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Abstract

We introduce DDE-Solver, a Maple package designed for solving Discrete Differential
Equations (DDEs). These equations are functional equations relating algebraically a formal
power series F(t,u) with polynomial coefficients in a “catalytic” variable u, with special-
izations of it with respect to the catalytic variable. Such equations appear in enumerative
combinatorics, for instance in the enumeration of maps. Bousquet-Mélou and Jehanne
showed in 2006 that when these equations are of a fixed point type in F, then F is an
algebraic series. In the same paper, they proposed a systematic method for computing
annihilating polynomials of these series. Bostan, Safey El Din and the author of this article
recently designed new efficient algorithms for computing these witnesses of algebraicity. In
this paper, we describe the first Maple package dedicated to the resolution of these DDEs.
Moreover, we compare the timings of these new algorithms on DDEs from the literature.

1 Introduction

Context and motivations. Sequences of non-negative integers are ubiquitous in enu-
merative combinatorics. For instance, when studying bicolored maps (purple, white) such
that the degree of each purple face is 3 and the degree of each white face is a multiple of
3, the introduction of the sequence (cn)n∈N of such maps with n purple faces yields the
numbers 1,1,6,54,594,7371,99144, · · · . From such a sequence, many questions arise: does
there exist a finite way of representing the infinite amount of data given by this sequence?
Does there exist a close formula for (cn)n∈N? What is the value of cN , for N ∈ Z≥0 large
(e.g. N = 3 · 106), and how fast can it be computed? What is the asymptotic growth of cn
when n→∞?

In order to answer such questions, a common method is to introduce and study the
properties of the generating function of the enumeration. For instance for the above
maps enumeration, one would introduce G(t) :=

∑
n∈N cnt

n ∈Q[[t]]. For sophisticated enu-
merations, it is usually hard to study directly the generating series. Refining the initial
enumeration of interest usually yields to introducing a new variable called catalytic, which
leads to consider a bivariate generating function, say F(t,u) for u the catalytic variable.
For well-chosen refinements, it is then possible to write a functional equation relating
algebraically both F(t,u) and G(t).

For the above toy example of bicolored maps, one would typically refine the enumera-
tion with the sequence (cn,d)n,d∈N as number of 3-constellations having n purple faces and
outer degree 3d. Straightforwardly, one would also introduce its associated generating
function F(t,u) =

∑
n,d≥0 cn,du

dtn ∈Q[u][[t]]. As (
∑∞

d=0 cn,d) = cn, it holds that F(t,1) = G(t).
An analysis on the construction of such maps [9, Fig. 7] yields the functional equation

F(t,u) = 1 + tuF(t,u)3 + tu(2F(t,u) +F(t,1))
F(t,u)−F(t,1)

u − 1
(1)

+ tu
F(t,u)−F(t,1)− (u − 1) ·∂uF(t,1)

(u − 1)2 .
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Note that for any positive integer k and for two polynomials f ,Q, eq. (1) has the form

F(t,u) = f (u) + t ·Q(F(t,u),∆aF(t,u), . . . ,∆k
aF(t,u), t,u), (2)

where, for a ∈ Q, we denote ∆a : F ∈ Q[u][[t]] 7→ F(t,u)−F(t,a)
u−a ∈ Q[u][[t]] and ∆ℓ

a the ℓth

iteration of the divided difference operator ∆a. Equations of the form (2) are called DDEs
of order k. For instance, eq. (1) is a DDE of order k = 2, and the divided difference
operator ∆a is considered at the point a = 1. Observe that due to its fixed-point nature,
there exists a unique solution in Q[u][[t]] to eq. (2). Moreover, the following result proved
by Bousquet-Mélou and Jehanne in [9], reminiscient of Popescu’s theorem [23, Thm. 1.4],
implies that this solution is annihilated by a nonzero polynomial with coefficients in Q(t,u).

Theorem 1. ([9, Thm. 3]) Let K be a field of characteristic 0 and consider two polynomials
f ∈K[u] and Q ∈K[x,y1, . . . , yk , t,u], where k ∈ N\{0}. Let a ∈K and ∆a : K[u][[t]]→K[u][[t]]
be the divided difference operator ∆aF(t,u) := (F(t,u)−F(t,a))/(u − a). Let us denote by ∆ℓ

a the
operator obtained by iterating ℓ times ∆a. Then, there exists a unique solution F ∈K[u][[t]] to
the functional equation

F(t,u) = f (u) + tQ(F(t,u),∆aF(t,u), . . . ,∆k
aF(t,u), t,u), (3)

and moreover F(t,u) is algebraic over K(t,u).

Applying Theorem 1 to our example of maps enumeration, there exists some polyno-
mial R ∈Q[t, z] \ {0} such that R(t,G(t)) = 0. Namely, G(t) = 1 + t + 6t2 + 54t3 + 594t4 +O(t5)
is annihilated by R(t, z) = 81t2z3−9t(9t−2)z2 +(27t2−66t+1)z−3t2 +47t−1. Moreover G is
the unique root in z of R in Q[[t]]. Thus R provides a finite amount of data that encode the
sequence (cn)n∈N. Also with R, it is possible to show1 that c0 = 1 and cn = 6·3n

(2n+2)(2n+1)
(3n−1
n−1

)
,

for all n ≥ 1. Additionally one proves, using the polynomial R, that for all n ∈ N \ {0,1}

(81n2 + 81n+ 18) · cn − (4n2 + 14n+ 12) · cn+1 = 0,

with c0 = 1, c1 = 1. Using the above hypergeometric recurrence, computing c3·106 only
takes 40 seconds in Maple by using the gfun package [24] of Salvy and Zimmermann. Now
using the above closed formula, one deduces the asymptotic behavior

cn ∼ 34n2−2n(4
√

3πn−
5
2 +O(n−

7
2 )), when n→∞.

The oracle that provided us the polynomial R(t, z) = 81t2z3−9t(9t−2)z2 + (27t2−66t+ 1)z−
3t2 + 47t − 1 hence allowed us to answer all the questions stated at the beginning of this
section. We shall emphasize that it is not always possible to deduce closed-formulas for
such sequences. However, linear recurrences are always computable since the generating
functions are algebraic, thus solution of a linear differential equation with polynomial
coefficients [25, Prop. 6.4.3, Thm. 6.4.6].

A central question is thus to solve equations like eq. (3) that is, to compute annihilating
polynomials for their solutions. The problem considered in DDE-Solver is the following:

For F solution of a DDE of the form eq. (3), compute R ∈K[t, z] \ {0} such that R(t,F(t,a)) = 0.

Previous algorithmic works There exists a rich litterature regarding the effective reso-
lution of DDEs. The articles [9, 6, 7] already contain a complete state-of-the-art, but we
shall however give an overview of this litterature. Let us start with DDEs such that the
polynomial Q in (3) has degree 2 in x. When k = 1, Brown introduced in [13] what is now

1Write the linear differential equation satisfied by F(t,1), and solve the associated recurrence relation.
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called the quadratic method. This method was generalized later by Bender and Canfield
in [3] on a particular family of DDEs of arbitrary order, still with Q of degree 2 in x.

Also, the case where Q is linear in x,y1, . . . , yk appears in many walks enumeration
problems (e.g. [9, §3.1]). Solving DDEs in this case is usually done by applying the kernel
method, introduced by Knuth in [20] and coined by Banderier and Flajolet in [1]. Since the
work of Bousquet-Mélou and Petkovšek [10], the linear case is considered as understood.

