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Abstract

In this article, we study systems of n ≥ 1, not necessarily linear, discrete differential
equations (DDEs) of order k ≥ 1 with one catalytic variable. We provide a constructive
and elementary proof of algebraicity of the solutions of such equations. This part of the
present article can be seen as a generalization of the pioneering work by Bousquet-Mélou and
Jehanne (2006) who settled down the case n = 1. Moreover, we obtain effective bounds for
the algebraicity degrees of the solutions and provide an algorithm for computing annihilating
polynomials of the algebraic series. Finally, we carry out a first analysis in the direction of
effectivity for solving systems of DDEs in view of practical applications.

1 Introduction

1.1 Context and motivation

The equations that lie in the interest of this work are so-called discrete differential equations with
one catalytic variable of fixed-point type. They take the form

F (t, u) = f(u) + t ⋅Q(F (t, u),∆aF (t, u), . . . ,∆k
aF (t, u), t, u), (1)

where k ∈ N is called the order of the DDE, f and Q are polynomials, and (for some a ∈ Q) ∆ℓ
a is

the ℓth iteration of the discrete derivative operator ∆a ∶ Q[u][[t]]→ Q[u][[t]] defined by

∆aF (t, u) ∶=
F (t, u) − F (t, a)

u − a
.

Discrete differential equations are ubiquitous in enumerative combinatorics [25, 12, 13, 10, 5].
Indeed, enumerating discrete structures usually leads to introducing the corresponding generating
function, say G(t). In some of such cases, the combinatorial nature of the initial problem can
be transformed directly into an algebraic or analytic question on the equation satisfied by G(t).
However for many practical counting problems, the initial combinatorial structure is too coarse
to be translated into any meaningful equation. In these cases it is often helpful to try to solve
a more refined problem, introducing new structure into the initial question and consequently
a new variable u in the generating function: one is then lead to study a DDE satisfied by some
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bivariate series F (t, u) ∈ Q[u][[t]], even though the interest only lies in the specialization, usually
G(t) = F (t,0) or G(t) = F (t,1). Although this idea is, of course, very classical and used since
decades [25, 12, 13], the name “catalytic” for such a variable u was introduced only relatively
recently by Zeilberger [27] in the year 2000.

Example 1. The so-called 2-constellations are special bi-colored planar maps (see [10, §5.3] for
the definition). Let the sequence (an)n≥0 enumerate the 2-constellations with n black faces; we wish
to discover properties of G(t) = ∑n≥0 ant

n (e.g. a closed-form expression for G(t) or the numbers
an, asymptotics of (an)n≥0, etc). This problem is usually refined by considering the numbers an,d
enumerating 2-constellations with n black faces and outer degree 2d. With now more constraints on
the studied enumeration (black faces and outer-degree), it is possible to show by a recursive analysis
of the construction of a 2-constellation (see [10, Section 5.3] for details) that the bivariate generating
function F (t, u) ∶= ∑n,d≥0 an,du

dtn ∈ Q[u][[t]] satisfies the DDE of order 1

F (t, u) = 1 + tuF (t, u)2 + tu∆1F (t, u). (2)

Note that G(t) = F (t,1) ∈ Q[[t]] is the generating function we were initially interested in. The
classical way of studying the series G(t) is by considering Equation (2). For instance, by studying (2),
it can be shown using [14], [10, Section 2] or [8, Proposition 2.4] that F (t, u) is an algebraic function
over Q(t, u) and consequently that G(t) is algebraic over Q(t). Explicitly,

16t3G(t)2 − (8t2 + 12t − 1)tG(t) + t(t2 + 11t − 1) = 0.

Knowing that R(t, z) ∶= 16t3z2 − (8t2 + 12t − 1)tz + t(t2 + 11t − 1) ∈ Q[t, z] annihilates G(t), it is
possible to show that for n ≥ 1, one has the closed-form expression

an = 3
2n−1

(n + 2)(n + 1)
(2n
n
)

whose asymptotic behavior is an ∼ 3 ⋅ 8n/
√
4πn5, by Stirling’s formula.

The algebraicity of F (t, u) over Q(t, u) in example 1 is no coincidence. In their pioneering
work [10], Bousquet-Mélou and Jehanne proved (see [10, Theorem 3]) that the unique power
series solution of a functional equation of the form (1) is always an algebraic function.

In a variety of different contexts throughout combinatorics also appears their natural extension
systems of DDEs of fixed-point type that are, systems of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F1 = f1(u) + t ⋅Q1(∇k
aF1, . . . ,∇k

aFn, t, u),
⋮ ⋮

Fn = fn(u) + t ⋅Qn(∇k
aF1, . . . ,∇k

aFn, t, u),
(3)

where for i = 1, . . . , n the polynomials fi ∈ Q[u],Qi ∈ Q[y1, . . . , yn(k+1), t, u] are given and we
write ∇k

aF ∶= (F,∆aF, . . . ,∆
k
aF ) for ∆a as before, and the unknowns Fi = Fi(t, u) ∈ Q[u][[t]]. As

previously, k is called the order of (3). Such systems of functional equations appear, for instance,
in the enumeration of hard particles on planar maps [10, §5.4], inhomogeneous lattice paths [15],
certain orientations with n edges [7, §5], or parallelogram polyominoes [4, §7.1].

For any given functional equation or system of such, the results one typically wishes to obtain
are for instance: a closed-form expression for the number of objects of a given size, a grasp on the
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asymptotic behavior, or a classification of the nature of the generating function(s) (e.g. algebraic,
D-finite, etc.). It is often easier to obtain a closed-formula or an asymptotic estimate by studying a
witness of the nature of the generating function (e.g. an annihilating polynomial, a linear ODE,
etc.), so a natural aim is to solve the system, i.e. to compute such a witness. These objectives
frequently yield arbitrarily difficult challenges at the intersection with enumerative combinatorics,
theoretical physics [11] and computational geometry [16].

Main goals We want to prove in an elementary way that the components of the unique solu-
tion (F1, . . . , Fn) ∈ Q[u][[t]]n of (3) are always algebraic power series over Q(t, u). Moreover in
the setting n > 1 in (3), we want to design, analyze and theoretically compare geometry-driven
algorithms that compute an annihilating polynomial of the specialized series F1(t, a).

Before providing a state-of-the-art and stating our contributions, we introduce a combinatorial
example of systems of DDEs that we shall use intensively for illustrating this paper.

Example 2. The following system of DDEs for the generating function of certain planar orientations
was considered in [7, Eq.(27)]:

⎧⎪⎪⎨⎪⎪⎩

(EF1): F1(t, u) = 1 + t ⋅ (u + 2uF1(t, u)2 + 2uF2(t,1) + uF1(t,u)−uF1(t,1)
u−1 ),

(EF2): F2(t, u) = t ⋅ (2uF1(t, u)F2(t, u) + uF1(t, u) + uF2(t,1) + uF2(t,u)−uF2(t,1)
u−1 ).

(4)

We show in section 2 that F1(t,1) = 1 + 2t + 10t2 + 66t3 + ⋯ is algebraic over Q(t), and that its
minimal polynomial 64t3z30 + (48t3 − 72t2 + 2t)z20 − (15t3 − 9t2 − 19t+ 1)z0 + t3 + 27t2 − 19t+ 1 can be
computed using tools coming from elimination theory.

1.2 Previous works

In the lines below, we present an overview of the main results regarding algebraicity of solutions
of systems of DDEs. We start with the study of a single DDE for k > 1 (the case k = 1 is not of our
interest since, as we shall see later in this article, systems of DDEs of order k ≥ 1 reduce to a single
functional equation that ”involves” at least 2 univariate series).

In the seminal work [10], Bousquet-Mélou and Jehanne completely resolve algebraicity of
solutions of DDEs (1), equivalently the case n = 1 in (3). Moreover, Bousquet-Mélou and Jehanne
provide systematic methods for computing an annihilating polynomial of the specialized se-
ries F (t, a). For proving [10, Theorem 3], the authors designed a “nonlinear kernel method” which
allows one to prove that the unique solution of (1) is always an algebraic function over Q(t, u).
Significantly in practice, this approach yields an algorithm for finding an annihilating polynomial
of the specialization F (t, a) and of the bivariate series F (t, u). The idea of their algebraicity proof
is to reduce the resolution of the DDE to solving some system of polynomial equations which has
a solution whose coordinates contains the involved specializations of F . Their proof involves a
symbolic deformation argument ensuring that the polynomial system which is constructed contains
enough independent equations. For efficiency considerations for the resolution of a single DDE of
the form (1), a recent algorithmic work [9] by Bostan, Safey El Din and Notarantonio targeted the
intensive use of effective algebraic geometry in order to efficiently solve the underlying polynomial
systems.

Regarding systems of DDEs (i.e. the case n > 1), the usual strategy (e.g. [10, Section 11])
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is to reduce a given system to a single equation and to apply the method from [10, Section 2].
Nevertheless, since the reduced equation may not be of the form (1) anymore, the ideas of [10,
Section 2] may not be applicable. In the literature, there exist two methods to overcome these
theoretical issues. First, a deep theorem in commutative algebra by Popescu [23], central in
the so-called “nested Artin approximation” theory, guarantees that equations of the form (5)
always admit an algebraic solution (see also [7, Theorem 16] for a statement of this theorem).
Note that the nested condition is automatically satisfied in this case and that the uniqueness of
the solution is obvious. A drawback of using Popescu’s theorem, however, is that its proof is
a priori highly non-constructive and can only be applied as a “black box”, whereas in practice
one is often interested in the explicit annihilating polynomials of the solutions. Secondly, the
frequent case when (5) is linear in the bivariate formal power series and their specializations
was effectively solved (i.e. their proof of algebraicity yields an algorithm) in the more recent
article [15] by Buchacher and Kauers by using a multi-dimensional kernel method. However
even if their proof yields an algorithm, its efficiency was not discussed at all. Note that the now
common multi-dimensional kernel method appears as well in the article of the same year [1] by
Asinowski, Bacher, Banderier and Gittenberger.

Before the present work, however, there was no systematic approach for dealing with systems
of DDEs such as (4). It is in this context that the present paper takes place.

1.3 Contributions

This paper is the full version of the extended abstract [22] that was published in the proceedings
of the conference Formal Power Series and Algebraic Combinatorics 2023.

The first contribution of this article is a generalization of the algebraicity result [10, Theorem 3]
to systems of discrete differential equations of a fixed-point type. Precisely, we prove the following
theorem. Here and in the following, we denote K a field of characteristic 0.

Theorem 3. Let n, k ≥ 1 be integers and f1, . . . , fn ∈ K[u], Q1, . . . ,Qn ∈ K[y1, . . . , yn(k+1), t, u] be
polynomials. For a ∈ K, set ∇k

aF ∶= (F,∆aF, . . . ,∆
k
aF ). Then the system of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(EF1): F1 = f1(u) + t ⋅Q1(∇k
aF1, . . . ,∇k

aFn, t, u),
⋮ ⋮

(EFn): Fn = fn(u) + t ⋅Qn(∇k
aF1, . . . ,∇k

aFn, t, u)
(5)

admits a unique vector of solutions (F1, . . . , Fn) ∈ K[u][[t]]n, and all its components are algebraic
functions over K(t, u).

The key idea, analogous to the one in the proof of [10, Theorem 3], for proving this theorem
is to define a deformation of (5) that ensures the applicability of a multi-dimensional analog
of the “nonlinear kernel method”. Stated explicitly, we show in lemma 6 that after deforming
the equations as in (7), the polynomial in u defined by the determinant of the Jacobian matrix
associated to the equations in (5) (considered with respect to the Fi) has exactly nk solutions in
an extension of the ring ⋃d≥1K[[t1/d]]. After a process of “duplication of variables”, we construct a
zero-dimensional polynomial ideal, a non-trivial element of which must be the desired annihilating
polynomial. The most technical step consists in proving the invertibility of a certain Jacobian
matrix (lemma 8 and lemma 9) in order to justify the zero-dimensionality.
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The second contribution is the analysis of the resulting algorithm for finding annihilating
polynomials of the power series Fi(t, u) in theorem 3. From our constructive proof we deduce
a theoretical upper bound on the algebraicity degree of each Fi. Moreover using the radicality
of the constructed 0-dimensional ideal, and when the field K is effective (e.g. K = Q), we also
bound the arithmetic complexity of our algorithm, that is the number of operations (+,−,×,÷)
performed in K. Denoting by totdeg(P ) the total degree of a multivariate polynomial P , we obtain
the following:

Theorem 4. In the setting of theorem 3, let (F1, . . . , Fn) ∈ K[u][[t]]n be the vector of solutions
and δ ∶= max(deg(f1), . . . ,deg(fn), totdeg(Q1), . . . , totdeg(Qn)). Then the algebraicity degree of
each Fi(t, u) over K(t, u) is bounded by n2n2k2(k + 1)n2k2(n+2)+nδn

2k2(n+2)+n/(nk)!nk. Moreover
if K is effective, there exists an algorithm computing an annihilating polynomial of any Fi(t, a) in
O((nkδ)40(n2k+1)) arithmetic operations in K.

Let us emphasize that despite the desperately looking exponent 40 in theorem 4, one can still
solve concrete examples from time to time as we shall see in section 2 and section 4.

