Solving combinatorial equations via computer algebra

Journées de combinatoire de Bordeaux, 6 February 2024

Hadrien Notarantonio (Inria Saclay - Sorbonne Université)

Based on joint works with:

What kind of objects are we considering?

What kind of objects are we considering?

rooted planar maps

What kind of objects are we considering?

rooted planar maps

3-constellations

What kind of objects are we considering?

walks in \mathbb{N}

rooted planar maps

3-constellations

\mathcal{A} set of discrete objects, $\mathrm{s}: \mathcal{A} \rightarrow \mathbb{N}$ size function s.t.

$$
\#\{a \in \mathcal{A} \mid s(a)=n\}<+\infty, \text { for all } n \in \mathbb{N}
$$

Define the generating function

$$
F(t):=\sum_{a \in \mathcal{A}} t^{s(a)} \quad \in \mathbb{Q}[[t]]
$$

Toy example: algebraic equation for binary trees

Toy example: algebraic equation for binary trees

$F_{B T} \in \mathbb{Q}[[t]]$ generating function of binary trees, counted by the number of internal nodes

$$
F_{B T}(t)=1+t \cdot F_{B T}(t)^{2} .
$$

Toy example: algebraic equation for binary trees

$F_{B T} \in \mathbb{Q}[[t]]$ generating function of binary trees, counted by the number of internal nodes

$$
F_{B T}(t)=1+t \cdot F_{B T}(t)^{2} .
$$

Toy example: algebraic equation for binary trees

$F_{B T} \in \mathbb{Q}[[t]]$ generating function of binary trees, counted by the number of internal nodes

$$
F_{B T}(t)=1+t \cdot F_{B T}(t)^{2} .
$$

$$
F_{B T}(t)=\frac{1-\sqrt{1-4 t}}{2 t}=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n} t^{n}
$$

What about more sophisticated enumerations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

fixed-point in $F \rightsquigarrow$ unique solution in $\mathbb{Q}[u][[t]]$

What about more sophisticated enumerations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

fixed-point in $F \rightsquigarrow$ unique solution in $\mathbb{Q}[u][[t]]$

$$
\begin{aligned}
F(t, u)=1+t u\left(F(t, u)^{3}\right. & +(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1} \\
& \left.+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)
\end{aligned}
$$

What about more sophisticated enumerations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

fixed-point in $F \rightsquigarrow$ unique solution in $\mathbb{Q}[u][[t]]$

$$
\begin{aligned}
F(t, u)=1+t u\left(F(t, u)^{3}\right. & +(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1} \\
& \left.+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)
\end{aligned}
$$

hard particles on planar maps

$$
\left\{\begin{array}{l}
F(t, u)=x-y+G(t, u)+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right) \\
G(t, u)=y+t s u\left(F(t, u) G(t, u)+\frac{G(t, u)-G(t, 1)}{u-1}\right)
\end{array}\right.
$$

How to relate these combinatorial objects to such equations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

How to relate these combinatorial objects to such equations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

$a_{n}:=\#$ pplanar maps with n edges $\}$
\downarrow refinement
$a_{n, d}:=\#\{$ planar maps with n edges,
d of them on the external face\}

$$
\begin{array}{cc}
\sum_{n=0}^{\infty} a_{n} t^{n} & \text { generating function } \\
F(t, u):=\sum_{n=0}^{\infty} \sum_{d=0}^{2 n} a_{n, d} U^{d} t^{n} \quad \text { refinement }
\end{array}
$$

How to relate these combinatorial objects to such equations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

$a_{n}:=\#\{$ planar maps with n edges $\}$
\downarrow refinement
$a_{n, d}:=\#\{$ planar maps with n edges, d of them on the external face $\}$

$$
\sum_{n=0}^{\infty} a_{n} t^{n}
$$

generating function \downarrow refinement

$$
F(t, u):=\sum_{n=0}^{\infty} \sum_{d=0}^{2 n} a_{n, d} u^{d} t^{n} \quad \text { complete generating function }
$$

$$
t u \frac{u F(t, u)-F(t, 1)}{u-1}
$$

How to relate these combinatorial objects to such equations?

rooted planar maps

$$
F(t, u)=1+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right)
$$

$a_{n}:=\#$ \{planar maps with n edges $\}$
\downarrow refinement
$a_{n, d}:=\#\{$ planar maps with n edges, d of them on the external face $\}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} t^{n} \\
& \downarrow \text { refinement } \\
& F(t, u):=\sum_{n=0}^{\infty} \sum_{d=0}^{2 n} a_{n, d} u^{d} t^{n} \quad \text { generating function }
\end{aligned}
$$

$$
F(t, 1)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

$$
t u \frac{u F(t, u)-F(t, 1)}{u-1}
$$

Solving functional equations

Solving functional equations

In this talk

Solving $=$ Classifying the initial series $F(t, 1)$ + Computing a witness of this classification (e.g. $R \in \mathbb{Q}[z, t]$ s.t. $R(F(t, 1), t)=0$)