Regarding strategies based on the guess-and-prove paradigm (democratized in [22]),
they have been notably studied by Zeilberger [26] in the case k = 1, and improved in this
same case with Gessel in [19].

Bousquet-Mélou and Jehanne designed in [9] a general method which can be seen as
a generalization of both the kernel and the quadratic methods. Their strategy consists in
translating the resolution of a DDE into the resolution of a polynomial system admitting a
solution with F(t,a) as one of its coordinate. We refer to their algorithm as “duplication”.

Recently, intensive studies have been undertaken in [6] (resp. in [7]) in the direction
of effectivity in order to design efficient algorithms for solving DDEs of order k = 1 (resp.
of any order). On the one hand, Bostan, Chyzak, Safey El Din and Notarantonio designed
efficients algorithms based on effective algebraic geometry (we refer to these algorithms
as “elimination” and ”geometry”) and on the other hand they used these first geometry-
driven algorithms in a new hybrid guess-and-prove approach (refered as “hybrid”).

In all these previous works, only four algorithms apply (under some technical assump-
tions studied in [7]) to DDEs of any order: the now standard “duplication” approach [9],
and the recent “elimination”, “geometry” and “hybrid” approaches [7].

Contributions The present article contains three contributions. First, it describes the
Maple package DDE-Solver, dedicated to solving DDEs of any order that satisfy the (harm-
less) assumptions explicited in [7]. More explicitely, DDE-Solver contains the function
annihilating polynomial. This function takes as input a DDE of the form eq. (3) and
its order k, and outputs a nonzero polynomial annihilating the series F(t,a). Also, some
options can be specified, namely: the algorithm that shall be used amongs “duplication”,
“elimination”, “geometry” and “hybrid”; and an option variable explained in section 5.

The second contribution is a careful practical comparison of these algorithms resulting
in a table of timings.

The third contribution is the resolution with annihilating polynomial of the DDE
associated to the enumeration of 3-greedy Tamari intervals (resp. of 5-constellations) in 1
minute (resp. in 3 hours). It is the first time that these two equations are solved with an
automatized approach. We however underline that these DDEs are solved without using
effective elimination theory in [12] for greedy Tamari intervals and in [11] for constellations.

Structure of the paper In section 2, we recall why solving a DDE is reduced [9, Sec. 2]
to eliminating variables in a system of polynomial equations. Also, we introduce in sec-
tion 2 different modelling of the underlying geometric problem. These modellings are
useful later in the article. In section 3, we state some preliminaries on effective algebraic
geometry that are used in section 4 when giving an overview on how the algorithms “dupli-
cation”, “elimination”, “geometry” and “hybrid” (resp. [7, §3, §5, §6, §4]) work. In section 5,
we explain how to get started with DDE-Solver , and how to use the options of the func-
tion annihilating polynomial. Finally in section 6, we provide some timings that illustrate
the efficiency of annihilating polynomial on various DDEs from the literature [9, 4, 8, 12].

Notations We gather the notations used in this article. First, we always denote by K a
field of characteristic 0, by K its algebraic closure, by Q the field of rational numbers and
by Fp the finite field with p elements. For a fixed positive integer k, we denote by x (resp. u
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and z) the variables x1, . . . ,xk (resp. u1, . . . ,uk and z0, . . . , zk−1). We denote by K[x1, . . . ,xk] the
ring of polynomials in the variables x1, . . . ,xk with coefficients in K. For P ∈K[x], we denote
by V (P ) ⊂Kr

its zero set. For any ideal I ⊂K[x] and any set of polynomials S ⊂K[x], we

denote by V (I ) ⊂Kk
(resp. by V (S) ⊂Kk

) the zero set of I (resp. of S). Still for P ∈K[x], we
denote by discxj (P ) the discriminant [15, 16., §6, Ch.3] of P with respect to xj and by LCxj (P )

the leading coefficient of P with respect to xj . We denote by K[[t
1
⋆ ]] the ring

⋃
d≥1K[[t

1
d ]]

of Puiseux series in t with positive fractional exponents.

2 From DDEs to polynomial systems

Starting from a DDE of the form (3), we multiply it by the least power of (u − a) such that
we obtain a polynomial functional equation of the form

P (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0, (4)

for some polynomial P ∈Q[x,z0, . . . , zk−1, t,u]. Taking the derivative of (4) with respect to u
yields by the chain rule

∂uF(t,u) · ∂xP (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) (5)

+ ∂uP (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0.

Consider the equation in u given by

∂xP (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0. (6)

Observe that the solutions of (6) that belong to Q[[t
1
⋆ ]] are also solutions, by using (5), of

the equation in u given by

∂uP (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0.

Thus any non constant solution in Q[[t
1
⋆ ]] of (6) is a solution in u of the system of constraints

P (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0,

∂xP (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0, u(u − a) , 0,

∂uP (F(t,u),F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0.

(7)

We introduce below hypothesis which is necessary to assume in order to make the ongoing
general strategy work. This assumption holds for the examples considered in this paper.

Global assumption: There exist k distinct solutions U1(t), . . . ,Uk(t) ∈Q[[t
1
⋆ ]] \Q (GA)

to the system of equations (7).

In [7], the authors studied three geometric interpretations of (GA) that we recall be-
low. The first one is introduced in [9], while the last two were introduced respectively
in [7, §5, §6]. Also, it is a nontrivial consequence of the proof of [9, Thm. 3] that the
series {∂i−1

u F(t,a),Ui(t),F(t,Ui(t))}1≤i≤k considered in this paper are elements of Q(t).

Duplication approach This approach was introduced by Bousquet-Mélou and Jehanne
in [9, Sec. 2] and works as follows. It results from (GA) that the following relations hold:

∀ 1 ≤ i ≤ k,


P (F(t,Ui(t)),F(t,a), . . . ,∂k−1

u F(t,a), t,Ui(t)) = 0,
∂xP (F(t,Ui(t)),F(t,a), . . . ,∂k−1

u F(t,a), t,Ui(t)) = 0,
∂uP (F(t,Ui(t)),F(t,a), . . . ,∂k−1

u F(t,a), t,Ui(t)) = 0,
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and ∏
1≤i<j≤k

(Ui(t)−Uj (t)) ·
∏

1≤i≤k
Ui(t) · (Ui(t)− a) , 0.

In terms of polynomial equations, the above relations are equivalent to saying that the du-
plicated polynomial system Sdup defined by

∀ 1 ≤ i ≤ k,


P (xi , z0, . . . , zk−1, t,ui) = 0,

∂xP (xi , z0, . . . , zk−1, t,ui) = 0,
∂uP (xi , z0, . . . , zk−1, t,ui) = 0,

m ·
∏

1≤i<j≤k
(ui −uj ) ·

∏
1≤i≤k

ui · (ui − a)− 1 = 0, (8)

admits the nontrivial solutions

xi = F(t,Ui(t)),ui = Ui(t), zi−1 = ∂i−1
u F(t,a), for 1 ≤ i ≤ k. (9)

Note that (9) uniquely determines the value associated to the variable m. Also, the polyno-
mial system Sdup admits 3k + 1 equations and unknowns (t is considered as a parameter);
that is, the polynomials in Sdup are seen as elements of the ring Q(t)[m,x,z,u]. We denote

by V (Sdup) the solution set of Sdup in Q(t)
k+3

.