The third contribution is the full algorithmic investigation of two natural schemes for solving
systems of DDEs. For each of them, we analyze the conditions under which they might be applied,
and the possible links between their respective outputs. The first algorithm consists in the classical
duplication of variables argument, by following our proof of theorem 3, and then performing a
brute force elimination of all irrelevant variables (lemma 11). The second scheme consists in
reducing the initial system of DDEs to a single polynomial functional equation where the general
method of [10, Section 2] and the recent algorithmic improvements made in [9, Section 5] might
apply. In this direction, we identify in section 4.2 sufficient conditions under which [10, Section 2]
and [9, Section 5] can systematically be used. At the end of section 4.2, we show that eq. (4) can
not be solved by the state-of-the-art based on reducing a system of DDEs to a single equation (and
then in applying any systematic method), while it can be solved by the systematic method that we
introduce in section 2.

Structure of the paper. In section 2, we explain our method in the case of two equations of
order one under the assumption that no deformation is necessary. We summarize the method in an
algorithm and showcase it explicitly on example 2. In section 3, we provide proofs of theorem 3
and theorem 4 with more details than in the extended abstract [22]. In section 4, we study and
compare the output of two natural strategies for solving systems of DDEs. Ultimately, we discuss
some necessary future works in section 5.

Notations. Throughout this article, K denotes a field of characteristic 0, K its algebraic clo-
sure, K[[t]] the ring of formal power series in t with coefficients in K, and K[[t

1
⋆ ]] the ring

⋃d≥1K[[t
1
d ]] of Puiseux series with rational positive exponent in the variable t. Also for n, k ≥ 1

and a ∈ K, we use the compact notation A(u) for any given polynomial expression of the
form A(F1(t, u), F1(t, a), . . . , ∂k−1

u F1(t, a), . . . , Fn(t, u), Fn(t, a), . . . , ∂k−1
u Fn(t, a), t, u). For an in-

teger N > 1, we denote by K[x1, . . . , xN ] the ring of polynomials in the variables x1, . . . , xN with
coefficients in K. For P ∈ K[x1, . . . , xN ], we denote by ∂xiP the partial derivative of P with
respect to the variable xi (for i ∈ {1, . . . ,N}) and by V (P ) its zero set in KN

. For I an ideal
of K[x1, . . . , xN ], we also denote by V (I) the zero set of I in KN

. Also, for S a set of polynomials
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in K[x1, . . . , xN ], we denote by V (S) the zero set of the ideal generated by S in K[x1, . . . , xN ]. For
x,y two sets of variables, we denote {x} ≻lex {y} the monomial order such that {x} (resp. {y})
is the usual degrevlex [18, Definition 5, § 2, Chapter 2] order over x (resp. over y), and such
that any monomial in y is lower than any monomial containing at least one variable in x (by
default {x} will always denote the usual degrevlex monomial order on the variables x). We use
the soft-O notation Õ(⋅) for hiding polylogarithmic factors in the argument.

2 General strategy and application to a first example

Before proving our main theorem in section 3, we introduce our general method in the situation
of two equations of order 1. We illustrate each step with the system (4) from example 2.

Starting with (5) for n = 2 and k = 1, we first multiply (EF1) and (EF2) by (u − a)m1 and
(u − a)m2 respectively (for m1,m2 ∈ N) in order to obtain a system with polynomial coefficients
in u. By a slight abuse of notation, we shall still write (EF1) and (EF2) for those equations.
Note that this system induces polynomials E1,E2 in K(t)[x1, x2, z0, z1, u] whose specializations to
x1 = F1(t, u), x2 = F2(t, u), z0 = F1(t, a), z1 = F2(t, a), denoted by E1(u),E2(u), are zero.

Example 1 (cont.). Multiplying (EF1) and (EF2) in example 2 by u − 1 gives

⎧⎪⎪⎨⎪⎪⎩

E1 = (1 − x1) ⋅ (u − 1) + t ⋅ (2u2x21 − u2z0 + 2u2z1 − 2ux21 + u2 + ux1 − 2uz1 − u),
E2 = x2 ⋅ (1 − u) + t ⋅ (2u2x1x2 + u2x1 − 2ux1x2 − ux1 + ux2 − uz1).

Note that applying the specializations x1 = F1(t, u), x2 = F2(t, u), z0 = F1(t,1), z1 = F2(t,1) to E1

and E2 yields the vanishing of the induced polynomial functional equations.

In the spirit of [10], we take the derivative of both equations with respect to the variable u:

((∂x1E1)(u) (∂x2E1)(u)
(∂x1E2)(u) (∂x2E2)(u)

) ⋅ (∂uF1

∂uF2
) + ((∂uE1)(u)

(∂uE2)(u)
) = 0, (6)

Define Det ∶= ∂x1E1 ⋅ ∂x2E2 − ∂x1E2 ⋅ ∂x2E1 ∈ K(t)[x1, x2, z0, z1, u]. One can show that the spe-
cialization Det(F1(t, u), F2(t, u), F1(t, a), F2(t, a), t, u) ∈ K[[t]][[u]] admits either 0,1 or 2 distinct
non-constant solutions in u in K[[t

1
⋆ ]]. We assume that there exist 2 such solutions U1, U2 ∈ K[[t

1
⋆ ]];

we prove in section 3 that it is always the case up to the deformation (7).
Exploiting the common idea to [1, Proof of Theorem 3.2] and [15, Section 3], we define

the vector v ∶= (∂x1E2, −∂x1E1) ∈ K(t)[x1, x2, z0, z1, u]2 and plug U1 for u into v and (6).
Note that v is an element of the left-kernel of the square matrix in (6) mod Det(x1, x2, z0, z1, u).
After multiplication of (6) by v on the left, we find a new polynomial relation relating the
series F1(t,Ui), F2(t,Ui), F1(t, a), F2(t, a), t and Ui, namely ∂x1E1 ⋅ ∂uE2 − ∂x1E2 ⋅ ∂uE1 = 0 when
evaluated at x1 = F1(t,Ui), x2 = F2(t,Ui), z0 = F1(t, a), z1 = F2(t, a), u = Ui. We denote P ∶=
∂x1E1 ⋅ ∂uE2 − ∂x1E2 ⋅ ∂uE1 ∈ K(t)[x1, x2, z0, z1, u] this new polynomial.

Remark 5. Note that P is the determinant of the matrix (∂x1E1 ∂x1E2

∂uE1 ∂uE2
), which is not a coincidence,

as we will see in the next section.

We define the polynomial system S ∶= (E1,E2,Det, P ) ∈ K(t)[x1, x2, z0, z1, u]4. It admits the
relevant solutions (F1(t,Ui), F2(t,Ui), F1(t, a), F2(t, a), Ui) ∈ K[[t

1
⋆ ]]5, for i ∈ {1,2}.
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Example 1 (cont.). Continuing example 2, we find

⎧⎪⎪⎨⎪⎪⎩

Det = (4tu2x1 − 4tux1 + tu − u + 1)(2tu2x1 − 2tux1 + tu − u + 1),
P = −2tx1x2 − tx1 + tx2 − tz1 − x2 + P1 ⋅ u + P2 ⋅ u2 + P3 ⋅ u3,

where P1, P2, P3 are explicit (but relatively big) polynomials in Q[x1, x2, z0, z1, t].

Applying in spirit the steps of [10, Section 2], we define for i ∈ {0,1} the polynomial systems
Si ∶= S(x2i+1, x2i+2, z0, z1, ui+1) by “duplicating” variables. In the case where the ideal Sdup ∶=
⟨S0,S1,m ⋅ (u1 −u2)− 1⟩ has dimension 0 over K(t), finding an annihilating polynomial of F1(t, a)
is done by computing a nonzero element of ⟨S0,S1,m ⋅ (u1 − u2) − 1⟩ ∩K[z0, t].

Example 1 (cont.). Continuing Example 2, we compute1 a generator of the polynomial ideal
⟨S0,S1,m ⋅ (u1 − u2) − 1⟩ ∩Q[z0, t]. It has degree 13 in z0 and 14 in t. In particular, it contains in its
factors the minimal polynomial of F1(t,1) given by 64t3z30 + (48t3 − 72t2 + 2t)z20 − (15t3 − 9t2 − 19t +
1)z0 + t3 + 27t2 − 19t + 1.

We summarize the algorithm described above in the compact form given by Algorithm 1.

Algorithm 1: Solving systems of two discrete differential equations of order 1.
Input: A system of two DDEs (EF1), (EF2) of order 1, with Sdup of dimension 0 over K(t).
Output: A nonzero R ∈ K[z0, t] annihilating F1(t, a).

1 Replace (EF1) and (EF2) by their respective numerators and denote by E1 and E2 the
associated polynomials in K(t)[x1, x2, z0, z1, u].

2 Compute Det ∶= ∂x1E1 ⋅ ∂x2E2 − ∂x1E2 ⋅ ∂x2E1 and P ∶= ∂x1E1 ⋅ ∂uE2 − ∂x1E2 ⋅ ∂uE1.
3 Set S ∶= (E1,E2,Det, P ) ⊂ K(t)[x1, x2, z0, z1, u].
4 For 0 ≤ i ≤ 1, define Si ∶= S(x2i+1, x2i+2, z0, z1, ui+1).
5 Define Sdup ∶= ⟨S0,S1,m ⋅ (u1 − u2) − 1⟩ ⊂ K(t)[m,x1, x2, x3, x4, z0, z1, u1, u2],
6 Return a nonzero element of Sdup ∩ K[z0, t].

We remark that if the same strategy as above is applied in the case of a single equation of
first order of the form F1 = f(u) + t ⋅Q1(F1,∆aF1, t, u), the presented method simplifies to the
classical method in [10] of Bousquet-Mélou and Jehanne which relies on studying the ideal
⟨E1, ∂x1E1, ∂uE1⟩. Stated explicitly, ∂x1E1 plays the role of Det and ∂uE1 plays the role of P .

3 Proofs of theorem 3 and theorem 4

3.1 Proof of theorem 3

As explained before, the statement and proof can be seen as a generalization of [10, Theorem 3]
and [15, Theorem 2], so several steps are done analogously. Without loss of generality we assume
that a = 0 and set ∆ ∶=∆0 and ∇ ∶= ∇0.

Denote by m1, . . . ,mn the least positive integers greater than or equal to k such that multiply-
ing (EFi) in (5) by umi gives a polynomial equation; in other words, the multiplication by umi clears
the denominators introduced by the application of ∆. Set β ∶= ⌊2M/k⌋ and α ∶= 3n2k ⋅(β+1)+3nM ,

1All computations in this paper have been performed in Maple using the C library msolve [6].
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where M ∶= m1 + ⋯ +mn. Let ϵ be a new variable, L ∶= K(ϵ), and let (γi,j)1≤i,j≤n be defined by
γi,i = ik and γi,j = tβ for i ≠ j. Then, consider the following system which is a symbolic deformation
of (5) with respect to the deformation parameter ϵ:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(EG1): G1 = f1(u) + tα ⋅Q1(∇kG1,∇kG2, . . . ,∇kGn, t
α, u) + t ⋅ ϵk ⋅∑n

i=1 γ1,i ⋅∆kGi,

⋮ ⋮
(EGn): Gn = fn(u) + tα ⋅Qn(∇kG1,∇kG2, . . . ,∇kGn, t

α, u) + t ⋅ ϵk ⋅∑n
i=1 γn,i ⋅∆kGi.

(7)

The fixed point nature of the above equations still implies the existence of a unique solution
(G1, . . . ,Gn) ∈ L[u][[t]]n (it can be seen by extracting the coefficient of tm of each G1, . . . ,Gn).
Remark that the equalities Fi(tα, u) = Gi(t, u,0) relate the formal power series solutions of (5)
and of (7). Hence, showing that each Gi is algebraic over L(t, u) is enough to prove theorem 3.
Moreover, as we will see later, the algebraicity of each Gi follows from the algebraicity of the
series G1(0), . . . , ∂k−1

u G1(0), . . . ,Gn(0), . . . , ∂k−1
u Gn(0). Here, and in what follows, we shall use

the short notations

Gi(u) ≡ Gi(t, u, ϵ), ∂0Gi(u) ≡ Gi(u),Gi(0), ∂uGi(0), . . . , ∂k−1
u Gi(0)

and A(u) ≡ A(∂0G1, . . . , ∂0Gn, t, u) for any polynomial A ∈ L[X1, . . . ,Xn, t, u] with the nota-
tion Xj ∶= xj , zk(j−1), zk(j−1)+1, . . . , zkj−1. Note that in the case n = 1, this notation implies that for
any 0 ≤ i ≤ k − 1, the variable zi stands for ∂i

uF1(t, a).
Let us define Yi,0 ∶= xi and Yi,j ∶= (xi − zk(i−1) −⋯ − uj−1

(j−1)!zk(i−1)+j−1)/u
j for 1 ≤ i ≤ n and 1 ≤

j ≤ k. With these definitions, multiplying each (EFi) in (5) by umi and substituting the series Gi’s
and their specializations by their associated variables yields the following system of polynomial
equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E1 ∶= um1 ⋅ (f1(u) − x1 + tα ⋅Q1(Y1,0, . . . , Y1,k, Y2,0, . . . , Yn,k, t
α, u) + t ⋅ ϵk ⋅∑n

i=1 γ1,i ⋅ Yi,k) = 0,
⋮ ⋮

En ∶= umn ⋅ (fn(u) − xn + tα ⋅Qn(Y1,0, . . . , Y1,k, Y2,0, . . . , Yn,k, t
α, u) + t ⋅ ϵk ⋅∑n

i=1 γn,i ⋅ Yi,k) = 0.
(8)

Like in (6), we take the derivative with respect to the variable u of these equations and find

⎛
⎜
⎝

(∂x1E1)(u) . . . (∂xnE1)(u)
⋮ ⋱ ⋮

(∂x1En)(u) . . . (∂xnEn)(u)

⎞
⎟
⎠
⋅
⎛
⎜
⎝

∂uG1

⋮
∂uGn

⎞
⎟
⎠
+
⎛
⎜
⎝

(∂uE1)(u)
⋮

(∂uEn)(u)

⎞
⎟
⎠
= 0. (9)

Let Det ∈ L[X1, . . . ,Xn, t][u] be the determinant of the square matrix (∂xjEi)1≤i,j≤n. The following
lemma gives the number of distinct relevant solutions in u to the equation Det(u) = 0.