Solving functional equations

In this talk

Solving $=$ Classifying the initial series $F(t, 1)$

+ Computing a witness of this classification (e.g. $R \in \mathbb{Q}[z, t]$ s.t. $R(F(t, 1), t)=0$)

Going back to our planar maps...

$$
\begin{aligned}
& F(t, 1)=1+2 t+9 t^{2}+54 t^{3}+378 t^{4}+\cdots \quad \in \mathbb{Q}[[t]] \\
& \text { annihilated by } R=27 t^{2} z^{2}+(1-18 t) z+16 t-1 \in \mathbb{Q}[z, t]
\end{aligned}
$$

Solving functional equations

In this talk

Solving $=$ Classifying the initial series $F(t, 1)$

+ Computing a witness of this classification (e.g. $R \in \mathbb{Q}[z, t]$ s.t. $R(F(t, 1), t)=0$)

Going back to our planar maps...

$F(t, 1)=1+2 t+9 t^{2}+54 t^{3}+378 t^{4}+\cdots \quad \in \mathbb{Q}[[t]]$ annihilated by $R=27 t^{2} z^{2}+(1-18 t) z+16 t-1 \in \mathbb{Q}[z, t]$

From R:

- (Recurrence) $a_{0}=1$ and $(n+3) a_{n+1}-6(2 n+1) a_{n}=0$,
- (Closed-form) $a_{n}=2 \frac{3^{n}(2 n)!}{n(n+2)!}$,
- (Asymptotics) $a_{n} \sim 2 \frac{12^{n}}{\sqrt{\pi n^{5}}}$, when $n \rightarrow+\infty$.

Content of the talk

Objectives

- Introduce so-called Discrete Differential Equations (DDEs),
- Determine the nature of the solutions of DDEs,
- Decidability result: algorithms for computing a witness,
- Complexity analysis: quantitative estimates.

Content of the talk

Objectives

- Introduce so-called Discrete Differential Equations (DDEs),
- Determine the nature of the solutions of DDEs,
- Decidability result: algorithms for computing a witness,
- Complexity analysis: quantitative estimates.

Plan

I Perform the above points for DDEs
[Bousquet-Mélou, Jehanne '06; Bostan, Chyzak, N., Safey El Din '22;
Bostan, N., Safey El Din '23]
II Perform the above points for systems of DDEs
[N., Yurkevich '23]

Objects of interest: Discrete Differential Equations

Definition

Given $f \in \mathbb{Q}[u], k \geq 1$, and $Q \in \mathbb{Q}\left[y_{0}, \ldots, y_{k}, t, u\right]$,

$$
\begin{equation*}
F=f+t \cdot Q\left(F, \Delta F, \ldots, \Delta^{k} F, t, u\right) \tag{DDE}
\end{equation*}
$$

is a Discrete Differential Equation, where $\Delta: F \in \mathbb{Q}[u][[t]] \mapsto \frac{F(t, u)-F(t, 1)}{u-1} \in \mathbb{Q}[u][[t]]$, and where for $\ell \geq 1$ we define $\Delta^{\ell+1}=\Delta^{\ell} \circ \Delta$.

Objects of interest: Discrete Differential Equations

Definition

Given $f \in \mathbb{Q}[u], k \geq 1$, and $Q \in \mathbb{Q}\left[y_{0}, \ldots, y_{k}, t, u\right]$,

$$
\begin{equation*}
F=f+t \cdot Q\left(F, \Delta F, \ldots, \Delta^{k} F, t, u\right) \tag{DDE}
\end{equation*}
$$

is a Discrete Differential Equation, where $\Delta: F \in \mathbb{Q}[u][[t]] \mapsto \frac{F(t, u)-F(t, 1)}{u-1} \in \mathbb{Q}[u][[t]]$, and where for $\ell \geq 1$ we define $\Delta^{\ell+1}=\Delta^{\ell} \circ \Delta$.

Going back to our 3-constellations...

$$
\begin{aligned}
F(t, u)=1+t u\left(F(t, u)^{3}\right. & +(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1} \\
& \left.+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)
\end{aligned}
$$

Objects of interest: Discrete Differential Equations

Definition

Given $f \in \mathbb{Q}[u], k \geq 1$, and $Q \in \mathbb{Q}\left[y_{0}, \ldots, y_{k}, t, u\right]$,

$$
\begin{equation*}
F=f+t \cdot Q\left(F, \Delta F, \ldots, \Delta^{k} F, t, u\right) \tag{DDE}
\end{equation*}
$$

is a Discrete Differential Equation, where $\Delta: F \in \mathbb{Q}[u][[t]] \mapsto \frac{F(t, u)-F(t, 1)}{u-1} \in \mathbb{Q}[u][[t]]$, and where for $\ell \geq 1$ we define $\Delta^{\ell+1}=\Delta^{\ell} \circ \Delta$.