Elimination theory approach This second approach was introduced in [7, Sec. 5]. The
idea is that it follows from (7) and (GA) that the system of polynomial constraints defined
in Q(t)[x,u] (t is again considered as a parameter) by:

P (x,F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0,

∂xP (x,F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0, u(u − a) , 0,

∂uP (x,F(t,a), . . . ,∂k−1
u F(t,a), t,u) = 0,

(10)

admits the k solutions (x,u) = (F(t,Ui(t)),Ui(t)) ∈ Q(t)
2
, for 1 ≤ i ≤ k. Note that these

solutions have distinct u-coordinates. This observation can be reformulated geometrically

in the following way. Consider the geometric projection π : (x,u,z) ∈Q(t)
k+2
7→ (z) ∈Q(t)

k
,

and denote by X ⊂Q(t)
k+2

the solution set of the polynomial constraints (t is present but
still considered as a parameter)

P (x,z0, . . . , zk−1, t,u) = 0,
∂xP (x,z0, . . . , zk−1, t,u) = 0, u(u − a) , 0.
∂uP (x,z0, . . . , zk−1, t,u) = 0,

(11)

For a point α ∈ Q(t)
k
, we denote by #u(X ,α) the number of u-coordinates in π−1(α) ∩

X that are not constants and we define Fk(u,X ) := {α ∈ Q(t)
k
| #u(X ,α) ≥ k}. Under

assumption (GA), it holds that (F(t,a), . . . ,∂k−1
u F(t,a)) ∈ Fk(u,X ).

Geometric approach This last approach was introduced in [7, Sec. 6]. The idea is that
in addition to having (7), it follows from (GA) that the system of polynomial constraints
defined in Q(t)[x,z1,u] (t is considered as a parameter) by:

P (x,F(t,a), z1,∂
2
uF(t,a), . . . ,∂k−1

u F(t,a), t,u) = 0,
∂xP (x,F(t,a), z1,∂

2
uF(t,a), . . . ,∂k−1

u F(t,a), t,u) = 0, u(u − a) , 0,
∂uP (x,F(t,a), z1,∂

2
uF(t,a), . . . ,∂k−1

u F(t,a), t,u) = 0,

(12)
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admits the k solutions (x,z1,u) = (F(t,Ui(t)),∂uF(t,a),Ui(t)) ∈ Q(t)
k+1

, for 1 ≤ i ≤ k. Note
that these solutions are distinct. This observation can be reformulated in the following way.

Denote by ž1 the set of variables z0, z2, . . . , zk−1. Consider the geometric projection πž1
:

(x,u,z) ∈Q(t)
k+2
7→ (ž1) ∈Q(t)

k−1
and define the set

Sk(X ) := {α = (α0, . . . ,αk−1) ∈Q(t)
k
| α ∈ π(X ) ∧ X ∩ π−1

ž1
((α0,α2, . . . ,αk−1)) ≥ k}.

Under assumption (GA), it holds that (F(t,a), . . . ,∂k−1
u F(t,a)) ∈ Sk(X ).

Summary In section 2, we defined for each of the three approaches a solution set which
contains a point whose z0-coordinate is the series F(t,a). The goal of section 4 is to explain
how the algorithms studied in [7, §3, §5, §6] compute a polynomial characterization of
these sets and deduce from this characterization an annihilating polynomial of F(t,a).

3 Some preliminaries on polynomial tools

The ongoing section is devoted to the introduction of the polynomial tools used in section 4.

3.1 Elimination theory through Gröbner bases

For x1, . . . ,xn some variables and α = (α1, . . . ,αn) ∈ Zn
≥0, we denote xα := xα1

1 · · ·x
αn
n . Also

for S ⊂K[x1, . . . ,xn], we denote by ⟨S⟩ the ideal generated by S in K[x1, . . . ,xn].

Monomial orders and Gröbner bases The idea of elimination monomial orderings is to
attribute to a variable (or to a block of variables) that we want to eliminate a larger weight
than the weights of the other variables. An example is the lexicographic order ≻lex.

Definition 1. ([15, Def.3, §2, Ch.2]) Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) be in Zn
≥0. We say

that xα ≻lex xβ if the leftmost nonzero entry of the vector difference α − β ∈ Zn is positive.

Example 2. In K[x1,x2]: x4
1x

2
2 ≻lex x

3
1x

10
2 , x2

1x2 ≻lex x1 and x2
1 ≻lex x2.

Another useful family of monomial orders that we will refer to in section 4 is the family
of graded monomial orders. An example is the graded reverse lexicographic order ≻grevlex.

Definition 2. ([15, Def.6, §2, Ch.2]) Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) be in Zn
≥0. We say

that xα ≻grevlex xβ if |α| =
∑n

i=1αi > |β| =
∑n

i=1βi , or if |α| = |β| and the rightmost nonzero entry
of α − β ∈ Zn is negative.

Example 3. In K[x1,x2,x3]: x5
1x

7
2x3 ≻grevlex x

4
1x

2
2x

3
3, x1x

4
2x

2
3 ≻grevlex x

3
1x2x

3
3

We invite readers unfamiliar with monomial orders (see [15, Def.1,§2,Ch.2] for a general
definition) to choose one of the two above monomial orders ≻lex or ≻grevlex for the next
definition. Also, for p ∈K[x1, . . . ,xn] a polynomial and ≻ a monomial order on K[x1, . . . ,xn],
we denote by LT≻(p) the leading term of p with respect to the monomial order ≻.

Definition 3. ([15, Def.5, §5, Ch.2]) Fix a monomial order≻ on the polynomial ring K[x1, . . . ,xn].
A finite subset G = {g1, . . . , gs} of an ideal I ⊂ K[x1, . . . ,xn] different from {0} is said to be a
Gröbner basis of I for the order ≻ if ⟨LT≻(g1), . . . ,LT≻(gn)⟩ = ⟨{LT≻(g) |g ∈ I}⟩.

A fundamental property [15, Cor.6, §5, Ch.2] of Gröbner bases is, with the notations of
Definition 3, that such a basis G always exists, and that G generates I , that is ⟨G⟩ = I .
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Gröbner bases and projections. The results below justify the use of Gröbner bases as a
dedicated theoretical and computational tool, allowing one to characterize projections as
solution sets of conjunctions of polynomial equations and inequations.

Theorem 4 (Elimination theorem). ([15, Thm.2, §1, Ch.3]) Let I ⊂K[x1, . . . ,xn] be an ideal.
Denote by G a Gröbner basis of I with respect to the order ≻lex. Then for every 0 ≤ ℓ ≤ n− 1, the
set Gℓ = G∩K[xℓ+1, . . . ,xn] is a Gröbner basis of the ideal Iℓ := I ∩K[xℓ+1, . . . ,xn].

By Theorem 4, the set of polynomials Gℓ finitely generates Iℓ . Let us now introduce the

geometric projection πℓ : (x1, . . . ,xn) ∈Kn 7→ (xℓ+1, . . . ,xn) ∈Kn−ℓ
. Recall that a Zariski closed

set in Kn
is defined as the solution set of some polynomial equations defined in K[x1, . . . ,xn].