Lemma 6. Det(u) = 0 admits exactly nk distinct nonzero solutions U1, . . . , Unk ∈ L[[t
1
⋆ ]].

Proof. Note that we have

Det(u) = det
⎛
⎜
⎝

−um1 + tϵkγ1,1um1−k ⋯ tϵkγ1,nu
m1−k

⋮ ⋱ ⋮
tϵkγn,1u

mn−k ⋯ −umn + tϵkγn,numn−k

⎞
⎟
⎠
+O(tαuM−nk).

For every i we first divide the ith row by umi−k. Then, using the definition of γi,j and α,β ≥ n, we
see that the matrix above becomes diagonal mod tn+1 and its determinant mod tn+1 simplifies to
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uM−nk ⋅∏n
j=1(−uk + tϵkjk)mod tn+1. Hence, computing the first terms of a solution in u by using

Newton polygons, we find nk distinct nonzero solutions in u to the equation Det(u) = 0. We denote
these solutions by U1, . . . , Unk ∈ L[[t

1
⋆ ]]. Their first terms are given by ζℓ ⋅ t

1
k ⋅ ϵ, . . . , ζℓ ⋅ n ⋅ t

1
k ⋅ ϵ ∈

L[[t
1
⋆ ]], for ζ a k-primitive root of unity and for all 1 ≤ ℓ ≤ k. Finally, note that the constant

coefficient in t of ∏n
j=1(−uk + tϵkjk) has degree nk so by [10, Theorem 2] there cannot be more

than nk solutions to Det(u) = 0 in L[[t
1
⋆ ]] ∖ {0}.

Now, let P be the determinant of the square matrix (∂xjEi)1≤i,j≤n where the last column
(∂xnE1, . . . , ∂xnEn) is replaced by (∂uE1, . . . , ∂uEn), that is

P ∶= det
⎛
⎜
⎝

∂x1E1 . . . ∂xn−1E1 ∂uE1

⋮ ⋱ ⋮ ⋮
∂x1En . . . ∂xn−1En ∂uEn

⎞
⎟
⎠
.

1Clearly, if Det(u) = 0 then (9) implies P (u) = 0, thus P (u) vanishes at the roots U1, . . . , Unk in
lemma 6. Hence, defining the polynomial system S in L[t][X1, . . . ,Xn, u] given by the vanishing
of the set of polynomials (E1, . . . ,En,Det, P ), we see that S is a system with exactly n+2 equations
in the nk + n + 1 variables given by z0, . . . , znk−1, x1, . . . , xn, u (here t and ϵ are parameters). We
introduce the duplicated system Sϵdup ∶= (S1, . . . ,Snk) in L(t)[x1, . . . , xn2k, z0, . . . , znk−1, u1, . . . , unk]
after duplicating nk times each of the variables xi’s, ui’s and after duplicating nk times the initial
polynomial system S: all in all, we perform in spirit step 4 of Algorithm 1. This system is built
from nk(n + 2) equations and nk(n + 2) variables.

The following lemma is proven in [8, Lemma 2.10] as a consequence of Hilbert’s Nullstellensatz
and of the Jacobian criterion [19, Theorem 16.19]. Recall that for an integer N > 1 and for some
polynomial g ∈ K[x1, . . . , xN ] and an ideal I ⊂ K[x1, . . . , xN ], the saturation of I by g (also called
saturated ideal) is defined by I ∶ g∞ ∶= {f ∈ K[x1, . . . , xN ]∣∃s ∈ N s.t. gs ⋅ f ∈ I}2.

Lemma 7. Assume that the Jacobian matrix JacSϵ
dup

of Sϵdup, considered with respect to the variables
x1, . . . , xn, u1, . . . , xn2k−n+1, . . . , xn2k, unk, z0, . . . , znk−1, is invertible at the point

P = (G1(U1), . . . ,Gn(U1), U1, . . . ,G1(Unk), . . . ,Gn(Unk), Unk,G1(0), . . . , ∂k−1
u G1(0), . . . ,

Gn(0), . . . , ∂k−1
u Gn(0)) ∈ L[[t

1
⋆ ]]nk(n+1) ×L[[t]]nk.

Denote Iϵdup the ideal of L(t)[x1, . . . , xn, u1, . . . , xn2k−n+1, . . . , xn2k, unk, z0, . . . , znk−1] generated by
Sϵdup. Then the saturated ideal Iϵdup ∶ det(JacSϵdup)

∞ is zero-dimensional and radical over L(t).
Moreover, P lies in the zero set of Iϵdup ∶ det(JacSϵdup)

∞.

Therefore, in order to conclude the algebraicity of Gi(0), . . . , ∂k−1
u Gi(0) over L(t) for all 1 ≤

i ≤ n, it is enough to justify that JacSϵdup is invertible at P . The idea for proving det(JacSϵdup)(P) ≠ 0,
analogous to the proof of [10, Theorem 3], is to show first that JacSϵ

dup
(P) can be rewritten as a

block triangular matrix. We will then show that the diagonal blocks are invertible by carefully
analyzing the lowest valuation in t of their associated determinants.

If A ∈ L[t][X1, . . . ,Xn, u], we shall define its “ith duplicated polynomial” by

A(i) ∶= A(Xn(i−1)+1, . . . ,Xni, ui).
2In practice, if {h1, . . . , hr} is a generating set of I, then a generating set of I ∶ g∞ is obtained by computing a

generating set of ⟨h1, . . . , hr,m ⋅ g − 1⟩ ∩K[x1, . . . , xN ], where m is an extra variable.
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Then the Jacobian matrix JacSϵ
dup
(P) has the shape

JacSdup(P) =
⎛
⎜
⎝

A1 0 B1

⋱ ⋮
0 Ank Bnk

⎞
⎟
⎠
∈ L[[t

1
⋆ ]]nk(n+2)×nk(n+2),

where for i = 1, . . . , nk the matrices3 Ai ∈ L[[t
1
⋆ ]](n+2)×(n+1) and Bi ∈ L[[t

1
⋆ ]](n+2)×nk are:

Ai ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∂x1E
(i)
1 (Ui) . . . ∂xnE

(i)
1 (Ui) ∂uiE

(i)
1 (Ui)

⋮ ⋱ ⋮ ⋮
∂x1E

(i)
n (Ui) . . . ∂xnE

(i)
n (Ui) ∂uiE

(i)
n (Ui)

∂x1 Det
(i)(Ui) . . . ∂xn Det

(i)(Ui) ∂ui Det
(i)(Ui)

∂x1P
(i)(Ui) . . . ∂xnP

(i)(Ui) ∂uiP
(i)(Ui)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

Bi ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∂z0E
(i)
1 (Ui) . . . ∂znk−1E

(i)
1 (Ui)

⋮ ⋱ ⋮
∂z0E

(i)
n (Ui) . . . ∂znk−1E

(i)
n (Ui)

∂z0 Det
(i)(Ui) . . . ∂znk−1 Det

(i)(Ui)
∂z0P

(i)(Ui) . . . ∂znk−1P
(i)(Ui)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Using Det(Ui) = 0 and (9), we see that the first n × (n + 1) minor of each Ai has rank at most
n − 1. Hence, after performing operations on the first n rows, we can transform the n th row of
Ai into the zero vector. It follows that after the suitable transformation and a permutation of
rows, JacSϵ

dup
(P) can be rewritten as a block triangular matrix. To give the precise form of the

determinant of JacSϵdup(P), we first define

R ∶= det
⎛
⎜⎜
⎝

∂x1E
(i)
1 (Ui) . . . ∂xn−1E

(i)
1 (Ui) y1

⋮ ⋱ ⋮ ⋮
∂x1E

(i)
n (Ui) . . . ∂xn−1E

(i)
n (Ui) yn

⎞
⎟⎟
⎠
∈ K[{∂xℓE

(i)
j (Ui)}1≤j≤n,1≤ℓ≤n−1][y1, . . . , yn]. (10)

Then it follows that det(JacSϵdup)(P) = ±(
nk

∏
i=1

det(Jaci(Ui))) ⋅ det(Λ), where

Jaci(u) ∶=

⎛
⎜⎜⎜⎜⎜
⎝

∂x1E
(i)
1 (u) . . . ∂xnE

(i)
1 (u) ∂uiE

(i)
1 (u)

⋮ ⋱ ⋮ ⋮
∂x1E

(i)
n−1(u) . . . ∂xnE

(i)
n−1(u) ∂uiE

(i)
n−1(u)

∂x1 Det
(i)(u) . . . ∂xn Det(i)(u) ∂ui Det

(i)(u)
∂x1P

(i)(u) . . . ∂xnP
(i)(u) ∂uiP

(i)(u)

⎞
⎟⎟⎟⎟⎟
⎠

∈ L[u][[t]](n+1)×(n+1), and

Λ ∶= (R(∂zjE
(i)
1 (Ui), . . . , ∂zjE(i)n (Ui)))1≤i,j+1≤nk ∈ L[[t

1
⋆ ]]nk×nk. (11)

The proof that this product is nonzero is the content of lemma 8 and lemma 9.

Lemma 8. For each i = 1, . . . , nk, the determinant of Jaci(Ui) is nonzero.
3In these matrices, we emphasize that notations like ∂x1E

(i)
1 (Ui) are compact forms for the specializations of the

duplicated polynomial ∂x1E
(i)
1 to the values x(i−1)n+1 = F1(t,Ui(t)), . . . , xin = Fn(t,Ui(t)), ui = Ui(t), z(j−1)k+ℓ =

(∂ℓ
uFj)(t, a).
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Proof. To prove that det(Jaci(Ui)) ≠ 0 we will show that valt(det(Jaci(Ui))) < ∞, where valt
denotes the valuation in t. The main idea here is to expand det(Jaci(Ui)) with respect to the
last column and show that the least valuation comes from the product of ∂ui Det

(i)(Ui) by the
determinant of its associated submatrix4, denoted byM. For some matrix A whose entries are
series in t, we shall denote by valt(A) the matrix of the valuations in t of the entries of A.

We shall justify that the term with lowest exponent in t in det(Jaci(Ui)) comes from the first
term in the product det(M) ⋅ ∂ui Det

(i)(Ui). By construction, the monomials in {Ei}1≤i≤n that are
quadratic in the variables {xj}1≤j≤n all carry a tα, so that ∂xj Det

(i)(Ui) = O(tα) for all 1 ≤ j ≤ n
and all 1 ≤ i ≤ nk. Thus when expending det(Jaci(Ui)) with respect to the last column of Jaci(Ui),
the minors associated with ∂uiE

(i)
j (Ui) and ∂uiP

(i)(Ui) are in O(tα) (for 1 ≤ i ≤ nk).

Thus, it remains to prove that valt(∂ui Det
(i)(Ui) ⋅ det(M)) < α; this is done in the remaining

part of the proof. Note that the expression of Detmodtn+1 in the proof of lemma 6 implies that

valt(∂ui Det
(i)(Ui)) = (M − nk)/k + n − 1 + (k − 1)/k = (M − 1)/k. (12)

For det(M) there are two cases to treat separately: Either (Case 1) we have Uk
i = nktϵk +

(higher powers of t), or (Case 2) we have Uk
i =mktϵk + (higher powers of t) for some m < n. The

reason for this distinction is that

∂xjEℓ(u) =
⎧⎪⎪⎨⎪⎪⎩

−umℓ + tϵkumℓ−kℓk, if ℓ = j,
tβ+1ϵkumℓ−k, else ,

(13)

and, therefore, in Case 1 the (ℓ, ℓ) entry ofM always has valuation in t given by mℓ/k for each
ℓ = 1, . . . , n − 1, while in Case 2 the entry ofM on row and column m has a valuation in t that
depends on β.