Going back to our 3-constellations...

$$
\begin{aligned}
F(t, u)=1+t u\left(F(t, u)^{3}\right. & +(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1} \\
& \left.+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)
\end{aligned}
$$

Theorem

[Bousquet-Mélou, Jehanne '06]
The unique solution in $\mathbb{Q}[u][[t]]$ of (DDE) is algebraic over $\mathbb{Q}(t, u)$.
\leadsto Constructive proof \Longrightarrow algorithm

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Consider

$$
\partial_{u} F(t, u) \cdot \partial_{x} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)+\partial_{u} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0
$$

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Consider

$$
\partial_{u} F(t, u) \cdot \partial_{x} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)+\partial_{u} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0
$$

- Show that there exist distinct $U_{1}, U_{2} \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right]$ s.t. $\partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0$,

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Consider

$$
\partial_{u} F(t, u) \cdot \partial_{x} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)+\partial_{u} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0
$$

- Show that there exist distinct $U_{1}, U_{2} \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right]$ s.t. $\partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Gather the 7 equations in 7 unknowns and 1 parameter

For $1 \leq i \leq 2,\left\{\begin{array}{r}P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{u} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ m \cdot\left(U_{1}-U_{2}\right)-1=0 .\end{array}\right.$

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Consider

$$
\partial_{u} F(t, u) \cdot \partial_{x} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)+\partial_{u} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0
$$

- Show that there exist distinct $U_{1}, U_{2} \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right]$ s.t. $\partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Gather the 7 equations in 7 unknowns and 1 parameter

For $1 \leq i \leq 2,\left\{\begin{array}{r}P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{u} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ m \cdot\left(U_{1}-U_{2}\right)-1=0 .\end{array}\right.$

Elimination theory

- Eliminate all series but $F(t, 1)$

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Consider

$$
\partial_{u} F(t, u) \cdot \partial_{x} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)+\partial_{u} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0
$$

- Show that there exist distinct $U_{1}, U_{2} \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right]$ s.t. $\partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Gather the 7 equations in 7 unknowns and 1 parameter

For $1 \leq i \leq 2,\left\{\begin{array}{r}P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{u} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ m \cdot\left(U_{1}-U_{2}\right)-1=0 .\end{array}\right.$

Elimination theory

- Eliminate all series but $F(t, 1)$
\rightarrow Resultants

Input: $F(t, u)=1+t u\left(F(t, u)^{3}+(2 F(t, u)+F(t, 1)) \frac{F(t, u)-F(t, 1)}{u-1}+\frac{F(t, u)-F(t, 1)-(u-1) \partial_{u} F(t, 1)}{(u-1)^{2}}\right)$,
Output: $81 t^{2} F(t, 1)^{3}-9 t(9 t-2) F(t, 1)^{2}+\left(27 t^{2}-66 t+1\right) F(t, 1)-3 t^{2}+47 t-1=0$.

- Compute $P \in \mathbb{Q}(t)\left[x, u, z_{0}, z_{1}\right]$ such that $P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Consider

$$
\partial_{u} F(t, u) \cdot \partial_{x} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)+\partial_{u} P\left(F(t, u), u, F(t, 1), \partial_{u} F(t, 1)\right)=0
$$

- Show that there exist distinct $U_{1}, U_{2} \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right]$ s.t. $\partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0$,
- Gather the 7 equations in 7 unknowns and 1 parameter

For $1 \leq i \leq 2,\left\{\begin{array}{r}P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{x} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ \partial_{u} P\left(F\left(t, U_{i}\right), U_{i}, F(t, 1), \partial_{u} F(t, 1)\right)=0, \\ m \cdot\left(U_{1}-U_{2}\right)-1=0 .\end{array}\right.$

Elimination theory

- Eliminate all series but $F(t, 1)$
\rightarrow Resultants
\rightarrow Gröbner bases

Quantitative estimates

$$
\mathcal{S}: \quad \text { For } 1 \leq i \leq 2,\left\{\begin{array}{r}
P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0, \\
\partial_{x} P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0, \\
\partial_{u} P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0,
\end{array} \quad U_{1}-U_{2} \neq 0 .\right.
$$

Quantitative estimates

$$
\mathcal{S}: \quad \text { For } 1 \leq i \leq 2,\left\{\begin{array}{r}
P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0, \\
\partial_{\times} P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0, \\
\partial_{u} P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0,
\end{array} \quad U_{1}-U_{2} \neq 0 .\right.
$$

Assumptions

- U_{1}, U_{2} are distinct series,
- \mathcal{S} has finitely many solutions in $\overline{\mathbb{Q}}(t)^{6}$,

$$
\mathcal{S}: \quad \text { For } 1 \leq i \leq 2,\left\{\begin{array}{r}
P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0, \\
\partial_{\times} P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0, \\
\partial_{u} P\left(F\left(t, U_{i}\right), F(t, 1), \partial_{u} F(t, 1), t, U_{i}\right)=0,
\end{array} \quad U_{1}-U_{2} \neq 0 .\right.
$$