Theorem 5 (Closure theorem). ([15, Thm.3, §2, Ch.3]) Let I ⊂ K[x1, . . . ,xn] be an ideal
and V (I ) ⊂Kn

its zero set. Consider Iℓ := I ∩K[xℓ+1, . . . ,xn]. Then V (Iℓ) is the smallest Zariski

closed set containing πℓ(V (I )) ⊂Kn−ℓ
.

Theorems 4 and 5 imply that characterizing the Zariski closure of the projection of a
zero set V (I ) onto some coordinate subspace is done by computing a Gröbner basis for ≻lex.

Theorem 6 (Extension theorem). ([15, Thm.2, §5, Ch.3]) Let G = {g1, . . . , gs} be a Gröbner
basis of I ⊂K[x1, . . . ,xn] for the order ≻lex. For each 1 ≤ j ≤ s, consider

gj = cj (x2, . . . ,xn) · x
Nj

1 + (terms in which x1 has degree < Nj),

where Nj ≥ 0 and cj ∈K[x2, . . . ,xn] is nonzero. Assume α = (α2, . . . ,αn) ∈ V (I ∩K[x2, . . . ,xn]) is
a partial solution with the property that α < V (c1, . . . , cs). Then

{f (x1,α) |f ∈ I} = {gj0(x1,α)},

where gj0 ∈ G satisfies cj0(α) , 0 and gj0 has minimal degree in x1 among all elements gj
with cj (α) , 0. Furthermore, if gj0(α1,α) = 0 for α1 ∈K, then (α1,α) ∈ V (I ).

A consequence of Theorem 6 is that characterizing projections (and not their Zariski
closure) can be done by considering disjunctions of conjunctions of equations and inequa-
tions.

3.2 Counting specific solutions

Let n,s be positive integers. We take the notation x = x1, . . . ,xn and y = y1, . . . , ys. Let I ⊂
K[x] be a radical ideal such that its zero set V (I ) ⊂ Kn

is finite. For α ∈ V (I ), we denote
by [x1](α) the x1-coordinate of α. We introduce the projection πx1

: (x) ∈ Kn 7→ x1 ∈ K.
Let g ∈K[y][z] and denote LCz(g) ∈K[y] the leading coefficients of g in z.

This current subsection introduces tools for answering the two problems below.

Problem 7. Let ℓ be a positive integer. Characterize with polynomial equations defined in K[x]
the set {β ∈ V (I ) |π−1

x1
([x1](β))∩V (I ) ≥ ℓ}.

Problem 8. Let 1 ≤ ℓ ≤ degz(g). Characterize with polynomial inequations defined in K[y] the
points β ∈Ks \V (LCx(g)) such that g(y = β, z) has at least ℓ distinct roots.

Answer to Problem 7 Denote A := K[x]/I . It results from the finiteness of V (I )
thatA has finite dimension as a K-vector space [15, Thm.6, §3, Ch.5]. Define mx1

: f ∈ A 7→
x1 · f ∈ A to be the multiplication map by x1 in A, and denote by χx1

∈K[T ] its characteristic
polynomial. The following results from the radicality of I and from [16, Prop.2.7, §2,
Ch.4].
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Fact 9. We have the equality χx1
=
∏

α∈V (I )(T − [x1](α)).

As a consequence of Fact 9, we obtain the following set equality:

{β ∈ V (I ) |π−1
x1

([x1](β))∩V (I ) ≥ ℓ} (13)

= {β ∈Kn |β ∈ V (I )∧χx1
([x1](β)) = 0∧ · · · ∧∂ℓ−1

T χx1
([x1](β)) = 0}.

Equality (13) provides a conjunction of polynomial equations that answers Problem 7.

Example 10. Assume G = {g1, g2} ⊂K[x1,x2] generates I and ℓ = 2. The conjunction
of polynomial equations in K[x1,x2] is g1(x1,x2) = 0∧ g2(x1,x2) = 0∧ χx1

(x1) = 0∧
(∂Tχx1

)(x1) = 0.

Answer to Problem 8 Define the Hermite quadratic form associated with g by

Hg : (f ,h) ∈ (K(y)[z]/⟨g⟩)2 7→ Trace(mf ·h) ∈K(y),

where Trace(·) is the trace operator and mf ·h is the multiplication map by f ·h in K(y)[z]/⟨g⟩.
Also, denote by MHg

∈K(y)degz(g)×degz(g) the matrix of Hg in the basis {1, z, . . . , zdegz(g)−1}.
The following fact is an immediate consequence of [16, Thm.5.2, §5, Ch.2] and of the

observation that, by perfoming euclidian divisions by g in K(y)[z], the denominator of the
image of zi in K(y)[z]/⟨g⟩ can only be a power of LCz(g).

Fact 11. The denominators in the matrix MHg
are powers of LCz(g). Moreover if 1 ≤ ℓ ≤ degz(g),

then the points β ∈Ks \V (LCz(g)) at which g(y = β, z) admits less than ℓ distinct solutions are
precisely the points β ∈Ks \V (LCz(g)) at which the ℓ × ℓ-minors of MHg

all vanish.

Fact 11 implies that the conjunction of polynomial inequations answering Problem 8 is
given by the non vanishing of LCz(g) and by the non vanishing of the ℓ × ℓ-minors of MHg

.

Example 12. Assume that the ℓ × ℓ-minors of MHg
are m1,m2,m3,m4 ∈ K(y). The

conjunction of inequations in K(y) is

LCz(g) , 0∧m1(y) , 0∧m2(y) , 0∧m3(y) , 0∧m4(y) , 0.

3.3 Change of monomial ordering

For n generic elements of K[x1, . . . ,xn] of degree d, computing a Gröbner basis of I for the
order ≻grevlex has an arithmetic cost which is in dO(n) [2, Prop.1].

Let I ⊂K[x1, . . . ,xn] be an ideal whose solution set is finite. The following fact mentions
an algorithm called FGLM [17] that on input a Gröbner basis of I for the order ≻grevlex
outputs a Gröbner basis of I for the order ≻lex. The complexity of this algorithm is, under
some genericity assumptions, in Õ(Dω)2 (see [21]), where D is the cardinality of V (I ) (I is
assumed radical). By the Bézout bound, and with the notations of the above paragraph,
we have the bound D ≤ dn, this makes the following fact useful for computing in dO(n) a
Gröbner bases of I for a ≻lex order.

2We denote by ω the constant of multiplication matrix that is, multiplying two matrices in Kn×n can be done by
using Õ(nω) arithmetic operations in K, where Õ(·) is a O(·) that hides polylogarithmic factors.
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Fact 13. On input an ideal I ⊂K[x1, . . . ,xn] whose solution set V (I ) ⊂Kn
is finite, there exists

an algorithm that computes a Gröbner basis G≻grevlex of I for the order ≻grevlex and that turns it
into a Gröbner basis G≻lex of I for the order ≻lex.

We mention that with the notations as above and without using the algorithm FGLM [17]
mentioned in Fact 13, the computation of a Gröbner basis of I for the order ≻lex has an
arithmetic cost bounded by C2d

C3n
3

[14], for C2,C3 ∈ Z≥0.

4 Function implemented in DDE-Solver

The function implemented in DDE-Solver is:

annihilating polynomial

We explain in this section the algorithms on which this function, and its options, rely.

The function annihilating polynomial computes an annihilating polynomial of F(t,a).
Four algorithms can be applied: “duplication”, “elimination”, “geometry”, “hybrid”. These
algorithms are studied respectively in [7, §3, §5, §6, §4]. As the algorithm “hybrid” relies on
the three other algorithms, we first describe “duplication”, “elimination” and “geometry”.

