram–Schmidt orthogonalization

Let f1, . . . , fr ∈ ℤn and let L = ℤf1 + · · · + ℤfr be the generated lattice.

Gram–Schmidt basis

f ∗i = fi −
∑︁
j<i

⟨fi, f ∗j ⟩
∥f ∗j ∥2︸  ︷︷  ︸

𝜇ij

f ∗j ∈ ℚf1 + · · · +ℚfi

Lemma

vol(L) = ∏r
i=1 ∥f ∗i ∥
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GSO and short vectors

Lemma

For any nonzero g ∈ L, ∥g∥ ≥ min
{
∥f ∗1 ∥, . . . , ∥f ∗r ∥

}
.

Proof. Write g =
∑s

i=1 aifi, with ai ∈ ℤ, 1 ≤ s ≤ r and as ≠ 0. In the GS basis, we have

g = asf ∗s + [· · · ]f ∗s−1 + · · · + [. . . ]f ∗1 ,

and in particular, ∥g∥2 ≥ a2s ∥f ∗s ∥2.
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Reduced bases

Definition

A basis f1, . . . , fr is reduced if
(i) |𝜇ij | ≤ 1

2 , for any 1 ≤ j < i (size-reduced);
(ii) ∥f ∗i−1∥2 ≤ 2∥f ∗i ∥2 for any i.

I follow Gathen, Gerhard (2013) for the definition. More commonly, condition (ii) is
replaced by the stronger, with 𝛿 ∈ ( 14 , 1)

(𝛿 − 𝜇2i,i−1)∥f ∗i−1∥2 ≤ ∥f ∗i ∥2.

� It took 200 years to develop this definition. It’s not at all clear that it’s strong enough to
be interesting, or weak enough for such bases to exist and be computable in polynomial
time.
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Reduced bases II

Lemma

Let f1, . . . , fr be a reduced basis.
For any nonzero g ∈ L, ∥f1∥ ≤ 2 r−1

2 ∥g∥.

Proof. ∥f ∗i ∥ ≥ 2 i−1
2 ∥f ∗1 ∥ and f ∗1 = f1.

Let 𝜆k (L) = min {B | rk LB ≥ k} = min {max1≤i≤k ∥vi∥ | v1, . . . , vk ∈ L lin. indep.}.
Let f1, . . . , fr be a reduced basis.

Lemma

For any 1 ≤ k ≤ r , mink≤j≤r ∥f ∗j ∥ ≤ 𝜆k (L).

Proof. Let v1, . . . , vk ∈ L be linearly independent. Because of the linear independence,
there is at least one vi which is not in Vect(f1, . . . , fk−1). By a previous argument,
∥vi∥ ≥ mink≤j≤r ∥f ∗j ∥.
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Reduced bases III

Lemma

For any 1 ≤ k ≤ r , ∥fk∥ ≤ 2 r−1
2 𝜆k (L).

Proof. For k ≤ j ≤ r , we have ∥f ∗j ∥ ≥ 2
k−j
2 ∥f ∗k ∥. Moreover,

∥fk∥2 ≤ ∥f ∗k ∥
2 +

∑︁
j<k

𝜇2kj ∥f
∗
j ∥2 ≤ 2k−1∥f ∗k ∥

2,

and the claim follows.
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Reduced bases IV

Theorem

Let f1, . . . , fr be a reduced basis of a lattice L.
For B > 0, let LB = Lattice {g ∈ L | ∥g∥ ≤ B}.
Let𝜅 = 2 r−1

2 and 𝜇 ≥ 𝜅.
� Let B > 0 such that LB = L𝜇B.
Then there is a k such that

(i) ∥fi∥ ≤ 𝜅B for all i ≤ k;
(ii) ∥fi∥ > 𝜇B for all i > k;

(iii) f1, . . . , fk is a basis of LB.
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Reduced bases V
Proof. Let k = rank(LB). By definition 𝜆k (L) ≤ B. The hypothesis LB = L𝜇B means
that 𝜆k+1(L) > 𝜇B.
For any i ≤ k, we have

∥fi∥ ≤ 𝜅𝜆i (L) ≤ 𝜅𝜆k (L) ≤ 𝜅B.

This proves (i).
In particular, fi ∈ L𝜅B ⊆ L𝜇B = LB, so f1, . . . , fk is a basis of LB. This proves (iii).
For any j > k, the family f1, . . . , fk, fj is free, so

max
{
∥f1∥, . . . , ∥fk∥, ∥fj ∥

}
≥ 𝜆k+1(L) > 𝜇B.

Combining with the previous inequality, this implies that ∥fj ∥ ≥ 𝜇B. This proves (ii).

� Reduced bases are indeed what we need!

Lattice reduction | Lattice reduction Page 10/17



The LLL algorithm
1 def LLL(f1, . . . , fr):
2 compute the GS information (the ∥f ∗i ∥2 and 𝜇ij coefficients)
3 i← 2; Niter ← 0; Nswap ← 0
4 while i ≤ r:
5 Niter ← Niter + 1
6 for j from i − 1 to 1:
7 fi ← fi − ⌊𝜇ij⌉fj
8 update the GS information
9 if ∥f ∗i−1∥2 > 2∥f ∗i ∥2:

10 swap(fi−1, fi)
11 update the GS information
12 i← max(i − 1, 2); Nswap ← Nswap + 1
13 else:
14 i← i + 1
15 return f1, . . . , fr
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Correction of the LLL algorithm

Proposition

When the LLL algorithm terminates, it returns a reduced basis of the input lattice.

After the loop on line 6, it is clear that f1, . . . , fi is size-reduced.

At the begining of each iteration of the “while”-loop, it is also clear that f1, . . . , fi−1 is
reduced.

So if the algorithm terminates, it outputs a reduced basis.
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Polynomial-time termination of LLL

Theorem (A. K. Lenstra, H. W. Lenstra, Lovàsz 1982)

The LLL algorithm terminates in polynomial time.

If a swap happens, let g1, . . . , gi denote the basis after the swap. Then

g∗i−1 = f ∗i + 𝜇i,i−1f ∗i−1
and so

∥g∗i−1∥2 ≤ ∥f ∗i ∥2 +
1
4
∥f ∗i−1∥2 ≤

3
4
∥f ∗i−1∥2.

After the swap, Di−1 =
∏i−1

k=1 ∥f ∗k ∥
2 decreases by a factor 3

4 at least.
Besides, Dj = vol

(
ℤf1 + · · · + ℤfj

)
, so Dj (for j ≠ i) remains constant. It follows that

Δ = D1 · · ·Dr

is a strictly positive integer which decreases by 3
4 after a swap.
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Complexity

Let A = maxi ∥fi∥.

• Arithmetic complexity
The number of swaps is bounded by log(Δ)/log( 34 ).
The initial value of logΔ is bounded by n2 logA.

We can update the GS info in O(n2) operations. The “for” loop for size reduction
has at most one nontrivial iteration.

How many iterations of the “while” loop? We check the following loop invariant:

Niter ≤ 2Nswap + i

So at most O(n2 logA) iterations, and O(n4 logA) total operations.

• Binary complexity
Hard to do it right... Current best (of a variant of LLL) is O(n5+𝜖 log(A)1+𝜖).
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Applications of lattice reduction

• Cryptography
• Experimental mathematics

• Disproof of Mertens’ conjecture (Odlyzko, te Riele 1985)
• Guessing recurrence relations with little data (Kauers, Koutschan 2022)

• Integer linear programming
• ...
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