Case 1: Assume that the Ui of interest satisfies

Uk
i = nktϵk + (higher powers of t). (14)

By definition,Mℓ,j = ∂xjEℓ(Ui) for j = 1, . . . , n and ℓ = 1, . . . , n − 1 and thus from (13) we find

valt(M)ℓ,j =
⎧⎪⎪⎨⎪⎪⎩

mℓ

k if ℓ = j,
β + mℓ

k else.
(15)

Moreover, we claim that the bottom right entry ofM has valuation (M − 1)/k in t. To prove
this we compute

Mn,n = ∂xnP
(i)(Ui) = ∂xn det

⎛
⎜
⎝

∂x1E1 . . . ∂xn−1E1 ∂uE1

⋮ ⋱ ⋮ ⋮
∂x1En . . . ∂xn−1En ∂uEn

⎞
⎟
⎠

(i)

(Ui)

= det
⎛
⎜
⎝

∂x1E1 . . . ∂xn−1E1 ∂2
xn,uE1

⋮ ⋱ ⋮ ⋮
∂x1En . . . ∂xn−1En ∂2

xn,uEn

⎞
⎟
⎠

(i)

(Ui)mod tα, (16)

4For A = (ai,j)1≤i,j≤n some matrix of size n×n, the submatrix associated to an element ai0,j0 is the (n− 1)× (n− 1)
submatrix of A obtained by deletion of the i0th row and j0th column from A.
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since ∂2
xn,xj

Eℓ ∈ O(tα) for each j = 1, . . . , n and ℓ = 1, . . . , n. Regarding the last column of the
above matrix, a straightforward computations yields

∂2
xn,uEn(u) = −mnu

mn−1 + t(mn − k)nkumn−k−1 +O(tα). (17)

From this and (14) it follows that valt((∂2
xn,uEℓ)(i)(Ui)) = (mn − 1)/k. Moreover, using (13)

and (15), we see that the only way to obtain in (16) a term with exponent in t independent of β is
to take the product of entries of the main diagonal. The sufficiently large choice of β = ⌊2M/k⌋
implies that valt(Mn,n) = valt((∂xnP )(i)(Ui)) = m1

k + ⋯ +
mn−1
k + mn−1

k = (M − 1)/k, where, as
before, M denotes ∑n

j=1mj .
Altogether, in this case we obtain that valt(M) has the shape

valt(M) =

⎛
⎜⎜⎜⎜
⎝

m1

k
β + m1

k
. . . β + m1

k
β + m1

k
β + m2

k
m2

k
. . . β + m2

k
β + m2

k
⋮ ⋱ ⋮ ⋮

β + mn−1

k
β + mn−1

k
. . . mn−1

k
β + mn−1

k
⋆ ⋆ . . . ⋆ (M − 1)/k

⎞
⎟⎟⎟⎟
⎠

.

It follows that the only term in the determinant ofM whose exponent in t has no dependency
on β comes from the product of the entries located on the main diagonal of M, and that
the choice β = ⌊2M/k⌋ ensures that valt(det(M)) < β. Thus (12) implies valt(∂ui Det

(i)(Ui) ⋅
det(M)) = (M − 1)/k + (2M −mn − 1)/k. Finally, from α = 3n2k ⋅ (⌊2M/k⌋ + 1) + 3nM , it follows
that valt(∂ui Det

(i)(Ui) ⋅ det(M)) < α, as wanted.

Case 2: The second case is similar in spirit to Case 1, but because of (13) when Ui is not of
the form (14), computing the valuation in t of det(M) is slightly more delicate. In this case

Uk
i =mktϵk + (higher powers of t), (18)

for some m < n. For the sake of better readability, we shall assume without loss of generality that
m = 1, since the argument works equally well in the general case.

It follows from the definition ofM and (13) that

M =

⎛
⎜⎜⎜⎜
⎝

−Um1
i + tϵkUm1−k

i . . . ϵktβ+1Um1−k
i ϵktβ+1Um1−k

i

⋮ ⋱ ⋮ ⋮
ϵktβ+1Umn−1−k

i . . . −Umn−1
i + (n − 1)ktϵkUmn−1−k

i ϵktβ+1Umn−1−k
i

∂x1P
(i)(Ui) . . . ∂xn−1P

(i)(Ui) ∂xnP
(i)(Ui)

⎞
⎟⎟⎟⎟
⎠

mod tα.

As before in (15), for 1 ≤ j ≤ n, we have valt(ϵktβ+1U
mj−k
i ) = β + mj

k . Also, assuming that m = 1,
we have for all 2 ≤ j ≤ n − 1 that

−Umj

i + jktϵkUmj−k
i = λi,j ⋅ t

mj
k + (higher powers of t),

for some nonzero λi,j ∈ K(ϵ). However, for j = 1 the term λi,j vanishes and so we shall compute
the valuation in t of −Um1

i + tϵkUm1−k
i in this case. From the expansion of Det(u) to higher order

terms

Det(u) = uM−nk ⋅ [ ∏
1≤j≤n

(−uk + jktϵk) − t2(β+1)ϵ2k ∑
1≤ℓ<j≤n

n

∏
b=1,

b≠ℓ,b≠j

(−uk + bktϵk)] +O(t3β),
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we use Newton’s method to find the second lowest term of Ui with respect to the exponent in t:

Ui = ζℓit
1
k ϵ + λit

2β+ 1
k + (higher powers of t),

for some 1 ≤ ℓi ≤ k and λi ≠ 0. This implies that

valt(M1,1) = valt(−Um1
i + tϵkUm1−k

i ) = valt(Um1−k
i ) + valt(−Uk

i + tϵk)

= m1 − k
k

+ (k − 1)
k

+ 2β + 1

k
= 2β + m1

k
.

It remains to understand the valuation in t of the last row ofM, i.e. of {∂xjP
(i)(Ui)}1≤j≤n. The

same argument as in (16) implies that for any j = 1, . . . , n we have

(∂xjP )
(i)(Ui) = det

⎛
⎜⎜
⎝

−Um1
i + tϵkUm1−k

i . . . ϵktβ+1Um1−k
i ∂2

xj ,uE
(i)
1 (Ui)

⋮ ⋱ ⋮ ⋮
ϵktβ+1Umn−k

i . . . ϵktβ+1Umn−k
i ∂2

xj ,uE
(i)
n (Ui)

⎞
⎟⎟
⎠
mod tα.

Moreover, in spirit of (17) it holds because of (13) and (18) that

∂2
u,xj

Eℓ(Ui) =
⎧⎪⎪⎨⎪⎪⎩

(mℓ − 1)/k if j = ℓ,
O(tβ+

mℓ−1
k ) else.

Putting everything together, it follows that

valt(∂xjP
(i)(Ui)) = valt det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t2β+
m1
k ⋯ ⋯ tβ+

m1
k tβ+

m1−1
k

tβ+
m2
k t

m2
k tβ+

m1
k ⋯ tβ+

m2−1
k

⋮ ⋱ ⋱ ⋱ ⋮
tβ+

mj
k ⋯ t

mj
k tβ+

mj
k t(mj−1)/k

⋮ ⋱ ⋱ ⋱ ⋮
tβ+

mn−1
k ⋯ tβ+

mn−1
k t

mn−1
k tβ+

mn−1−1
k

tβ+
mn
k ⋯ tβ+

mn
k tβ+

mn
k tβ+

mn−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where in the matrix above the (i0, j0) entry is tβ+mi0
/k if 1 ≤ j0 < n and 1 ≤ i0 ≠ j0 ≤ n, tmi0

/k if

1 < i0 = j0 < n, t2β+m1/k if i0 = j0 = 1, tβ+
mi0

−1
k if j0 = n, i0 ≠ j, and t(mj−1)/k if j0 = n, i0 = j. From

this we obtain that valt(∂xjP
(i)(Ui)) is at least 2β+(M − 1)/k, except if j = 1, since then it is given

by the valuation of the product of the lower left entry, the upper right entry and the remaining
entries on the diagonal of the matrix above. In other words:

valt(∂xjP
(i)(Ui)) =

⎧⎪⎪⎨⎪⎪⎩

β + (M − 1)/k if j = 1,
≥ 2β + (M − 1)/k else.

This means that valt(M) has the shape

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2β + m1

k β + m1

k ⋯ ⋯ β + m1

k
β + m2

k
m2

k β + m2

k ⋯ β + m2

k
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮

β + mn−2
k ⋯ mn−2

k β + mn−2
k β + mn−2

k
β + mn−1

k ⋯ β + mn−1
k

mn−1
k β + mn−1

k

β + M−1
k ≥ 2β + M−1

k ⋯ ≥ 2β + M−1
k ≥ 2β + M−1

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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We see that the valuation of det(M) is 2β + (2M −mn − 1)/k, since it is given by the sum of the
lower left entry, the upper right entry and the remaining entries on the diagonal of the matrix
above. Note that each other combination will sum to at least 4β and the choice β = ⌊2M/k⌋
ensures that this term is strictly larger.

It remains to check that also in this case our choice for α was large enough to guarantee that
valt(∂ui Det

(i)(Ui) ⋅ det(M)) < α. Using that valt(det(M)) = 2β + (2M −mn − 1)/k and (12), we
obtain

valt(∂ui Det
(i)(Ui)) + valt(det(M)) = 2β +

3M −mn − 2
k

< 2β + 3M

k
.

As 2β + 3M
k < α, this concludes the proof of lemma 8.

Lemma 9. The determinant of Λ is nonzero.

Proving that det(Λ) ≠ 0 is again done by analyzing the first terms in t of det(Λ). More precisely,
we are going to show that det(Λ) factors modulo tα as: a product of Ui, the Vandermonde
determinant ∏i<j(Ui −Uj), and a nonzero polynomial H(t) ∈ K[t].

Before starting with the proof we shall prove the following simple but useful fact:

Lemma 10. Let F be a field and m ∈ N. Consider polynomials A1, . . . ,Am ∈ F[x] and define
M ∶= (Ai(xj))1≤j,i≤m. Then det(M) = 0 if and only if there exist λ1, . . . , λm ∈ F not all equal to 0
such that we have the linear combination ∑m

i=1 λi ⋅Ai(x) = 0.

Proof. Clearly, if the linear combination∑m
i=1 λi ⋅Ai(x) = 0 exists, M is singular and its determinant

vanishes. For the other direction, we can assume without loss of generality that, up to permutation
of columns of M and linear operations on them, deg(A1(x)) > ⋯ > deg(An(x))5. Then, since
det(M) = 0, we must have that Ai(x) = 0 for some i = 1, . . . , n, because the product of the diagonal
elements of M cannot cancel otherwise.

Proof of lemma 9. Recall from (10) and (11) that

Λ ∶= (R(∂zjE
(i)
1 (Ui), . . . , ∂zjE

(i)
n (Ui)))1≤i,j+1≤nk ∈ L[[t

1
⋆ ]]nk×nk,

where

R ∶= det
⎛
⎜
⎝

∂x1
E
(i)
1 (Ui) . . . ∂xn−1E

(i)
1 (Ui) y1

⋮ ⋱ ⋮ ⋮
∂x1E

(i)
n (Ui) . . . ∂xn−1E

(i)
n (Ui) yn

⎞
⎟
⎠
∈ K[{∂xℓ

E
(i)
j (Ui)}1≤ℓ≤n−1,1≤j≤n][y1, . . . , yn].

We shall first define and analyze the symbolic matrix Λ̃:

Λ̃(u1, . . . , un) = Λ̃ ∶= (R̃(i)j )1≤i,j+1≤nk ∈ L[t][u1, . . . , unk]
nk×nk, where

R̃j ∶= det
⎛
⎜
⎝

∂x1E1 . . . ∂xn−1E1 ∂zjE1

⋮ ⋱ ⋮ ⋮
∂x1En . . . ∂xn−1En ∂zjEn

⎞
⎟
⎠
mod tα ∈ L[t][u].

Note that the polynomial matrix Λ̃ is symbolic and it holds that

Λ̃(U1, . . . , Unk) ≡ Λ mod tα. (19)

We will prove lemma 9 in 3 steps corresponding to the 3 claims:
5Here deg(0) = −∞ and we allow us to write −∞ > −∞.
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• Claim 1: For the symbolic matrix Λ̃ it holds that det(Λ̃) ≠ 0.

• Claim 2: We have that det(Λ̃) =∏nk
i=1 u

M−nk
i ⋅∏i<j (ui − uj) ⋅H(t), for some nonzero polyno-

mial H(t) ∈ L[t] of degree bounded by n2k(β + 1).

• Claim 3: It holds that det(Λ̃(U1, . . . , Unk))mod tα ≠ 0, in particular, we have Λ ≠ 0.

Before we start with the proofs of the three claims, we mention that it follows from the
definition of Eℓ and our deformation that for 0 ≤ j ≤ nk − 1 and 1 ≤ ℓ ≤ n we have

∂zjEℓ mod tα =
⎧⎪⎪⎨⎪⎪⎩

− tϵkℓk

(j−k(ℓ−1))!u
mℓ+j−k(ℓ−1)−k, if j ∈ {kℓ − k, . . . , kℓ − 1},

− tβ+1ϵk

h! umℓ+h−k else, with h = j mod k and 0 ≤ h < k.
(20)

We will crucially use the fact that ∂zjEℓ mod tα is divisible by umℓ−k and that the quotient is a
monomial in u of degree at most k − 1.