In section 2, we defined solution sets that contain a point whose z0-coordinate is F(t,a):

• “duplication”: V (Sdup) contains the point defined by (9),

• “elimination”: Fk(u,X ) contains the point (F(t,a), . . . ,∂k−1
u F(t,a)),

• “geometric”: Sk(X ) contains the point (F(t,a), . . . ,∂k−1
u F(t,a)).

We introduce a finiteness assumption that holds for the examples studied in this article.

Finiteness assumption: The sets V (Sdup), Fk(u,X ) and Sk(X ) are finite. (FA)

General strategy Under (FA), the general spirit of the algorithms from [7, §3, §5, §6] is:

(i) To compute a disjunction of polynomial equations whose solution set is the set of
interest,

(ii) To eliminate all variables except (z0, t) from the polynomial characterization of step (i).

We apply the above steps to the three approaches from section 2.

4.1 Option “duplication”

Step (i) of the general strategy: The polynomial system Sdup characterizes V (Sdup).

Step (ii) of the general strategy: Formally, we denote by Idup ⊂ Q(t)[m,x,z,u] the ideal
generated by the polynomials in Sdup. By assumption (FA), it is possible to apply to the
ideal Idup the algorithm from Fact 13. This algorithm outputs, for a proper choice of vari-
able ordering, a Gröbner basis G≻lex

of Idup that contains an element of Q(t)[z0]. Applying
Theorem 5 to the projection onto the z0-coordinate space together with Theorem 4 yields,
under (FA), that this polynomial is nonzero. Denote by R ∈ Q[t, z0] its numerator. By [7,
Prop. 2], we have R(t,F(t,a)) = 0.

We refer the reader to Annex 7.1 for the resolution of 3-constellations via this method.
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4.2 Option “elimination”

Recall from Section 2 that Fk(u,X ) = {α ∈Q(t)
k
|#u(X ,α) ≥ k}. The algorithm from [7, §5]

requires technical assumptions that we do not explicit for sake of simplicity. Under these
technical assumptions and (FA), the algorithm designed in [7, §5] works as follows.

Step (i) of the general strategy:

1. We compute using Theorems 4 and 6 successive disjunctions of conjunctions of poly-
nomial equations and inequations defined in K(t)[u,z] whose solution sets are succes-
sively the projections onto the (u,z)-coordinate space, then onto the (z)-coordinate
space.
The union of the polynomial constraints in these disjunctions have the form {I,E},
where I is a set of inequations defined in Q(t)[u,z] and E is a set of equations defined
in Q(t)[u,z]. Without loss of generality, we assume that the polynomials in E are a
Gröbner basis of the ideal they generate, for the order ≻lex with u greater than z.

2. We apply Theorem 6 to E: at z = α ∈ Q(t)
k

fixed, the cardinality condition in the
definition of Fk(u,X ) is equivalent to studying for a polynomial gj0 in E:

• if gj0 has its leading coefficient in u that does not vanish at z = α and, by The-
orem 6, if gj0 is the polynomial in E of minimal degree in u that satisfies this
property: checking this minimality condition yields a disjunction of polynomial
equations and inequations defined in Q(t)[z],

• for such a gj0 , it remains to add a conjunction of polynomial conditions in Q(t)[u,z]
so that gj0(u,z = α) has at least k distinct solutions:
If degu(gj0 ) < k, adds the vanishing of all the coefficients (in u) of gj0 to E; else
adds the conjunction of inequations given by the non vanishing of the k×k-minors
of MHgj0

from Fact 11.

3. Steps 1 and 2 above computed a disjunction of polynomial equations and inequations

defined in Q(t)[u,z] whose solution set in Q(t)
k+1

is Fk(u,X ). As by (FA) this set is
finite, this polynomial characterization can be turned into a disjunction of conjunction
of polynomial equations by using Rabinowitsch trick3 in order to remove the solution
set given by the inequations: the introduced variables are eliminated using Theorem 4.
We denote by Delim the so-obtained disjunction.

Step (ii) of the general strategy: We perform this step in the same spirit as what we did
in section 4.1. By (FA), the solution set of Delim is finite. We can thus apply the algorithm
from Fact 13 to each disjunction in Delim. Each application of this algorithm allows to
compute a nonzero polynomial of Q(t)[z0]: this polynomial might be equal to 1 when there
is no solution to the studied conjunction. We consider the numerators of all these polyno-
mials and denote by R ∈Q[t, z0] their product. By [7, Prop. 5.5], we have R(t,F(t,a)) = 0.

We refer the reader to Annex 7.2 for the resolution of 3-constellations via this method.

4.3 Option “geometry”

Recall from Section 2 that

Sk(X ) := {α = (α0, . . . ,αk−1) ∈Q(t)
k
| α ∈ π(X ) ∧ X ∩ π−1

ž1
((α0,α2, . . . ,αk−1)) ≥ k}.

3Instead of considering an inequation Q , 0 (for a given polynomial Q ∈K[x1, . . . ,xn]), we introduce an extra
variable m and consider the equation m ·Q − 1 = 0 defined in K[m,x1, . . . ,xn].
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The algorithm from [7, §6] requires many additional technical assumptions (see the be-
ginning of [7, §6]). We do not make them explicit for sake of simplicity. For the rest of
this section, we denote by ≻bgrevlex the block monomial order over Q(t)[m,x,u,z] defined
as follows:

• We use the monomial order ≻grevlex on each of the two blocks {m,x,u,z1} and {ž1},
• Two monomials are compared w.r.t. the variables m,x,u,z1. In case of equality, they

are compared w.r.t. the variables ž1.

Example 14. For k = 3:

x3uz2
1m ≻bgrevlex z

20
0 z3

2, x3uz2
1mz2 ≻bgrevlex x

3uz2
1mz0 and z4

0 ≻bgrevlex z
2
0z2.

Under these assumptions and (FA), the algorithm designed in [7, §6] works as follows.

Step (i) of the general strategy:

1. Compute a Gröbner basis G of the ideal I := ⟨P ,∂xP ,∂uP ,m·u(u−a)−1⟩ ⊂Q(t)[m,x,u,z]
for the order ≻bgrevlex.

2. Compute, using normal form computations modulo I4, the matrix Mz1
of the multi-

plication map mz1
in the quotient ring Q(t, ž1)[m,x,u,z1]/j(I ), where j(I ) is the image

of the injective map j : Q(t)[m,x,u,z]→Q(t, ž1)[m,x,u,z1].

3. Compute the characteristic polynomial χz1
∈Q(t, ž1)[T ]. Using the assumptions of [7,

§6], we can replace χz1
by its numerator with respect to the variables ž1, so that we

now have χz1
∈Q(t)[ž1,T ].

4. We denote by Dgeom the set of equations given by the vanishing of the polynomials
in G and of the new conditions (χz1

)|T=z1
= 0∧ . . .∧ (∂k−1

T χz1
)|T=z1

= 0.

Step (ii) of the general strategy: We perform this step in the same spirit as we did in sec-
tion 4.1. By (FA), the solution set of Dgeom is finite. We thus apply the algorithm from
Fact 13 to the ideal generated by the polynomials associated with the equations in Dgeom.
The application of this algorithm allows to compute a nonzero polynomial of Q(t)[z0]. We
consider the numerator of this polynomial and denote it by R ∈Q[t, z0]. By [7, Prop. 6.4],
we have R(t,F(t,a)) = 0.