Assumptions

- U_{1}, U_{2} are distinct series,
- \mathcal{S} has finitely many solutions in $\overline{\mathbb{Q}}(t)^{6}$,
[Bostan, N., Safey El Din '23]
Under the above assumptions:

$$
\delta:=\operatorname{deg}(P)
$$

- There exists some nonzero polynomial $R \in \mathbb{Q}\left[z_{0}, t\right]$ whose partial degrees are upper bounded by $D:=\delta^{2}(\delta-1)^{4}$, such that $R(F(t, 1), t)=0$.
- There exists an algorithm computing this R in $O_{\log }\left(D^{3}\right)$ ops. in \mathbb{Q}.

NEW!

4 ddesolver Public

NEW!

© ddesolver Public

- Maple package dedicated to solving discrete differential equations,

NEW!

9 ddesolver Public

- Maple package dedicated to solving discrete differential equations,
- Available in a Git repository,

NEW!

9 ddesolver Public

- Maple package dedicated to solving discrete differential equations,
- Available in a Git repository,
- Relies on evaluation-interpolation and fast multi-modular arithmetic,

NEW!

9 ddesolver Public

- Maple package dedicated to solving discrete differential equations,
- Available in a Git repository,
- Relies on evaluation-interpolation and fast multi-modular arithmetic,
- Can be coupled with libraries for efficient Gröbner bases computations (e.g. msolve).
https://github.com/HNotarantonio/ddesolver

Systems of Discrete Differential Equations

What about systems?

Systems of Discrete Differential Equations

What about systems?

Modelling special Eulerian planar orientations:

$$
\left\{\begin{array}{l}
F(t, u)=1+t \cdot\left(u+2 u F(t, u)^{2}+2 u G(t, 1)+u \frac{F(t, u)-u F(t, 1)}{u-1}\right) \\
G(t, u)=t \cdot\left(2 u F(t, u) G(t, u)+u F(t, u)+u G(t, 1)+u \frac{G(t, u)-u G(t, 1)}{u-1}\right)
\end{array}\right.
$$

[Bonichon, Bousquet-Mélou, Dorbec, Pennarun '17]

Systems of Discrete Differential Equations

What about systems?

Modelling special Eulerian planar orientations:

$$
\left\{\begin{array}{l}
F(t, u)=1+t \cdot\left(u+2 u F(t, u)^{2}+2 u G(t, 1)+u \frac{F(t, u)-u F(t, 1)}{u-1}\right) \\
G(t, u)=t \cdot\left(2 u F(t, u) G(t, u)+u F(t, u)+u G(t, 1)+u \frac{G(t, u)-u G(t, 1)}{u-1}\right)
\end{array}\right.
$$

[Bonichon, Bousquet-Mélou, Dorbec, Pennarun '17]

Modelling hard particles on planar maps:

$$
\left\{\begin{array}{l}
F(t, u)=x-y+G(t, u)+t u\left(u F(t, u)^{2}+\frac{u F(t, u)-F(t, 1)}{u-1}\right) \\
G(t, u)=y+t s u\left(F(t, u) G(t, u)+\frac{G(t, u)-G(t, 1)}{u-1}\right)
\end{array}\right.
$$

Previous works: case of systems of equations

- Nature of $\mathbf{F}(\mathbf{t}, \mathbf{1})$: $[$ Popescu ' 86$] \Longrightarrow \mathbf{F}(\mathbf{t}, \mathbf{1})$ is algebraic over $\mathbb{K}(t)$

BUT: the proof seems non constructive...

- Algorithm for computing $R \in \mathbb{K}[t, z]$ s.t. $R(t, \mathbf{F}(\mathbf{t}, \mathbf{1}))=0$: $[\varnothing]$

Previous works: case of systems of equations

- Nature of $\mathbf{F}(\mathbf{t}, \mathbf{1})$: [Popescu '86] $\Longrightarrow \mathbf{F}(\mathbf{t}, \mathbf{1})$ is algebraic over $\mathbb{K}(t)$

BUT: the proof seems non constructive...

- Algorithm for computing $R \in \mathbb{K}[t, z]$ s.t. $R(t, \mathbf{F}(\mathbf{t}, \mathbf{1}))=0$: $[\varnothing]$

What about systems of linear DDEs?

- Effective proof: [Buchacher, Kauers '20] \rightarrow Talk at FPSAC '19!

Previous works: case of systems of equations

- Nature of $\mathbf{F}(\mathbf{t}, \mathbf{1})$: $[$ Popescu ' 86$] \Longrightarrow \mathbf{F}(\mathbf{t}, \mathbf{1})$ is algebraic over $\mathbb{K}(t)$

BUT: the proof seems non constructive...