Proof of Claim 1: Assume that det(Λ̃) = 0. By lemma 10 applied to Λ̃, there exist polyno-
mials λ0, . . . , λnk−1 ∈ L[t] not all equal to 0 such that ∑nk−1

i=0 λi ⋅ R̃i = 0. For all 0 ≤ i ≤ nk − 1
the matrices associated to the Ri’s share the same n − 1 first columns, while the last column is
equal to (∂ziEℓ)1≤ℓ≤n. From (20) it follows that for all 1 ≤ i + 1, ℓ ≤ n and for all 0 ≤ j ≤ k − 1,
we have ∂zik+jEℓ = uj

j! ∂zikEℓ. Thus, using the multi-linearity of the determinant, it follows that

for all 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ k − 1, we have R̃ik+j = uj

j! ⋅ R̃ik. This implies that the linear

combination ∑nk−1
i=0 λi ⋅ R̃i(u) = 0 rewrites into the form

n−1
∑
i=0

k−1
∑
j=0

λik+j ⋅
uj

j!
⋅ R̃ik = 0. (21)

Moreover, the combination of (13) and (20) implies that all entries the ith row of the matrix
defining R̃j are divisible by umi−k. Define

Pℓ(u) ∶= u−mℓ+k
n−1
∑
i=0

k−1
∑
j=0

λik+j ⋅
uj

j!
⋅ ∂zikEℓ mod tα for ℓ = 1, . . . , n,

so that equations (13) and (21), as well as the multi-linearity of the determinant imply that

B(u) ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−uk + tϵk ϵktβ+1 ⋯ ϵktβ+1 P1

ϵktβ+1 −uk + tϵk2k ⋯ ϵktβ+1 P2

⋮ ⋮ ⋱ ⋮ ⋮
ϵktβ+1 ϵktβ+1 ⋯ −uk + tϵk(n − 1)k Pn−1
ϵktβ+1 ϵktβ+1 ⋯ ϵktβ+1 Pn

⎞
⎟⎟⎟⎟⎟⎟
⎠

is a singular polynomial matrix. Observe from (20) that degu Pℓ < k for ℓ = 1, . . . , n. Using this and
det(B) = 0 we shall now show that P1 = ⋯ = Pn = 0.

First note that when computing the determinant of B using the Leibniz rule, we would get the
product of all entries on the main diagonal and products of other terms which will be polynomials
in u of degree at most (n − 1)k − 1. The contribution of the main diagonal contains u(n−1)kPn.
Clearly, this term cannot cancel with others, unless Pn vanishes.
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Fix some 1 ≤ ℓ ≤ n − 1 and define ω1, . . . , ωk ∈ K[ϵ][[t1/⋆]] to be the distinct solutions of
uk = tϵkℓk − tβ+1ϵk. Clearly, det(B(ωi)) = 0 for i = 1, . . . , k, and by definition of ωi, the first n − 1
entries of the ℓth row of B(ωi) agree with the first n−1 entries of its last row. Therefore, expanding
along the last column, we find that

0 = det(B(ωi)) = ±Pℓ(ωi) ⋅ det(Bℓ,n(ωi)),

where Bℓ,n denotes the matrix B with the ℓth row and last column removed. By subtracting the
ℓth column from all others one can easily compute det(Bℓ,n(ωi)), in particular it follows that it is
nonzero. So we conclude that Pℓ(ωi) = 0 for i = 1, . . . , k and, then, since degu Pℓ(u) < k, it finally
follows that Pℓ vanishes identically.

By (20) we have that degu ∂zikEℓ =mℓ−k, therefore, looking at the coefficient of uj of Pℓ(u) = 0
for j = 0, . . . , k − 1, we obtain with (20) the following linear relations for the λi’s:

⎛
⎜⎜⎜⎜
⎝

1 tβ ⋯ tβ

tβ 2k ⋯ tβ

⋮ ⋱ ⋱ ⋮
tβ ⋯ ⋯ nk

⎞
⎟⎟⎟⎟
⎠

×
⎛
⎜⎜⎜
⎝

λj

λk+j
⋮

λ(n−1)k+j

⎞
⎟⎟⎟
⎠
= 0, for all 0 ≤ j ≤ k − 1. (22)

As the square matrix in (22) is invertible, we obtain that λi = 0 for all i = 0, . . . , nk − 1 which
contradicts our assumption. Hence we have proved that det(Λ̃) ≠ 0.

Proof of Claim 2: We prove the following explicit factorization of det(Λ̃):

det(Λ̃) =
nk

∏
i=1

uM−nki ⋅∏
i<j
(ui − uj) ⋅H(t), (23)

where H(t) ∈ K[ϵ, t] is nonzero and of degree in t at most n2(β + 1).
From (13) we know that for 0 ≤ j ≤ nk − 1, the polynomial R̃j is given by

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

um1 + tϵkum1−k tb+1um1−k ⋯ ϵktb+1um1−k ∂zjE1

ϵktb+1um2−k um2 + tϵk2kum2−k ⋯ ϵktb+1um2−k ∂zjE2

⋮ ⋮ ⋱ ⋮ ⋮
ϵktb+1umn−1−k ϵktb+1umn−1−k ⋯ umn−1−k(uk + tϵk(n − 1)k) ∂zjEn−1
ϵktb+1umn−k ϵktb+1umn−k ⋯ ϵktb+1umn−k ∂zjEn

⎞
⎟⎟⎟⎟⎟⎟
⎠

mod tα.

It follows from (20) that u−mℓ+k degzj Eℓ is a monomial of degree at most k − 1 in u. Since all
other terms in the ℓth row of R̃j are trivially divisible by umℓ−k, and α > n(β + 1), it follows that
R̃j factors as uM−nk times the determinant of the polynomial matrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

uk + tϵk ϵktb+1 ⋯ ϵktb+1 u−m1+k∂zjE1

ϵktb+1 uk + tϵk2k ⋯ ϵktb+1 u−m2+k∂zjE2

⋮ ⋮ ⋱ ⋮ ⋮
ϵktb+1 ϵktb+1 ⋯ uk + tϵk(n − 1)k u−mn−1+k∂zjEn−1
ϵktb+1 ϵktb+1 ⋯ ϵktb+1 u−mn+k∂zjEn

⎞
⎟⎟⎟⎟⎟⎟
⎠

mod tα, (24)

where, as before, M ∶= ∑n
i=1mi. Thus, uM−nk divides R̃j . Moreover, the degree in u of the first n−1

columns of (24) is upper-bounded by k and the last column of this matrix has degree at most k − 1,
so it follows that degu(R̃j) ≤M − 1.
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Let us consider Λ̃ which is by definition the matrix (R̃(i)j )1≤i,j+1≤nk ∈ L[t][u1, . . . , unk]
nk×nk.

Since degu(R̃j) ≤ M − 1, we also have that detui(Λ̃) ≤ M − 1 for each i = 1, . . . , nk. From the
considerations above it also follows that det(Λ̃) is divisible by ∏nk

i=1 u
M−nk
i . Moreover, it is obvious

that if ui = uj for some i ≠ j, the determinant of Λ̃ vanishes. Hence, we can also factor out the
Vandermonde determinant ∏i<j (ui − uj) from det(Λ̃). By comparing degrees in each ui it follows
that the remaining factor is a constant with respect to ui and hence (23) holds. By Claim 1, H(t)
is nonzero, so it remains to prove that degtH(t) ≤ n2k(β + 1). This follows directly from the fact
that the degree in t of the R̃j ’s is bounded by n(β + 1) as determinants of (n × n) matrices whose
polynomial coefficients have degree in t upper-bounded by β + 1.

Finally for this step, using the definitions α = 3n2k ⋅ (β + 1) + 3nM and β = ⌊2M/k⌋, we have
that α > n2k(β + 1). So that degt(det(Λ̃)) < α: by Claim 1, we obtain det(Λ̃) ≠ 0 mod tα.

Proof of Claim 3: Having established (23) it is now enough to show that

valt(
nk

∏
i=1

UM−nk
i ⋅∏

i<j
(Ui −Uj) ⋅H(t)) < α. (25)

Recall from lemma 6 that Ui = t1/kϵjζℓ + (higher powers of t) for i = 1, . . . , nk, j = 1, . . . , n and ζ a
primitive kth root of unity. Thus, and because degt(H) ≤ n2k(β + 1) by Claim 2, the left-hand side
of (25) is bounded by nk ⋅ M−nkk + nk(nk − 1) ⋅ 1k + n

2k(β + 1), which is at most nM + n2k(β + 1).
Since α = 3n2k ⋅ (β + 1)+ 3nM , we conclude that det(Λ̃(U1, . . . , Unk))mod tα ≠ 0. Finally, together
with (19) this implies that det(Λ) does not vanish as well.

Having now proved that det(JacSϵ
dup
) ≠ 0 at P, we can apply lemma 7 and obtain that the

specialized series Gi(0), . . . , ∂k−1
u Gi(0) are all algebraic over K(t, ϵ). The algebraicity of the

complete formal power series G1, . . . ,Gn over K(t, u, ϵ) then follows again by [8, Lemma 2.10]
from the invertibility of the Jacobian matrix of E1, . . . ,En considered with respect to the variables
x1, . . . , xn (with t, u, z0, . . . , znk−1 viewed as parameters). The equalities Fi(tα, u) = Gi(t, u,0)
finally imply that F1, . . . , Fn are also algebraic over K(t, u).

3.2 Proof of theorem 4

We prove the quantitative estimates announced in theorem 4. The techniques of the proof being
standard in effective algebraic geometry, we will be quite brief in the arguments. For more details
on the upper bound on the algebraicity degree, we refer the reader to [8, Prop. 2.8] in the
case n = k = 1, and to [9, Prop. 3] for the more general case n = 1 (k arbitrary). For the complexity
proof, we refer the reader to [8, Prop. 2.9] and [9, Prop. 4] in the two respective cases. As in the
proof of theorem 3, we assume without loss of generality that a = 0.

Algebraicity degree bound: In order to bound the algebracity degree of Fi(t, u), we will provide
an upper bound on the algebraicity degree of Gi(t, u, ϵ) over K(t, u, ϵ), where, as in the proof
of theorem 3, (G1, . . . ,Gn) denotes the solution of the deformed system (7). Following the
lines of the proof of Theorem 3, we shall first give explicit bounds on the total degrees of all
equations in Sϵdup. Note that in this part we are interested in the algebraicity degree of Gi(t,0)
over K(t, ϵ), so in the computation of the total degree we take into account all the variables
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u,u1, . . . , unk, x1, . . . , xn2k, z0, . . . , znk−1 but not t and ϵ. In order to distinguish this restricted
notion of total degree from the usual total degree denoted by totdeg, we will write it totdegt,ϵ.

Let δ be a bound on totdegt,ϵ of f1, . . . , fn,Q1, . . . ,Qn; then the total degrees of E1, . . . ,En

are bounded by δ(k + 1). Moreover, totdegt,ϵ(Det), totdegt,ϵ(P ) ≤ nδ(k + 1), since Det and P are
determinants of polynomial matrices of size n × n and degree at most δ(k + 1).

Recall from lemma 7 that the ideal Iϵdup ⊆ K(t, ϵ)[x1, . . . , xn2k, u1, . . . , unk, z0, . . . , znk−1] is
defined by nk duplications of the polynomials E1, . . . ,En,Det, P . By lemma 7 the saturated ideal
Iϵdup ∶ det(JacSϵdup)

∞ is radical and of dimension 0, and this yields bounds for the algebraicity
degrees of the specializations {∂i

uGj(0)}0≤i≤k−1,1≤j≤n. More precisely, applying the Heintz-Bézout
theorem [20, Theorem 1] in the same way as in [8, Prop. 3.1], one obtains that the algebraicity
degree of any ∂i

uGj(0) is bounded by

max
i=1,...,n

(totdegt,ϵ(Ei))n
2k ⋅ totdegt,ϵ(Det)nk ⋅ totdegt,ϵ(P )nk ≤ n2nk ⋅ (δ(k + 1))nk(n+2).

We denote this bound by γ(n, k, δ).
As in [9, Prop. 4] there is a group action of the symmetric group Snk on the zero set associated

to the ideal ⟨E(1)1 , . . . ,E
(nk)
1 , . . . ,E

(1)
n , . . . ,E

(nk)
n ,Det(1), . . . ,Det(nk), P (1), . . . , P (nk)⟩ which per-

mutes each of the nk duplicated blocks of coordinates. As this action preserves the {t, z0, . . . , znk−1}-
coordinate space, one spares the cardinality of the orbits and deduces that an algebraicity upper
bound on any of the specialized series ∂i

uGj(0) is also given by γ(n, k, δ)/(nk)!, that is we have

algdegK(t,ϵ)(∂i
uGj(0)) ≤ nnk ⋅ (δ(k + 1))nk(n+2)/(nk)!. (26)

Finally, it remains to give algebraicity bounds for the full series G1, . . . ,Gn. This is done in the
same fashion as above, this time over the field extension

K(t, ϵ,G1(0), . . . , ∂k−1
u G1(0), . . . ,Gn(0), . . . , ∂k−1

u Gn(0))/K(t, ϵ).

Using (26) and the multiplicativity of the degrees in field extensions yields

algdegK(t,u,ϵ)(Gi(u)) ≤ δn(k + 1)n ⋅ (
n2nk(δ(k + 1))nk(n+2)

(nk)!
)
nk

for i = 1, . . . , n,

and, by specialization, the same bound then holds for algdegK(t,u)(Fi(u)) as well.