We refer the reader to Annex 7.3 for the resolution of 3-constellations via this method.

4.4 Option “hybrid”

The hybrid guess-and-prove algorithm [7, §4] works as follows:

1. Compute bounds bz0
,bt such that degt(R) ≤ bt and degz0

(R) ≤ bz0
, for some nonzero

polynomial R ∈Q[t, z0] annihilating F(t,a) (we detail this step in the next section),

2. Compute the truncated series F(t,a) mod t2btbz0 +1,

3. Guesses a polynomial M ∈Q[t, z0] such that M(t,F(t,a)) = O(t(bt+1)(bz0 +1)−1),

4. Checks that M(t,F(t,a)) = O(t2btbz0 +1).

When step 4 is satisfied, applying [7, Prop.5] yields M(t,F(t,a)) = 0.

We refer the reader to Annex 7.4 for the resolution of 3-constellations via this method.
4A normal form computation modulo an ideal is the multivariate generalization of an euclidean division by a

polynomial.

11



4.5 Details of implementations

As we target practical efficiency, the implementations of the options “duplication”, “elim-
ination” and “geometry” incorporate the following key improvements from computer
algebra. Recall that the output of these three methods is a nonzero R ∈ Q[t, z0] such
that R(t,F(t,a)) = 0.

For reducing the computations from Q(t) to Q, we perform evaluation-interpolation on t.
Also, we rely on fast multi-modular arithmetic. This consists in applying multiple times

a given algorithm with the base field Q replaced by successive distinct prime fields Fp.
These computations output various images mod p of the same R ∈Q[t, z0]. From there, one
lifts the modular coefficients over Q by applying the Chinese Remainder Theorem (CRT)
together with rational numbers reconstruction [18, §5.10].

Implementation of the option “hybrid”: Computing the bounds (bt ,bz0
) in step 1 is done

using the option “elimination” of section 4.2. More precisely, computing bz0
is done by

specializing t at a random value θ of some random prime field Fp and performing the
option “elimination” with base field Fp: it outputs R(θ,z0) and yields bz0

= degz0
(R(θ,z0))

(a similar computation is done for computing bt). The generation of terms is done using
a divide and conquer approach which computes the first terms of F(t,u) mod t2btbz0 +1

before specializing them to u = a. Finally, the guessing is done by computing Hermite-Padé
approximants. For this, we use the function seriestoalgeq of the Maple package gfun [24].

5 Getting started

5.1 Installation and customization

Files provided: DDE-Solver is available in the “.mla” format. If one wishes to customize
the package, the Maple scripts “ddesolver.mpl” and “build.mpl” can be downloaded on
the dedicated github webpage. Used as follows, they allow to modify the package by
modifying “ddesolver.mpl” and to generate the corresponding version of “ddesolver.mla”
by executing “build.mpl”.

Customization of DDE-Solver: Replacing “PATH/TO” in the Maple file “build.mpl” by the
relevant path to the file where “ddesolver.mpl” and “build.mpl” are located allows one, by
executing “build.mpl”, to generate a new version of “ddesolver.mla”.

Loading DDE-Solver: The Maple variable libname shall be set so that “ddesolver.mla” is
located in a visible place.

libname := ”/home/notarantonio/ddesolver/lib”, libname:

Once libname has been correctly set up, one executes in Maple

with(ddesolver);

in order to load and use the package.
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5.2 Using DDE-Solver

5.2.1 Input/Output syntax

The arguments of annihilating polynomial are (P ,k,var), where P ∈Q[x,z0, . . . , zk−1, t,u] is
the polynomial in (4), k is the order of the DDE and var is [x,z0, . . . , zk−1, t,u] (in that order).
The output of annihilating polynomial(P ,k,var) is some nonzero polynomial R ∈Q[t, z0]
such that R(t,F(t,a)) = 0.

Example 15. Consider the DDE [9, Eq. 29] of the enumeration of 3-constellations:

F(t,u) = 1 + tuF(t,u)3 + tu(2F(t,u) +F(t,1))
F(t,u)−F(t,1)

u − 1
(14)

+ tu
F(t,u)−F(t,1)− (u − 1)∂uF(t,1)

(u − 1)2 .

Multiplying (14) by (u − 1)2 yields

0 = (u − 1)2(1−F(t,u) + tuF(t,u)3) + tu(u − 1)(2F(t,u) +F(t,1))(F(t,u)−F(t,1))

+ tu(F(t,u)−F(t,1)− (u − 1)∂uF(t,1)).

Thus P := (u−1)2(1−x+tux3)+tu(u−1)(2x+z0)(x−z0)+tu(x−z0−(u−1)z1) and k := 2.
We continue the analysis with Maple

P := (u − 1)2(1− x+ tux3) + tu(u − 1)(2x+ z0)(x − z0) + tu(x − z0 − (u − 1)z1);
with(ddesolver) :
annihilating polynomial(P ,2, [x,z0, z1, t,u]);

(16tz2
0−8tz0 +t−16)(81t2z3

0−81t2z2
0 +27t2z0 +18tz2

0−3t2−66tz0 +47t+z0−1)

Thus R := (16tz2
0−8tz0+t−16)(81t2z3

0−81t2z2
0+27t2z0+18tz2

0−3t2−66tz0+47t+z0−1)
is an annihilating polynomial of F(t,a). A direct analysis on the solutions of R(t, z0) that
are finite at t = 0 shows that the second factor of R is the minimal polynomial of F(t,1).

Options It is possible to benefit in practice from two options: the choice of the algorithm,
and the choice of the variable (either t or z0) on which we perform evaluation–interpolation.

Choice of the algorithm Four algorithms are implemented: “duplication”, “elimination”,
“geometry” (only when k = 2) and “hybrid”. By default, the algorithm used is “elimination”.
Choice of the variable The two choices are t and z0. The default choice is t.
The choice of the algorithm and of the variable on which we perform evaluation–interpolation
can be made by executing annihilating polynomial(P ,k,var,algorithm,variable). Note
that these two options must be either not specified at all, or specified in the same call.

Example 16. We continue Example 15 with algorithm = “geometry” and variable = z0.

annihilating polynomial(P ,2, [x,z0, z1, t,u],“geometry′′ , z0);

(16tz2
0−8tz0 +t−16)(81t2z3

0−81t2z2
0 +27t2z0 +18tz2

0−3t2−66tz0 +47t+z0−1)

We refer to the next section for a discussion on the choice of the parameter variable.
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6 Examples

6.1 Impact of the option variable

The motivation of this study is the following. Assume that we perform evaluation–
interpolation on z0. The chosen algorithm (e.g. “elimination” from section 4.1) will be run
a first time with t specialized (in order to get the degree in z0 of the output R ∈ Q[t, z0]),
then it will be run multiple times at z0 specialized (in order to evaluate–interpolate R
w.r.t z0). Hence if the algorithm is faster at t specialized than at z0 specialized (and if the
partial degrees of the output R are “close”), then the choice of the evaluation–interpolation
variable has a significant impact on the timings. This is what happens below.