- Algorithm for computing $R \in \mathbb{K}[t, z]$ s.t. $R(t, \mathbf{F}(\mathbf{t}, \mathbf{1}))=0$: $[\varnothing]$

What about systems of linear DDEs?

- Effective proof: [Buchacher, Kauers '20] \rightarrow Talk at FPSAC '19!
- Still, there are papers dealing with systems of DDEs!

Asinowski, Bacher, Banderier, Beaton, Bonichon, Bousquet-Mélou, Bouvel, Buchacher, Dorbec, Gittenberger, Guerrini, Jehanne, Kauers, Pennarun, Rinaldi, ...
\rightarrow There should be things to say for any system of DDEs

[Popescu '86, Swan '98]

(1.4) Theorem. Let k be a field, $k\langle X\rangle$ the algebraic power series ring in $X=\left(X_{1}, \cdots, X_{r}\right)$ over k, f a finite system of polynomial equations over $k\langle X\rangle$ and $\hat{y}=\left(\hat{y}_{1}, \cdots, \hat{y}_{n}\right) \in k \llbracket X \rrbracket^{n}$ a formal solution of f such that $\hat{y}_{i} \in k \llbracket X_{1}$, $\left.\cdots, X_{s_{i}}\right], 1 \leqslant i \leqslant n$ for some positive integers $s_{i} \leqslant r$. Then there exists a solution $y=\left(y_{1}, \cdots, y_{n}\right)$ of f in $k\langle X\rangle$ such that $y_{i} \in k\left\langle X_{1}, \cdots, X_{s_{i}}\right\rangle, 1 \leqslant i \leqslant n$.

[Popescu '86, Swan '98]

(1.4) Theorem. Let k be a field, $k\langle X\rangle$ the algebraic power series ring in $X=\left(X_{1}, \cdots, X_{r}\right)$ over k, f a finite system of polynomial equations over $k\langle X\rangle$ and $\hat{y}=\left(\hat{y}_{1}, \cdots, \hat{y}_{n}\right) \in k \llbracket X \rrbracket^{n}$ a formal solution of f such that $\hat{y}_{i} \in k \llbracket X_{1}$, $\left.\cdots, X_{s_{i}}\right], 1 \leqslant i \leqslant n$ for some positive integers $s_{i} \leqslant r$. Then there exists a solution $y=\left(y_{1}, \cdots, y_{n}\right)$ of f in $k\langle X\rangle$ such that $y_{i} \in k\left\langle X_{1}, \cdots, X_{s_{i}}\right\rangle, 1 \leqslant i \leqslant n$.

- Solutions of systems of DDEs are unique with components in $\mathbb{Q}[\boldsymbol{u}][[\boldsymbol{t}]] \Longrightarrow$ they are algebraic!

[Popescu '86, Swan '98]

(1.4) Theorem. Let k be a field, $k\langle X\rangle$ the algebraic power series ring in $X=\left(X_{1}, \cdots, X_{r}\right)$ over k, f a finite system of polynomial equations over $k\langle X\rangle$ and $\hat{y}=\left(\hat{y}_{1}, \cdots, \hat{y}_{n}\right) \in k \llbracket X \rrbracket^{n}$ a formal solution of f such that $\hat{y}_{i} \in k \llbracket X_{1}$, $\left.\cdots, X_{s_{i}}\right], 1 \leqslant i \leqslant n$ for some positive integers $s_{i} \leqslant r$. Then there exists a solution $y=\left(y_{1}, \cdots, y_{n}\right)$ of f in $k\langle X\rangle$ such that $y_{i} \in k\left\langle X_{1}, \cdots, X_{s_{i}}\right\rangle, 1 \leqslant i \leqslant n$.

- Solutions of systems of DDEs are unique with components in $\mathbb{Q}[\boldsymbol{u}][[\boldsymbol{t}]] \Longrightarrow$ they are algebraic!
[planar maps]

$$
H(t, u)=1+t\left(u^{2} H(t, u)^{2}+u \frac{u H(t, u)-G(t, u)}{u-1}\right)
$$

- There exists a (unique!) solution $(H, G)=(F, F(t, 1))$, where $F \in \mathbb{Q}[u][[t]]$,
- The involved series are $F(t, 1)$ and $F(t, u)$, and $\{t\} \subset\{t, u\}$.

[Popescu '86, Swan '98]

(1.4) Theorem. Let k be a field, $k\langle X\rangle$ the algebraic power series ring in $X=\left(X_{1}, \cdots, X_{r}\right)$ over k, f a finite system of polynomial equations over $k\langle X\rangle$ and $\hat{y}=\left(\hat{y}_{1}, \cdots, \hat{y}_{n}\right) \in k \llbracket X \rrbracket^{n}$ a formal solution of f such that $\hat{y}_{i} \in k \llbracket X_{1}$, $\left.\cdots, X_{s_{i}}\right], 1 \leqslant i \leqslant n$ for some positive integers $s_{i} \leqslant r$. Then there exists a solution $y=\left(y_{1}, \cdots, y_{n}\right)$ of f in $k\langle X\rangle$ such that $y_{i} \in k\left\langle X_{1}, \cdots, X_{s_{i}}\right\rangle, 1 \leqslant i \leqslant n$.