Complexity estimate: Let us recall that we fix K to be an effective field of characteristic 0 and we
count the number of elementary operations (+,−,×,÷) in K. For proving the arithmetic complexity
estimate in theorem 4, we rely on the use of the parametric geometric resolution (see [24] for
details). For this purpose we need:

• the number of parameters and of variables of the input equations of interest,

• and upper bound on the degree (with respect to all the variables and parameters) of the
saturated ideal Iϵdup ∶ det(JacSϵdup)

∞.

In our setting the parameters are t and ϵ so we have two of them, and the variables are

x1, . . . , xn2k, z0, . . . , znk−1, u1, . . . , unk,
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so nk(n + 2) in total.
For computing an upper bound ν(n, k, δ) on the degree of the ideal Iϵdup ∶ det(JacSϵdup)

∞, we
again apply the Heintz-Bézout theorem. Note that this time we must take into account the total
degree of the input system Sϵdup with respect to both the variables and the parameters. By the
same arguments as in the first part of the proof and using the definitions of α,β, we find

ν(n, k, δ) = n2nk(δ ⋅ (k + 1) + 3n2k ⋅ (2nδ + 1) + 3nM)nk(n+2).

Without loss of generality, we only address the computation of an annihilating polynomial of
G1(0) (and consequently of F1(0)). The algorithm we propose consists of two steps:

Step 1: For λ a new variable which is a random K[t, ϵ]-linear combination of all the vari-
ables involved in Sϵdup, we compute two polynomials V (t, ϵ, λ),W (t, ϵ, λ) ∈ K[t, ϵ][λ], such
that: G1(0) is a solution6 of Sϵdup and not a solution of det(JacSϵ

dup
) = 0 if and only if G1(0) =

V (t, ϵ, λ0)/∂λW (t, ϵ, λ0) for λ0 ∈ K(t, ϵ) a solution of W (t, ϵ, λ) = 0.
Step 2: Compute the squarefree part R ∈ K[t, ϵ, z0] of the resultant of z0 ⋅∂λW (t, ϵ, λ)−V (t, ϵ, λ)

and W (t, ϵ, λ) with respect to λ.
By definition, λ0 is a solution of ∂λW (t, ϵ, λ)G1(0) − V (t, ϵ, λ) = 0 and W (t, ϵ, λ) = 0, so

R(t, ϵ,G1(0)) = 0 by the property of the resultant. Moreover, it follows from the eigenvalue
theorem [17, Theorem 1] and the fact that the dimension of the radical ideal Iϵdup ∶ det(JacSϵdup)

∞

is zero, that R is a nonzero polynomial.
By [24, Theorem 2], performing Step 1 can be done using Õ((Ln2k + (n2k)4) ⋅ ν(n, k, δ)3)

operations in K, where L denotes the complexity of evaluating the duplicated system Sϵdup at
all variables and parameters. Using the Bauer-Strassen theorem [3, Theorem 1], the cost for
evaluating Det and P is in O(nL′), where L′ is the cost for evaluating any of the E1, . . . ,En. The
total degrees of the Ei’s are bounded by d′ ∶= δ⋅(k+1)+3n2k⋅(2nδ+1)+3nM , so L′ ∈ O((d′)nk+n+3)),
since nk + n + 3 is the number of variables and parameters. Duplicating nk times the initial
polynomials E1, . . . ,En,Det, P , it follows that L ∈ O(n3kL′) ⊂ O(n3k(d′)nk+n+3). To do Step 2,
we perform evaluation-interpolation on t and ϵ. This requires to use in total O(ν(n, k, δ)2)
distinct points from the base field K. For each specialization of z0 ⋅ ∂λW (t, ϵ, λ) − V (t, ϵ, λ)
and W (t, ϵ, λ) to t = θ1 ∈ K and ϵ = θ2 ∈ K, we compute the squarefree part of the bivariate
resultant of ∂λW (θ1, θ2, λ) ⋅ zℓ − V (θ1, θ2, λ) and W (θ1, θ2, λ) with respect to λ. Using [26], this
requires Õ((ν(n, k, δ)/(nk)!)3.63) operations in K.

In total we obtain that the arithmetic complexity is bounded by (2nkδ)O(n2k) operations in K.
Deducing an annihilating polynomial of F1(t,0) from the one annihilating G1(t, ϵ = 0, u = 0) is
included in the previous complexities. This proves theorem 4.

4 Elementary strategies for solving a system of DDEs

The present section aims at studying two strategies available at this time for solving a system of
DDEs in practice. Both approaches have the advantage to be much more efficient than the algorithm
resulting from theorem 3, however they are not guaranteed to always terminate. As before, the
goal is, given a system of DDEs of the form (5), to compute a nonzero polynomial R ∈ K[t, z0]
such that R(t, F1(t, a)) = 0.

6More precisely: the z0th coordinate of a solution of Sϵ
dup which is not a solution of det(JacSϵ

dup
) = 0.
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First, in section 4.1, we summarize the algorithm underlying the duplication strategy that
was used in the proof of theorem 3 and we analyze its arithmetic complexity in the case where
no symbolic deformation is necessary (the arithmetic cost for solving a system of DDEs when such
a symbolic deformation is needed was the content of theorem 4). In section 4.2, we study the
practical approach introduced and used in [10, Section 11]: this approach consists in reducing the
algorithmic study of a system of DDEs to the study of a single functional equation (which may not
be of a fixed-point type). Once we are left with this single equation, we apply the geometry-driven
algorithm from [9, Section 5] which avoids the duplication of the variables.

4.1 The classical duplication of variables algorithm

4.1.1 General strategy

Consider the system of DDEs

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(EF1): F1 = f1(u) + t ⋅Q1(∇k
aF1, . . . ,∇k

aFn, t, u),
⋮ ⋮

(EFn): Fn = fn(u) + t ⋅Qn(∇k
aF1, . . . ,∇k

aFn, t, u),
(27)

introduced in theorem 3 and denote by Sdup the duplicated polynomial system obtained by

• considering the polynomials E1, . . . ,En ∈ K(t)[x1, . . . , xn, u, z0, . . . , znk−1] associated to the
“numerator equations”7 of the system of DDEs (27), as well as the polynomials

Det ∶= det
⎛
⎜
⎝

∂x1E1 . . . ∂xnE1

⋮ ⋱ ⋮
∂x1En . . . ∂xnEn

⎞
⎟
⎠

and P ∶= det
⎛
⎜
⎝

∂x1E1 . . . ∂xn−1E1 ∂uE1

⋮ ⋱ ⋮ ⋮
∂x1En . . . ∂xn−1En ∂uEn

⎞
⎟
⎠
,

• duplicating nk times the variables x1, . . . , xn, u in the polynomials (E1, . . . ,En,Det, P ) in
order to obtain nk duplications of the polynomials (E1, . . . ,En,Det, P ) in the new vari-
ables x1, . . . , xn2k, u1, . . . , unk and (unchanged variables) z0, . . . , znk−1.

Example 2 (cont.). We consider example 2, where k = 1 and n = 2. We have the polynomials

⎧⎪⎪⎨⎪⎪⎩

E1 ∶= −(x1 − 1)(u − 1) + tu(2ux21 − uz0 + 2uz2 − 2x21 + u + x1 − 2z2 − 1),
E2 ∶= −x2(u − 1) + tu(2ux1x2 + ux1 − 2x1x2 − x1 + x2 − z2).

We compute

Det = det(∂x1E1 ∂x2E1

∂x1E2 ∂x2E2
) = (4tu2x1 − 4tux1 + tu − u + 1)(2tu2x1 − 2tux1 + tu − u + 1).

and the rather large polynomial P = det(∂x1E1 ∂uE1

∂x1E2 ∂uE2
). We obtain by the duplication strategy the

set Sdup of polynomials given by

Sdup ∶= {(E1(x1, x2, u1, z0, z1),E2(x1, x2, u1, z0, z1),Det(x1, x2, u1, z0, z1), P (x1, x2, u1, z0, z1),
E1(x3, x4, u2, z0, z1),E2(x3, x4, u2, z0, z1),Det(x3, x4, u2, z0, z1), P (x3, x4, u2, z0, z1)}.

7For all 1 ≤ i ≤ n, Ei(u) ≡ Ei(F1, . . . , Fn, u,F1(t, a), . . . , ∂k−1
u F1(t, a), . . . , Fn(t, a), . . . , ∂k−1

u Fn(t, a)).
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Observe that Sdup is built from 8 equations in the 8 unknowns x1, x2, x3, x4, u1, u2, z0, z1 and the
parameter t.

Assuming that we did not deform (27) using (7) (and thus that we did not introduce any
deformation parameter ϵ), it follows by construction that Sdup is defined in the polynomial
ring K(t)[x1, . . . , xn2k, u1, . . . , unk, z0, . . . , znk−1], and is built from nk(n+2) equations in nk(n+2)
unknowns (t being considered as a parameter). We introduce the polynomial sat ∶= t∏nk

j=1(∏nk
i=1,i≠j(ui−

uj))(uj − a) ∈ K(t)[u1, . . . , unk] and define the saturated ideal8 I∞dup ∶= ⟨Sdup⟩ ∶ sat
∞ in the ring

K(t)[x1, . . . , xn2k, u1, . . . , unk, z0, . . . , znk−1]. In (H1) below we shall assume that I∞dup has expected
dimension 0 over K(t), without any multiplicity points, and we also assume that there exist nk
distinct solutions to Det(u) = 0 in u, all of them lying in K[[t

1
⋆ ]] ∖K. All systems of DDEs that can

be solved with the duplication approach satisfy this assumption, up to removing the multiplicity
points (which is harmless for our objective of solving systems of DDEs).

Hypothesis 1 ∶ ● Det(u) = 0 admits nk distinct solutions (in u) in K[[t
1
⋆ ]] ∖K. (H1)

● The ideal I∞dup is radical of dimension 0 over K(t).

Under (H1), we denote by U1, . . . , Unk ∈ K[[t
1
⋆ ]] ∖K the distinct solutions to Det(u) = 0.

Recall that after duplication of the variables x1, . . . , xn, u in the initial set of polynomi-
als (E1, . . . ,En,Det, P ), we took the convention in section 3 to have for all 1 ≤ i ≤ n, 1 ≤ j ≤ nk
and all 0 ≤ ℓ ≤ k − 1, the correspondence “variables↔ values” as follows:

x(j−1)n+i ↔ Fi(t,Uj(t)), uj ↔ Uj(t), z(i−1)k+ℓ ↔ (∂ℓ
uFi)(t, a).

It follows from the second part of (H1) that the elimination ideal I∞dup ∩K[t, z0] is not reduced
to {0}. In spirit of [9, Proposition 2] and [8, Proposition 2.1], we can show that any nonzero
element of I∞dup ∩K[t, z0] annihilates the series F1(t, a).
Lemma 11. Under (H1), any element R ∈ I∞dup ∩K[t, z0] ∖ {0} satisfies R(t, F1(t, a)) = 0.

Proof. Using R ∈ I∞dup and the definition of the saturation, it follows that there exists some ℓ ∈ N
such that R ⋅ (∏i≠j(ui − uj)(ui − a)t)ℓ can be written as a sum of multiples of the duplicated
polynomials obtained from E1, . . . ,En,Det, P . Specializing the resulting expression to the val-
ues x(j−1)n+i = Fi(t,Uj(t)), uj = Uj(t), z(i−1)k+ℓ = (∂ℓ

uFi)(t, a) and using (H1) implies that Ui(t) ≠
Uj(t) and Ui(t) ≠ a (whenever i ≠ j). This implies that R(t, F1(t, a)) = 0.

Example 2 (cont.). Consider Sdup, and compute a nonzero generator R ∈ Q[t, z0] of ⟨Sdup,m ⋅ (u1 −
u2) ⋅ (u1 −1) ⋅ (u2 −1)t−1⟩∩Q[t, z0]. For this computation, which is not easy to perform with a naive
approach, we rely on the recent work by the first author [21] which provides a Maple package with
efficient implementations of algorithms for solving DDEs: one of these computes efficiently such an
elimination polynomial. We obtain in a few seconds on a regular laptop that

R = (64t3z30 + 2t(24t2 − 36t + 1)z20 + (−15t3 + 9t2 + 19t − 1)z0 + t3 + 27t2 − 19t + 1)
⋅ (z0 − 1) ⋅ (2tz0 + t − 1) ⋅ (36 − 60z0 + t ⋅ R̃(t, z0))

annihilates F1(t,1); here we write R̃(t, z0) ∈ Q[t, z0] for an explicit but rather big polynomial.
Moreover, as F1 = 1 +O(t) and F1 is not a constant, we can refine our conclusion and identify that
the first factor of R is the minimal polynomial of F1(t,1).

8Recall that in practice, a generating set of the ideal I∞dup can be obtained by computing a Gröbner basis of ⟨Sdup,m ⋅
sat − 1⟩ ∩K(t)[x1, . . . , xn2k, u1, . . . , unk, z0, . . . , znk−1], where m is an extra variable introduced in order to remove the
solution set of the equation sat = 0.
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4.1.2 Refined complexity and size estimates

We prove a version of theorem 4 in the case where the symbolic deformation is not needed. In this
context, we provide an upper bound on the algebraicity degree of F1(t, a) over K(t). Also, we
estimate the arithmetic complexity for the computation of a nonzero element of I∞dup ∩K[t, z0].