Example 17. Consider the DDE of the enumeration of 3-Tamari lattices [8, Prop. 8]:

F(t,u) = u + tuF(t,u)
F(t,u)

F(t,u) F(t,u)−F(t,1)
u−1 −F(t,1)∂uF(t,1)

u−1 − F(t,1)2∂2
uF(t,1)

2 −F(t,1)∂uF(t,1)2

u − 1
, (15)

Multiplying (15) by (u − 1)3 yields the functional equation
P (F(t,u),F(t,1),∂uF(t,1), t,u) = 0, where P := −tu3xz2

0z2 − 2tu3xz0z
2
1 − 2tu2x2z0z1 +

2tu2xz2
0z2 + 4tu2xz0z

2
1 + 2tux4 − 2tux3z0 + 2tux2z0z1 − tuxz2

0z2 − 2tuxz0z
2
1 + 2u4 −

2u3x − 6u3 + 6u2x+ 6u2 − 6ux − 2u + 2x ∈Q[x,z0, z1, z2, t,u]. We thus have in Maple

P :=
−tu3xz2

0z2−2tu3xz0z
2
1−2tu2x2z0z1+2tu2xz2

0z2+4tu2xz0z
2
1 +2tux4−2tux3z0+

2tux2z0z1−tuxz2
0z2−2tuxz0z

2
1 +2u4−2u3x−6u3 +6u2x+6u2−6ux−2u+2x :

with(ddesolver) :
time(annihilating polynomial(P ,2, [x,z0, z1, z2, t,u]));

# variable = t (implicitly chosen)

2089.599
time(annihilating polynomial(P ,2, [x,z0, z1, z2, t,u],“elimination′′ , z0));

# variable = z0

141.897
R := annihilating polynomial(P ,2, [x,z0, z1, z2, t,u],“elimination′′ , z0);

R := t5z16
0 + 135t4z13

0 + 1024t4z12
0 + 7290t3z10

0 − 1762560t3z9
0 + 393216t3z8

0 +
196830t2z7

0 + 111694464t2z6
0 + 580976640t2z5

0 + t(67108864t + 2657205)z4
0 −

661978656tz3
0 + 4721836032tz2

0 + (−8371830784t + 14348907)z0 +
4294967296t − 14348907

6.2 Practical results of the function annihilating polynomial

We provide below a table gathering timings obtained after using the function

annihilating polynomial.

Each column is associated with a DDE taken in the literature [4, 9, 8, 12]. For each of these
DDEs, we precise: its order k, the variable on which we perform evaluation–interpolation,
the algorithm which is used in the call to annihilating polynomial, and finally the bi-
degree of the output polynomial R ∈Q[t, z0].
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From Table 1, we strengthen the message of section 6.1 and draw some conclusions:

• Choice of the algorithm The best algorithm to choose depends in an important way
on the studied DDE. Even among DDEs of the same family (e.g. DDEs [4], [5]
and [8]) the answer is not clear: the first two are solved faster with the option
algorithm =“elimination” while the last one is solved faster with the option algorithm=
”hybrid”. The efficiency of this last option algorithm =”hybrid” comes from the fact
that the output polynomial has small bidegree (3,9), thus allowing a fast computation
of the first terms of F(t,1); and at the same time, that the computations are hard with
the other algorithms.
This impossibility to predict which algorithm is more efficient for an input DDE
justifies that we let the user choose the algorithm that shall be applied.

• Choice of the variable As in section 6.1, the table shows that the choice of the variable
(z0 or t) on which we perform evaluation–interpolation is important. Let us pick
one example to illustrate it. For the DDE [3], performing evaluation–interpolation
over t with algorithm =”geometry” takes 2 minutes while it takes 54 minutes when
performing evaluation–interpolation over z0. With the notations of section 4.3, the
reason is that at z0 specialized to some random θ ∈ Fp, the main computational cost
(in addition to the Gröbner basis computation) is to compute the discriminant w.r.t. T
of (χz1

)|z0=θ ∈ Q[t,T ], whose partial degrees are 6 in T and 423 in t. In the same
time at t specialized to some random ν ∈ Fp, the polynomial (χz1

)|t=ν ∈Q[z0,T ] has
degree 15 in z0 and 6 in T : it yields a faster computation of its discriminant w.r.t. T .
As all these intermediate computational data are hard to predict from the input DDE,
we let the user choose on which variable we shall perform evaluation–interpolation.

• Solving DDEs previously out of reach! The DDEs [7], [8] are solved via theoretical
arguments in (resp.) [12, 11]. Here, it is the first time that they are solved in an
automatized way!

7 Appendix

7.1 Solving 3-constellations using section 4.1

The DDE [9, Eq. 29] associated with the enumeration of 3-constellations is given by

F(t,u) = 1 + tuF(t,u)3+tu(2F(t,u) +F(t,1))
F(t,u)−F(t,1)

u − 1
(16)

+tu
F(t,u)−F(t,1)− (u − 1)∂uF(t,1)

(u − 1)2

Multiplying (16) by (u − 1)2 yields P (F(t,u),F(t,1),∂uF(t,1), t,u) = 0, where

P := (u − 1)2(1− x+ tux3) + tu(u − 1)(2x+ z0)(x − z0) + tu(x − z0 − (u − 1)z1) ∈Q[x,z0, z1, t,u].

Define the polynomial system

Sdup := (P (x1, z0, z1, t,u1) = 0,∂xP (x1, z0, z1, t,u1) = 0,∂uP (x1, z0, z1, t,u1) = 0,

P (x2, z0, z1, t,u2) = 0,∂xP (x2, z0, z1, t,u2) = 0,∂uP (x2, z0, z1, t,u2) = 0,

m · (u1 −u2) · (u1 − 1) · (u2 − 1) ·u1 ·u2 − 1 = 0),

and set Idup ⊂Q(t)[m,x1,x2, z0, z1,u1,u2] to be the ideal generated by the polynomials in Sdup.

The algorithm described in section 4.1:
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1. Computes a generator R ∈ Idup ∩Q(t)[z0] by applying Fact 13 and finds

R = (81t2z3
0 −81t2z2

0 + 27t2z0 + 18tz2
0 −3t2 −66tz0 + 47t + z0 −1)(16tz2

0 −8tz0 + t −16).

7.2 Solving 3-constellations using section 4.2

Define S := (P ,∂xP ,∂uP ,m · u(u − 1)− 1), for P as in section 7.1. Denote by X ⊂ Q(t)
5

the

solution set of the conditions P = 0∧∂xP = 0∧∂uP = 0∧u(u − 1) , 0 in Q(t)
4
.

Goal: Characterize Fk(u,X ) := {α ∈ Q(t)
2
| #u(X ,α) ≥ 2} as the solution set of some

polynomial constraints and deduce a nonzero R ∈Q[t, z0] such that R(t,F(t,1)) = 0.

The algorithm described in section 4.2:

1. Characterizes the projection of X onto the (u,z0, z1)-coordinate space:

G := Groebner[Basis](S , lexdeg([m,x], [u,z0, z1, t])):
E := Groebner[Basis](remove(has, G, {m,x}), lexdeg([u], [z0, z1, t])):
Leading := select(has, G, {m,x}):

The first element of Leading has the form 1534(u − 1) · x+ (polynomial in u,z0, z1, t).

As X ∩{u = 1} = ∅, it results from the extension theorem that the zero set of E in Q(t)
3

is precisely the projection of X onto the (u,z0, z1)-coordinate space.