- Solutions of systems of DDEs are unique with components in $\mathbb{Q}[u][[t]] \Longrightarrow$ they are algebraic!
[planar maps]

$$
H(t, u)=1+t\left(u^{2} H(t, u)^{2}+u \frac{u H(t, u)-G(t, u)}{u-1}\right)
$$

The proof seems non constructive... How to compute witnesses?

- There exists a (unique!) solution $(H, G)=(F, F(t, 1))$, where $F \in \mathbb{Q}[u][[t]]$,
- The involved series are $F(t, 1)$ and $F(t, u)$, and $\{t\} \subset\{t, u\}$.

Constructive algebraicity theorem for solutions of systems of DDEs (FPSAC'23)

[N., Yurkevich '23]
Let $n, k \geq 1$ be integers and $f_{1}, \ldots, f_{n} \in \mathbb{Q}[u], Q_{1}, \ldots, Q_{n} \in \mathbb{Q}\left[y_{1}, \ldots, y_{n(k+1)}, t, u\right]$ be polynomials. Denote $\nabla^{k} F:=F, \Delta F, \ldots, \Delta^{k} F$. Then the system of DDEs

$$
\left\{\begin{array}{cc}
\left(\mathbf{E}_{\mathrm{F}_{1}}\right): & F_{1}=f_{1}(u)+t \cdot Q_{1}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right), \\
\vdots & \vdots \\
\left(\mathbf{E}_{\mathrm{F}_{\mathrm{n}}}\right): & F_{n}=f_{n}(u)+t \cdot Q_{n}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right) .
\end{array}\right.
$$

(SDDEs)
admits a unique vector of solutions $\left(F_{1}, \ldots, F_{n}\right) \in \mathbb{Q}[u][[t]]^{n}$, and all its components are algebraic over $\mathbb{Q}(t, u)$.

Constructive algebraicity theorem for solutions of systems of DDEs (FPSAC

[N., Yurkevich '23]

Let $n, k \geq 1$ be integers and $f_{1}, \ldots, f_{n} \in \mathbb{Q}[u], Q_{1}, \ldots, Q_{n} \in \mathbb{Q}\left[y_{1}, \ldots, y_{n(k+1)}, t, u\right]$ be polynomials. Denote $\nabla^{k} F:=F, \Delta F, \ldots, \Delta^{k} F$. Then the system of DDEs

$$
\left\{\begin{array}{cc}
\left(\mathrm{E}_{\mathrm{F}_{1}}\right): & F_{1}=f_{1}(u)+t \cdot Q_{1}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right), \\
\vdots & \vdots \\
\left(\mathrm{E}_{\mathrm{F}_{\mathrm{n}}}\right): & F_{n}=f_{n}(u)+t \cdot Q_{n}\left(\nabla^{\star} F_{1}, \ldots, \nabla^{\star} F_{n}, t, u\right) .
\end{array}\right.
$$

admits a unique vector of solutions $\left(F_{1}, \ldots, F_{n}\right) \in \mathbb{Q}[u][[t]]^{n}$, and all its components are algebraic over $\mathbb{Q}(t, u)$.

[Proof sketch]

- There exists a polynomial system \mathcal{S} defined over $\mathbb{Q}(t)$ in $\boldsymbol{n k}(\boldsymbol{n}+2)$ equations and unknowns, that admits a solution \mathcal{P} with $F_{1}(t, 1)$ as one of its coordinates,
- The Jacobian of \mathcal{S} is invertible at $\mathcal{P} \Longrightarrow F_{1}(t, 1)$ is algebraic over $\mathbb{Q}(t)$.

Identifying more polynomial equations

Consider

$\rightsquigarrow F_{1}, F_{2} \equiv F_{1}(t, u), F_{2}(t, u) \in \mathbb{Q}[u][[t]]$

$$
\left\{\begin{array}{l}
0=\left(1-F_{1}\right) \cdot(\mathbf{u}-1)+t \mathbf{u} \cdot\left(2 \mathrm{u} F_{1}^{2}-\mathbf{u} F_{1}(t, 1)+2 \mathbf{u} F_{2}(t, 1)-2 F_{1}^{2}+\mathbf{u}+F_{1}-2 F_{2}(t, 1)-1\right), \\
0=F_{2} \cdot(1-\mathbf{u})+t \mathbf{u} \cdot\left(2 \mathbf{u} F_{1} F_{2}+\mathbf{u} F_{1}-2 F_{1} F_{2}-F_{1}+F_{2}-F_{2}(t, 1)\right) .
\end{array}\right.
$$