Proposition 12. Let K be a field of characteristic 0. Consider the system of DDEs (27), assume
that (H1) holds and denote by δ an upper bound on the total degrees of f1, . . . , fn,Q1, . . . ,Qn. Then
the algebraicity degree of F1(t, a) over K(t) is bounded by n2nk(δ(k + 1)+ 1)nk(n+2)/(nk)!. Moreover
when K is effective, there exists an algorithm computing a nonzero polynomial R ∈ K[t, z0] such that
R(t, F1(t, a)) = 0, in Õ((nkδ)5.26n(nk+k+1)) operations in K.

Proof. In spirit of the proof of theorem 4:

• Step 1: We compute an upper bound on the degree of the ideal I∞dup and then deduce an
upper bound on the algebraicity degree of F1(t, a).

• Step 2: We make explicit the number of variables and parameters in Sdup.

• Step 3: We describe and apply an algorithm which is itself based on the algorithm of [24,
Theorem 2] in order to compute a nonzero annihilating polynomial of F1(t, a).

• Step 4: Finally, we use the arithmetic complexity of the algorithm on which [24, Theorem 2]
relies in order to estimate the complexity of our algorithm.

In order to define the polynomials E1, . . . ,En ∈ K(t)[x1, . . . , xn, u, z0, . . . , znk−1] associated to
the numerator equations of (27), recall that it is necessary to multiply the ith DDE in (27) by
a power mi ∈ N of (u − a). The polynomials Qi being of total degree upper-bounded by δ,
and the DDEs considered being of order k, it results that each mi is upper-bounded by kδ.
So each of the Ei’s has total degree upper-bounded by d ∶= δ(k + 1) + 1. Thus Det and P
have their respective total degrees bounded by nd as determinants of (n × n)-matrices whose
entries are polynomials of total degrees bounded by d. It remains to see that because of the
radicality assumption in (H1), the Heintz-Bézout theorem [20, Theorem 1] applies and implies
that the degree of the ideal I∞dup is bounded by the product of the total degrees of the nk(n +
2) duplications E

(1)
1 , . . . ,E

(1)
n ,Det(1), P (1), . . . ,E(nk)1 , . . . ,E

(nk)
n ,Det(nk), P (nk). Such a bound is

given by γ(n, k, δ) ∶= n2nkdnk(n+2). Similarly to the proof of theorem 4, there is a group action

of the symmetric group Sk over the zero set of I∞dup in K(t)
nk(n+2)

, obtained by permuting the
duplicated blocks of coordinates, and which preserves the (z0, . . . , znk−1)-coordinate space. This
group action implies that the algebraicity degree of F1(t, a) is upper-bounded by γ(n, k, δ)/(nk)! =
n2nk(δ(k + 1) + 1)nk(n+2)/(nk)!.

Recall that we have one parameter t, and nk(n+2) variables for the xi’s, the ui’s and the zi’s. We
will make explicit some R ∈ K[t, z0]∖{0} annihilating F1(t, a). To do so, we first compute (here we
use the second part of (H1) again) two polynomials V,W ∈ K[t, λ] such that: (i) W is squarefree,
(ii) λ is a new variable which is a K[t]-linear combination of the nk(n + 2) variables in Step 2,

(iii) for all the zeros α ∈ K(t)
nk(n+2)

of Sdup that are not solutions of sat, there exists λ0 ∈ K(t, ϵ)
solution in λ of W (t, λ) = 0 such that V (t, λ0)/∂λW (t, λ0) is the z0-coordinate of α. Using these
polynomials, it is straightforward to see by applying Stickelberger’s theorem [17, Theorem 1],
using the radicality assumption in (H1) and then applying lemma 11 that the squarefree part

22



of the resultant of z0 ⋅ ∂λW (t, λ) − V (t, λ) and W (t, λ) with respect to λ is a nonzero polynomial
of K[t, z0] annihilating the series F1(t, a).

It remains to estimate the complexity of Step 3. Following the proof of theorem 4, the
application of the algorithm underlying [24, Theorem 2] allows us to compute V and W
in Õ((n2kL + (n2k)4)γ(n, k, δ)2) operations in K, where L is the length of a straight-line program
which evaluates the system Sdup and the polynomial sat. Since the cost for evaluating E1, . . . ,En

is included in O(dnk+n+2), then by the Baur-Strassen’s theorem [3, Theorem 1], the complexity of
evaluating the polynomials Det, P is included in O(ndnk+n+2). Thus, evaluating E1, . . . ,En,Det, P
has an arithmetic cost which is in O(n(δk)nk+n+2). As we considered nk duplication of the polyno-
mials (E1, . . . ,En,Det, P ), we find L ∈ O(n3kdnk+n+2) ⊂ O(n2k(δk)nk+n+2). It remains to compute
the squarefree part R ∈ K[t, z0] ∖ {0} of the resultant of z0 ⋅ ∂λW (t, λ) − V (t, λ) and W (t, λ) with
respect to λ. Note that under (H1), the quantity γ(n, k, δ)/(nk)! bounds the partial degrees
of R. This resultant computation can be done by applying evaluation-interpolation with respect
to t with O(n2nk(δk)nk(n+2)/(nk)!) points. For each specialization at say t = θ ∈ K, we apply for
instance [26] and deduce that the bivariate resultant computation of z0 ⋅ ∂λW (θ, λ) − V (θ, λ)
and W (θ, λ) with respect to λ can be done in

Õ(γ(n, k, δ)2.63/(nk)!2.63) ⊂ Õ(n5.26nk(δk)2.63nk(n+2)/(nk)!2.63)

operations in K. Replacing L and γ(n, k, δ) by their values and summing up all arithmetic costs,
one deduces that the arithmetic cost for computing R is included in Õ((nkδ)5.26n(nk+k+1)).

Remark 13. (i) Note that the complexity in proposition 12 matches, as expected, the one that was
proven in [9, Proposition 4] in the case n = 1. One shall however see that the total degree of E1 is
considered in [9, Proposition 4], whereas here we considered the total degree of Q1 and f1. Passing
from the complexity in proposition 12 to the one in [9, Proposition 4] is done by replacing δ by δ/k.

(ii) It follows from the inclusion Õ((nkδ)5.26n(nk+k+1)) ⊂ Õ((nkδ)40(n2k+1)) that the arithmetic
complexity stated in proposition 12 refines the arithmetic complexity stated in theorem 4.

As shown in section 2 and section 4.1, a natural way of solving (27) is to compute a nonzero
element R ∈ I∞dup ∩K[t, z0]. However, as already pointed out in [9, Section 3] in the case n = 1, this
process of duplicating variables yields an exponential growth of the degree of the ideal I∞dup with
respect to the number nk of duplications [20, Proposition 2]. It is known that the degree of the
ideal generated by the polynomials in a given polynomial system is one of the main parameters
controlling the complexity of solving the system (see, for example, [2] for a complexity analysis of
Faugère’s F5 algorithm in the context of homogeneous polynomials). Thus, if one can avoid the
strategy of variable duplication one can potentially significantly reduce the exponent 5.26n(nk +
k + 1) in the arithmetic complexity result of proposition 12.

4.2 Reducing the system of DDEs to a single functional equation

4.2.1 Main strategy

In this subsection we elaborate on a strategy for solving systems of DDEs that avoids duplication of
variables: it reduces the initial system to a single functional equation by eliminating the bivariate
series F2, . . . , Fn from the system (E1(u) = 0, . . . ,En(u) = 0). In a favourable situation, this
reduction outputs a nonzero polynomial E ∈ K(t)[x1, u, z0, . . . , znk] such that

E(u) ≡ E(F1(t, u), u,F1(t, a), . . . , (∂k−1
u F1)(t, a), . . . , Fn(t, a), . . . , (∂k−1

u Fn)(t, a)) = 0.
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The following lemma ensures that this strategy works under the following assumption: the
saturated ideal ⟨E1, . . . ,En⟩ ∶ Det∞ ∩K(t)[x1, u, z0, . . . , znk−1], denoted by J , is principal9 – this
natural assumption is observable on all examples of systems of DDEs we encountered so far.

Lemma 14. Consider (5) and denote E1, . . . ,En ∈ K(t)[x1, . . . , xn, u, z0, . . . , znk−1] the polynomials
obtained after taking the numerators of (5). Assume that the ideal J is principal, generated by
some E ∈ K(t)[x1, u, z0, . . . , znk−1]. Then E ≠ 0 and E(u) = 0.

Proof. It results from the product of the diagonal elements in the matrix defining Det that Det ≠ 0
mod t. Also, the evaluation Det(u) ∈ K[[t]][[u]] is not equal to 0 (recall that Det(u) is the
specialization of Det to the series Fi(t, u) and (∂ℓ

uFi)(t, a)). It follows from the Jacobian criterion
that the ideal ⟨E1, . . . ,En⟩ ∶ Det∞ is radical and of dimension at most 0 over K(t, z0, . . . , znk−1).
Thus E ≠ 0. Moreover, as E1(u) = 0, . . . ,En(u) = 0 and Det(u) ≠ 0, it follows E(u) = 0.

Example 2 (cont.). We compute a Gröbner basis of ⟨E1,E2,m ⋅ Det−1⟩ ∩ K(t)[x1, u, z0, z1] and
observe that it is not reduced to {0}. Moreover, it is generated by a unique element

E ∶= −(x1 − 1)(u − 1) + tu(2ux21 − uz0 − 2x21 + u + x1 − 1) ∈ K(t)[x1, u, z0, z1].

For the remaining part of section 4.2 we assume, as in lemma 14, that the ideal J is principal.
Thus the polynomial E obtained after eliminating x2, . . . , xn satisfies E ≠ 0 and E(u) = 0.

A natural idea now is to use Bousquet-Mélou and Jehanne’s method [10, Section 2]. This
reduces our problem either to solving a polynomial system with now 3nk + 1 unknowns and
equations (where again the +1 comes from the saturation polynomial sat), or to applying the more
recent algorithm from [9, Section 5]. Note that this method is not guaranteed to work in general
because the functional equation given by E(u) = 0 may not be of a fixed point type for F1. As we
will see, in order to make these approaches work, one can require the following condition:

Hypothesis 2: ● ∂x1E(u) = 0 admits nk distinct solutions (in u) in K[[t
1
⋆ ]] ∖K, (H2)

● The polynomial system obtained after duplicating nk times

the variables x1, u in (E,∂x1E,∂uE) and adding sat = 0
induces an ideal of dimension 0 over K(t).

We emphasize that we are not aware of any system of DDEs inducing some E that is not of a
fixed-point type in F1: when the system is generic (that is, for generic choices of fi’s and Qi’s) we
could observe by generating lots of examples that this fixed-point nature is indeed satisfied.

This resolution strategy being different from the duplication of variables approach from sec-
tion 4.1, we investigate below how their outputs compare.

4.2.2 Theoretical comparison with the strategy from section 4.1

The following proposition ensures that the first part of (H1) implies the first part of (H2). Recall
that J ∶= ⟨E1, . . . ,En⟩ ∶ Det∞ ∩K(t)[x1, u, z0, . . . , znk−1].

9Recall that an ideal is called principal if it is generated by only one element.
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Proposition 15. Let U(t) ∈ K[[t
1
⋆ ]] be a solution of Det(u) = 0 such that none of the (n−1)×(n−1)

minors of (∂xjEi(U(t)))1≤i,j≤n is zero. Consider E ∈ J . Then U(t) is also a solution in u of the
equation ∂x1E(u) = 0.

Proof. Since E ∈ J , there exist polynomials V1, . . . , Vn ∈ K(t)[x1, . . . , xn, u, z0, . . . , znk−1] such
that E(U) = ∑n

i=1Ei(U)Vi(U). Differentiating with respect to xj for j = 1, . . . , n and using that
Ei(U) = 0 and that E does not depend on xj for j ≥ 2, we find

⎛
⎜⎜⎜
⎝

∂x1E(U)
0
⋮
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜
⎝

∂x1E1(U) . . . ∂x1En(U)
⋮ ⋱ ⋮

∂xnE1(U) . . . ∂xnEn(U)

⎞
⎟
⎠

⎛
⎜
⎝

V1(U)
⋮

Vn(U)

⎞
⎟
⎠
. (28)

By definition of U , the matrix (∂xjEi(U))i,j is singular and each of its (n − 1) × (n − 1) minors is
nonzero. It follows that we can express the first row of the matrix as a linear combination of the
other rows, then (28) implies that ∂x1E(U) = 0.

It remains to understand the second part of (H2). We reuse the notations from the proof
of proposition 15 by writing E = ∑n

i=1Ei ⋅ Vi for E a generator of J and for V1, . . . , Vn polynomials
in K(t)[x1, . . . , xn, u, z0, . . . , znk−1]. Also, we define the new geometric assumption (P):

Hypothesis (P) ∶ Every point β ∈ K(t)
nk+2

vanishing E is the projection onto (P)

the {x1, u, z0, . . . , znk−1}-coordinate space of a point α ∈ K(t)
nk+n+1

vanishing simultaneously E1, . . . ,En−1 and En.