2. Identifies algebraic conditions in E describing the cardinality of the fiber in Fk(u,X ):

# Dealing with the polynomials of degree < 2 in u in E:
NewConditions := [];
for i to nops(E) do

if degree(E[i], u) < 2 then
NewConditions := [op(NewConditions), coeffs(E[i], u)]:

fi:
od:
E := Groebner[Basis]([op(E), op(NewConditions)], lexdeg([u], [z0, z1, t])):

# Dealing with the polynomials of degree ≥ 2 in u in E:
map(p→degree(p,u), E); # prints the degrees in u of the polynomials in E

[0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,3,3,3]

# In order to have #u(X ,α) ≥ 2 for a given α ∈Q(t)
2
,

# we shall exclude the solution set of discu(E[10]):
sat := discrim(E[10], u):

Denote by c10(z0, z1) ∈ Q(t)[z0, z1] the coefficients of u2 in E[10]. As V (E) ∩ {c10 =
0} = ∅, the algorithm deduces from Theorem 6 that Fk(u,X ) is the solution set of the
polynomial equations given by E and of the inequation sat , 0.

3. Turns the inequation sat , 0 into the equation m · sat − 1 = 0 by introducing an extra
variable m. Finally, it deduces a nonzero polynomial R ∈Q[t, z0] annihilating F(t,1).
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H := Groebner[Basis]([op(E), m · sat − 1], lexdeg([m,u,z1], [z0, t])):
op(remove(has, H , {m,u,z1}));

(16tz2
0 −8tz0 + t−16)(81t2z3

0 −81t2z2
0 + 27t2z0 + 18tz2

0 −3t2−66tz0 + 47t+z0−1)

Thus

R = (16tz2
0 −8tz0 + t −16)(81t2z3

0 −81t2z2
0 + 27t2z0 + 18tz2

0 −3t2 −66tz0 + 47t + z0 −1).

7.3 Solving 3-constellations using section 4.3

Denote by P ∈Q[x,z0, z1, t,u] the polynomial in section 7.1 and by S the set of polynomi-

als (P ,∂xP ,∂uP ,m · tu(u − 1)− 1) ⊂Q(t)[m,x,z0, z1,u]. Moreover, recall that X ⊂Q(t)
4

is the
solution set of the constraints P = 0∧∂xP = 0∧∂uP = 0∧u(u − 1) , 0 and that

Sk(X ) := {α = (α0, . . . ,αk−1) ∈Q(t)
k
| α ∈ π(X ) ∧ X ∩ π−1

ž1
((α0,α2, . . . ,αk−1)) ≥ k}.

Goal: Characterize Sk(X ) as the solution set of some polynomial constraints and deduce
a nonzero R ∈Q[t, z0] such that R(t,F(t,1)) = 0.

The algorithm described in section 4.3:

1. Computes a Gröbner basis of the ideal generated by S for the order ≻bgrevlex:

G := Groebner[Basis](S , lexdeg([m,x,u,z1], [t, z0])):

2. Computes the matrix Mz1
of the multiplication map mz1

: f 7→ z1 · f in the quotient
ring Q(t, z0)[m,x,u,z1]/⟨j(S)⟩, where j is the usual inclusion map of Q(t)[m,x,z0, z1]
in Q(t, z0)[m,x,u,z1]:

L1,L2 := Groebner[NormalSet](subs(t = rand(), z0 = rand(), G), tdeg(m,x,u,z1)):
M := Groebner[MultiplicationMatrix](z1, L1, L2, G, tdeg(m,x,u,z1)):

3. Computes the characteristic polynomial of Mz1
and defines χz1

to be its numerator:

ξz1
:= LinearAlgebra[CharacteristicPolynomial](M,T ) :

χz1
:= factor(numer(ξ));

(Tt + tz2
0 − 1) · (729T4t4 + 108t3(27tz2

0 − 9tz0 + 2t − 12)T3 + 2t(2187t3z4
0 −

1350t3z3
0 + 459t3z2

0 −72t3z0 −2376t2z2
0 + 8t3 + 1728t2z0 −492t2 −36tz0 + 276t−

8)T2 + 4t(729t3z6
0 − 621t3z5

0 + 261t3z4
0 − 55t3z3

0 − 1404t2z4
0 + 6t3z2

0 + 1536t2z3
0 −

560t2z2
0 − 36tz3

0 + 68t2z0 + 640tz2
0 − 8t2 − 916tz0 − 8z2

0 + 328t + 8z0)T + 16 +
358t4z6

0 − 84t4z5
0 + 9t4z4

0 − 1160t3z4
0 − 3224t2z3

0 + 1320t2z2
0 − 128t2z0 − 720tz2

0 +
729t4z8

0 − 756t4z7
0 − 2160t3z6

0 + 2752t3z5
0 − 72t2z5

0 + 2104t2z4
0 − 16tz4

0 + 16t2 −
32z0 − 544t + 96tz3

0 − 24t3z2
0 + 208t3z3

0 + 1184tz0 + 16z2
0)

4. Thus Sk(X ) is the solution set of the constraints P = 0∧∂xP = 0∧∂uP = 0∧u(u−1) , 0∧
discT (χz1

) = 0. An annihilating polynomial of F(t,1) is given by the discriminant R ∈
Q[t, z0] of χz1

with respect to T , that is

R = 12230590464t14 · (16tz2
0 − 8tz0 + t − 16)2 · (1 + (3z0 − 1)2t2 + (−6z0 − 14)t)3

· (tz0 + 1)12 · (81t2z3
0 − 9t(9t − 2)z2

0 + (27t2 − 66t + 1)z0 − 3t2 + 47t − 1)2.
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7.4 Solving 3-constellations using section 4.4

Consider (16) and the polynomial P ∈Q[x,z0, z1, t,u] of section 7.1. Define the set of poly-
nomials S := (P ,∂xP ,∂uP ,m ·u(u − 1)− 1) ∈Q(t)[m,x,z0, z1,u].

Goal: Compute a nonzero polynomial R ∈Q[t, z0] such that R(t,F(t,1)) = 0.

The algorithm described in section 4.4:

1. Applies twice the strategy described in section 7.2 to P . It draws at random a prime
number p and some θ ∈ Fp, say p = 12301 and θ = 1328, and applies section 7.2
with S replaced by (S)|t=θ and Q replaced by Fp. It outputs

7957(z0 + 11829)(z3
0 + 4863z2

0 + 8711z0 + 3012)(z0 + 6622)

The degree being 5, it sets bz0
= 5. Similarly, it obtains bt = 3.

2. Computes the 32 first terms of F(t,1):

F1 = 1+t+6t2+54t3+594t4+· · ·+913075994651156584840651326232625946t31 mod t32

3. Uses the function seriestoalgeq of the Maple package gfun [24]:

collect(subs(T (t) = z0,gfun[seriestoalgeq](series(F1, t,degree(F1, t)),T (t)))[1], z0, factor);

81t2z3
0 − 9t(9t − 2)z2

0 + (27t2 − 66t + 1)z0 − 3t2 + 47t − 1

The above polynomial, denoted M, is a candidate for annihilating F(t,1).

4. Proves the guessed polynomial with the below lines

series(subs(z0 = F1,M), t, 31); # Compute M(t,F(t,1) mod t32)

O(t31)

Thus
R = 81t2z3

0 − 9t(9t − 2)z2
0 + (27t2 − 66t + 1)z0 − 3t2 + 47t − 1.
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