Denote by $E_{1}, E_{2} \in \mathbb{Q}(t)\left[x_{1}, x_{2}, z_{0}, z_{1}, \mathbf{u}\right]$ polynomials such that

$$
\text { for } i \in\{1,2\}, \quad E_{i}\left(F_{1}(t, \mathbf{u}), F_{2}(t, \mathbf{u}), F_{1}(t, 1), F_{2}(t, 1), \mathbf{u}\right)=0 . \quad\left(\equiv E_{i}(\mathbf{u})\right)
$$

Identifying more polynomial equations

Consider

$\rightsquigarrow F_{1}, F_{2} \equiv F_{1}(t, u), F_{2}(t, u) \in \mathbb{Q}[u][[t]]$

$$
\left\{\begin{array}{l}
0=\left(1-F_{1}\right) \cdot(\mathbf{u}-1)+t \mathbf{u} \cdot\left(2 \mathbf{u} F_{1}^{2}-\mathbf{u} F_{1}(t, 1)+2 \mathbf{u} F_{2}(t, 1)-2 F_{1}^{2}+\mathbf{u}+F_{1}-2 F_{2}(t, 1)-1\right), \\
0=F_{2} \cdot(1-\mathbf{u})+t \mathbf{u} \cdot\left(2 \mathbf{u} F_{1} F_{2}+\mathbf{u} F_{1}-2 F_{1} F_{2}-F_{1}+F_{2}-F_{2}(t, 1)\right) .
\end{array}\right.
$$

Denote by $E_{1}, E_{2} \in \mathbb{Q}(t)\left[x_{1}, x_{2}, z_{0}, z_{1}, u\right]$ polynomials such that

$$
\text { for } i \in\{1,2\}, \quad E_{i}\left(F_{1}(t, \mathbf{u}), F_{2}(t, \mathbf{u}), F_{1}(t, 1), F_{2}(t, 1), \mathbf{u}\right)=0 . \quad\left(\equiv E_{i}(\mathbf{u})\right)
$$

Differentiating with respect to u yields

$$
\begin{aligned}
& \qquad\left(\begin{array}{ll}
\left(\partial_{x_{1}} E_{1}\right)(\mathrm{u}) & \left(\partial_{x_{2}} E_{1}\right)(\mathrm{u}) \\
\left(\partial_{x_{1}} E_{2}\right)(\mathrm{u}) & \left(\partial_{x_{2}} E_{2}\right)(\mathrm{u})
\end{array}\right) \cdot\binom{\partial_{\mathrm{u}} F_{1}}{\partial_{\mathrm{u}} F_{2}}+\binom{\left(\partial_{\mathrm{u}} E_{1}\right)(\mathrm{u})}{\left(\partial_{\mathrm{u}} E_{2}\right)(\mathrm{u})}=0 . \\
& \text { For } \mathbf{U}(\mathrm{t}) \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[[t ^ { \frac { 1 } { d }]] }] \left\{\begin{array}{ll}
\text { if } & \left(\partial_{x_{1}} E_{1} \cdot \partial_{\mathbf{x}_{2}} E_{2}-\partial_{x_{1}} E_{2} \cdot \partial_{x_{2}} E_{1}\right)(\mathrm{U}(\mathrm{t}))=0, \\
\text { then }\left(\partial_{x_{1}} E_{1} \cdot \partial_{\mathrm{u}} E_{2}-\partial_{x_{1}} E_{2} \cdot \partial_{\mathrm{u}} E_{1}\right)(\mathrm{U}(\mathrm{t}))=0 .
\end{array}\right.\right.
\end{aligned}
$$

Identifying more polynomial equations

Consider

$\rightsquigarrow F_{1}, F_{2} \equiv F_{1}(t, u), F_{2}(t, u) \in \mathbb{Q}[u][[t]]$

$$
\left\{\begin{array}{l}
0=\left(1-F_{1}\right) \cdot(\mathbf{u}-1)+t \mathbf{u} \cdot\left(2 \mathbf{u} F_{1}^{2}-\mathbf{u} F_{1}(t, 1)+2 \mathbf{u} F_{2}(t, 1)-2 F_{1}^{2}+\mathbf{u}+F_{1}-2 F_{2}(t, 1)-1\right), \\
0=F_{2} \cdot(1-\mathbf{u})+t \mathbf{u} \cdot\left(2 \mathbf{u} F_{1} F_{2}+\mathbf{u} F_{1}-2 F_{1} F_{2}-F_{1}+F_{2}-F_{2}(t, 1)\right) .
\end{array}\right.
$$

Denote by $E_{1}, E_{2} \in \mathbb{Q}(t)\left[x_{1}, x_{2}, z_{0}, z_{1}, \mathbf{u}\right]$ polynomials such that

$$
\text { for } i \in\{1,2\}, \quad E_{i}\left(F_{1}(t, \mathbf{u}), F_{2}(t, \mathbf{u}), F_{1}(t, 1), F_{2}(t, 1), \mathbf{u}\right)=0 . \quad\left(\equiv E_{i}(\mathbf{u})\right)
$$