Observe that the zero set of E in K(t)
nk+2

is, by the closure theorem [18, Theorem 3, Chap 3.2], the

Zariski closure in K(t)
nk+2

of the projection of the solution set in K(t)
nk+n+1

of ⟨E1, . . . ,En⟩ ∶ Det∞
onto the {x1, u, z0, . . . , znk−1}-coordinate space. Assumption (P) formulates that the boundary of
the projection belongs to the projection itself.

From now on we will denote by x (resp. z) the variables x1, . . . , xn (resp. z0, . . . , znk−1).

Remark 16. Once a Gröbner basis G of the ideal ⟨E1, . . . ,En⟩ ∶ Det∞ is computed for the block
order {x2, . . . , xn} ≻lex {x1, u, z}, the set of points β in (P) can be characterized by the extension
theorem [18, Theorem 3, Chap 3.1] as the solutions of explicit polynomial equations and inequations
built from G: namely β are those solutions of G ∩K(t)[x1, u, z] that do not vanish simultaneously
all the leading terms of G ∖ (G ∩K(t)[x1, u, z]) for the degrevlex monomial order {x2, . . . , xn} (the
variables t, x1, u, z shall be seen as parameters once G is computed). These leading coefficients are
thus polynomials of K(t)[x1, u, z].

We formulate the below statement, whose purpose is to interpret geometrically the link

between the algebraic sets V (E,∂x1E,∂uE) ⊂ K(t)
nk+2

and V (E1, . . . ,En,Det, P ) ⊂ K(t)
nk+n+1

.

Proposition 17. Assume that J is principal and radical. Let E ∈ K(t)[x1, u, z0, . . . , znk−1] be

its generator. Assume, moreover, that (P) holds and denote by πx1,u,z ∶ (x,u, z) ∈ K(t)
nk+n+1

↦
(x1, u, z) ∈ K(t)

nk+2
the canonical projection onto the (x1, u, z)-coordinate space. Then we have the

inclusion V (E,∂x1E,∂uE) ⊂ πx1,u,z(V (E1, . . . ,En,Det, P )).
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Proof. Writing E = ∑n
i=1Ei ⋅ Vi for some V1, . . . , Vn ∈ K(t)[x,u, z] and considering the deriva-

tives ∂xiE for i = 1, . . . , n, we find by the Leibniz rule

⎛
⎜⎜⎜
⎝

∂x1E
0
⋮
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜
⎝

∂x1E1 . . . ∂x1En

⋮ ⋱ ⋮
∂xnE1 . . . ∂xnEn

⎞
⎟
⎠

⎛
⎜
⎝

V1

⋮
Vn

⎞
⎟
⎠
+
⎛
⎜
⎝

∂x1V1 . . . ∂x1Vn

⋮ ⋱ ⋮
∂xnV1 . . . ∂xnVn

⎞
⎟
⎠

⎛
⎜
⎝

E1

⋮
En

⎞
⎟
⎠
. (29)

Now for any β ∈ V (E,∂x1E) and for all α ∈ π−1x1,u,z(β) ∩ V (E1, . . . ,En), we obtain that

⎛
⎜
⎝

0
⋮
0

⎞
⎟
⎠
=
⎛
⎜
⎝

∂x1E1(α) . . . ∂x1En(α)
⋮ ⋱ ⋮

∂xnE1(α) . . . ∂xnEn(α)

⎞
⎟
⎠

⎛
⎜
⎝

V1(α)
⋮

Vn(α)

⎞
⎟
⎠
.

Thus it suffices to prove that Vi(α) ≠ 0 (for some i ∈ {1, . . . , n}) in order to to see that Det(α) = 0.
As E generates the radical ideal J , we know that E is squarefree. Hence the algebraic set V (E) ∈
K(t)

nk+2
is smooth, hence the vector of partial derivatives of E w.r.t the variables x1, u, z0, . . . , znk−1

does not vanish identically at β. As E = ∑n
i=1Ei ⋅ Vi, this enforces one of the Vi to be nonzero

at α: else by writing all the partial derivatives of E with the Leibniz rule applied to the sum
expression E = ∑n

i=1Ei ⋅ Vi and using α ∈ V (E1, . . . ,En, V1, . . . , Vn) would imply that the vector of
partial derivatives of E with respect to x1, u, z0, . . . , znk−1 vanishes identically at β.

Now consider the vector of derivatives (∂uE,∂x2E, . . . , ∂xnE) and write it in the form (29).

This allows to reuse the above argument to show that P (α) = 0, for any α ∈ K(t)
nk+n+1

vanishing
simultaneously ∂uE,E1, . . . ,En. It follows that under assumption (P), we have the claimed
inclusion V (E,∂x1E,∂uE) ⊂ πx1,u,z(V (E1, . . . ,En,Det, P )).

Let us mention that under the technical assumptions introduced in proposition 15 and proposi-
tion 17: if Det(u) = 0 admits ℓ distinct solutions (in u) in K[[t

1
⋆ ]] then so does ∂x1E(u) = 0.

Moreover still under the assumptions of proposition 15 and proposition 17, if the ideal I∞dup
of section 4.1.1 has dimension 0 over K(t), then the aplication of [9, Section 5] to the functional
equation E(u) = 0 outputs a nonzero polynomial R ∈ K[t, z0] such that R(t, F1(t, a)) = 0.

We gather below assumptions that we will use after. Also for any multivariate polynomial p,
we denote by SqFreePart(p) the squarefree part of p.

Hypothesis 3: ● (H1) and (P) hold, (H3)

● The ideal J is radical and principal,

● For all U(t) ∈ K[[t
1
⋆ ]] solution of Det(u) = 0, the (n − 1) × (n − 1) minors

of (∂xjEi(U(t)))1≤i,j≤n are nonzero.

Proposition 18. Assume that (H3) holds. Denote R1 ∈ K[t, z0] a generator of I∞dup ∩ K[t, z0]
and R2 ∈ K[t, z0] the polynomial computed by the duplication approach10 applied to the functional
equation E(u) = 0. Then SqFreePart(R2) divides SqFreePart(R1).

Proof. The statement is a direct consequence of proposition 15 and proposition 17.

10This duplication approach should in practice be replaced by the more efficient algorithm from [9, Section 5].
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In this section, so far, we compared two different strategies based for the first one on a
duplication of variables argument, and for the second one on the reduction to a single equation.
We showed that up to considering squarefree parts, the output polynomial of the second strategy
divides, under technical assumptions, the output polynomial of the first strategy.

Even if we strongly believe that the introduced assumptions are reasonable for practical
considerations, we shall however underline that the literature contains some degenerate examples
that go against this believe. The following example illustrates this degeneracy and thus strengthen
the relevancy of the strategy from section 4.1, even if the arithmetic complexity in proposition 12
can seem despairing.

Example 2 (cont.). In this case proposition 15 cannot be applied, since

Det = det(4tu
2x1 − 4tux1 + tu − u + 1 0

⋆ 2tu2x1 − 2tux1 + tu − u + 1
) ,

so any of the two distinct solutions U1, U2 ∈ K[[t
1
⋆ ]] to the equation Det(u) = 0 annihilates at

least two coefficients of the matrix (∂xjEi)1≤i,j≤2. Moreover, it is straightforward to see that for the
polynomial E = −(x1 − 1)(u− 1)+ tu(2ux21 − uz0 − 2x21 + u+ x1 − 1) ∈ K(t)[x1, u, z0, z1] the equation
∂x1E(u) = 0 has only one solution (in u) in the ring K[[t

1
⋆ ]] while E(u) = 0 involves two univariate

series F1(t,1) and F2(t,1). Thus, on this example, the strategy described in the current section fails.

5 Conclusion and future works

We proved in theorem 3 that solutions of systems of discrete differential equations are algebraic
functions. The proof uses the observation that, up to a symbolic deformation pushing all degeneracy
of a given system of the form (5) to some higher powers of t, all the computations become explicit.
In addition, we obtained in theorem 4 quantitative estimates for the size of an annihilating
polynomial for any solution Fi, together with arithmetic complexity estimates.

We also refined the complexity estimate in proposition 12 and also obtained an algebraicity
bound for all the Fi(t, a). Moreover, we started an algorithmic analysis of the problem of solving
systems of DDEs. In this first work we compared two natural strategies for solving systems of DDEs.
We identified rigorous assumptions ensuring their applicability illustrating them on the Example 2,
where the reduction to a single equation fails, while the duplication approach works. Under these
assumptions, the outputs of these two strategies are linked via proposition 18.

Our paper contains several research directions which we plan to investigate in the future:

Algorithmic part This article set the foundations of an algorithmic work that must be conducted
in order to understand better the many subtle and degenerate situations that one can encounter
with systems of DDEs from the literature. For instance, the following points should be addressed:

• Validity of the assumptions: It seems clear that up to deforming symbolically as in (7),
assumption (H1) can be assumed to hold. Still, we do not know at this stage if (P) holds
once (5) is deformed as in (7). Also, we would like to have results saying that the all
introduced assumptions hold for generic choices of system of DDEs.

• New algorithms for solving systems of DDEs: In [9, Section 5] an algorithm was designed
that computes in case of scalar DDEs the same output as the algorithm described in section 4.1
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and that avoids the duplication of variables. This strategy can be naturally extended to the
context of systems of DDEs. Once this is done, a first task would be to compare this new
strategy with the ones described in section 4.2. Also, the case of systems of linear DDEs
contains many applications in which it is possible to use the linearity in order to speed up
the computations. All this should be clarified and studied in depth.

Theoretical part: In the case of more than one catalytic variables, the algebraicity of the solu-
tions remains guaranteed by Popescu’s theorem [23] under the additional assumption that the
variables are “nested”. It would be interesting to reprove this result with elementary tools in the
case of fixed-point equations and to introduce new algorithms for solving these equations.
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[11] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber. “Planar diagrams”. In: Comm. Math. Phys. 59.1
(1978), pp. 35–51. URL: http://projecteuclid.org/euclid.cmp/1103901558.

[12] W. G. Brown and W. T. Tutte. “On the Enumeration of Rooted Non-Separable Planar Maps”. In:
Canadian J. of Mathematics 16 (1964), pp. 572–577. DOI: 10.4153/CJM-1964-058-7.

[13] William G. Brown. “Enumeration of quadrangular dissections of the disk”. In: Canadian J. Math. 17
(1965), pp. 302–317. ISSN: 0008-414X. DOI: 10.4153/CJM-1965-030-1.

[14] William G. Brown. “On the existence of square roots in certain rings of power series”. In: Math. Ann.
158 (1965), pp. 82–89. ISSN: 0025-5831. DOI: 10.1007/BF01370732.

[15] Manfred Buchacher and Manuel Kauers. “Inhomogeneous restricted lattice walks”. In: Sém. Lothar.
Combin. 82B (2020), Art. 75, 12.

29

https://doi.org/10.1007/s00453-019-00623-3
https://doi.org/10.1007/s00453-019-00623-3
https://doi.org/10.1007/s00453-019-00623-3
https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.37236/7375
https://doi.org/10.37236/7375
https://doi.org/10.1016/j.jctb.2011.02.003
https://doi.org/10.1016/j.jctb.2011.02.003
https://doi.org/10.1016/j.jctb.2011.02.003
https://doi.org/10.1145/3452143.3465545
https://doi.org/10.1016/j.ejc.2017.04.009
https://doi.org/10.1145/3597066.3597103
https://doi.org/10.1145/3597066.3597103
https://doi.org/10.1145/3597066.3597103
http://projecteuclid.org/euclid.cmp/1103901558
https://doi.org/10.4153/CJM-1964-058-7
https://doi.org/10.4153/CJM-1965-030-1
https://doi.org/10.1007/BF01370732


[16] Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer. “Optimal succinct representations of
planar maps”. In: Computational geometry (SCG’06). ACM, New York, 2006, pp. 309–318. DOI:
10.1145/1137856.1137902. URL: https://doi.org/10.1145/1137856.1137902.

[17] David A. Cox. “Stickelberger and the eigenvalue theorem”. In: Commutative algebra. Springer, Cham,
[2021] ©2021, pp. 283–298. ISBN: 978-3-030-89693-5; 978-3-030-89694-2. DOI: 10.1007/978-3-
030-89694-28. URL: https://doi.org/10.1007/978-3-030-89694-2_8.

[18] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Fourth. Undergraduate
Texts in Mathematics. An introduction to computational algebraic geometry and commutative
algebra. Springer, Cham, 2015, pp. xvi+646. DOI: 10.1007/978-3-319-16721-3. URL: https:
//doi.org/10.1007/978-3-319-16721-3.

[19] David Eisenbud. Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward
algebraic geometry. Springer-Verlag, New York, 1995, pp. xvi+785. ISBN: 0-387-94268-8; 0-387-
94269-6.

[20] Joos Heintz. “Definability and fast quantifier elimination in algebraically closed fields”. In: Theoret.
Comput. Sci. 24.3 (1983), pp. 239–277. DOI: 10.1016/0304- 3975(83)90002- 6. URL: https:

//doi.org/10.1016/0304-3975(83)90002-6.

[21] Hadrien Notarantonio. DDE-Solver: A Maple package for Discrete Differential Equations. Preprint.

[22] Hadrien Notarantonio and Sergey Yurkevich. Effective algebraicity for solutions of systems of functional
equations with one catalytic variable. In FPSAC’23, to appear (2023).
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