Differentiating with respect to u yields

$$
\begin{aligned}
& \qquad\left(\begin{array}{ll}
\left(\partial_{x_{1}} E_{1}\right)(\mathrm{u}) & \left(\partial_{x_{2}} E_{1}\right)(\mathrm{u}) \\
\left(\partial_{x_{1}} E_{2}\right)(\mathrm{u}) & \left(\partial_{x_{2}} E_{2}\right)(\mathrm{u})
\end{array}\right) \cdot\binom{\partial_{\mathrm{u}} F_{1}}{\partial_{\mathrm{u}} F_{2}}+\binom{\left(\partial_{\mathrm{u}} E_{1}\right)(\mathrm{u})}{\left(\partial_{\mathrm{u}} E_{2}\right)(\mathrm{u})}=0 . \\
& \text { For } \mathbf{U}(\mathrm{t}) \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[[t ^ { \frac { 1 } { d }]] }] \left\{\begin{array}{ll}
\text { if } & \left(\partial_{x_{1}} E_{1} \cdot \partial_{\mathbf{x}_{2}} E_{2}-\partial_{x_{1}} E_{2} \cdot \partial_{x_{2}} E_{1}\right)(\mathrm{U}(\mathrm{t}))=0, \\
\text { then }\left(\partial_{x_{1}} E_{1} \cdot \partial_{\mathrm{u}} E_{2}-\partial_{x_{1}} E_{2} \cdot \partial_{\mathrm{u}} E_{1}\right)(\mathrm{U}(\mathrm{t}))=0 .
\end{array}\right.\right.
\end{aligned}
$$

Sketch of strategy: duplicate variables

Notations: $E_{i}(\mathbf{u}) \equiv E_{i}\left(F_{1}(t, \mathbf{u}), F_{2}(t, \mathbf{u}), F_{1}(t, 1), F_{2}(t, 1), t, \mathbf{u}\right)$.

- If $\operatorname{Det}(\mathbf{u})=0$ has 2 distinct solutions in \mathbf{u} in $\bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[\frac{1}{d}\right]\right]$, define

$$
\mathcal{S}_{\mathrm{dup}}:=\left\{\begin{array}{l}
E_{1}\left(u_{i}\right)=0, E_{2}\left(u_{i}\right)=0, \\
\operatorname{Det}\left(u_{i}\right)=0, \mathrm{P}\left(u_{i}\right)=0, \\
m \cdot\left(u_{1}-u_{2}\right)-1=0 .
\end{array} \quad \text { for } i=1,2 .\right.
$$

Sketch of strategy: duplicate variables

Notations: $E_{i}(\mathbf{u}) \equiv E_{i}\left(F_{1}(t, \mathbf{u}), F_{2}(t, \mathbf{u}), F_{1}(t, 1), F_{2}(t, 1), t, \mathbf{u}\right)$.

- If $\operatorname{Det}(\mathbf{u})=0$ has 2 distinct solutions in \mathbf{u} in $\bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right]$, define

$$
\mathcal{S}_{\mathrm{dup}}:=\left\{\begin{array}{l}
E_{1}\left(u_{i}\right)=0, E_{2}\left(u_{i}\right)=0, \\
\operatorname{Det}\left(u_{i}\right)=0, \mathrm{P}\left(u_{i}\right)=0, \\
m \cdot\left(u_{1}-u_{2}\right)-1=0 .
\end{array} \quad \text { for } i=1,2 .\right.
$$

Then: 9 equations in $\mathbf{9}$ unknowns.

$$
\underbrace{x_{1}, \ldots, x_{4}}_{F_{i}\left(U_{j}\right)}, \underbrace{z_{0}, z_{1}}_{F_{i}(t, 1)}, \underbrace{u_{1}, u_{2}}_{U_{i}} \Rightarrow 4+2+2=\mathbf{8}
$$

Sketch of strategy: duplicate variables

Notations: $E_{i}(\mathbf{u}) \equiv E_{i}\left(F_{1}(t, \mathbf{u}), F_{2}(t, \mathbf{u}), F_{1}(t, 1), F_{2}(t, 1), t, \mathbf{u}\right)$.

- If $\operatorname{Det}(\mathbf{u})=0$ has 2 distinct solutions in \mathbf{u} in $\bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[\frac{1}{d}\right]\right]$, define

$$
\mathcal{S}_{\text {dup }}:=\left\{\begin{array}{l}
E_{1}\left(u_{i}\right)=0, E_{2}\left(u_{i}\right)=0, \\
\operatorname{Det}\left(u_{i}\right)=0, \mathrm{P}\left(u_{i}\right)=0, \\
m \cdot\left(u_{1}-u_{2}\right)-1=0 .
\end{array} \quad \text { for } i=1,2 .\right.
$$

Then: 9 equations in 9 unknowns.

$$
\underbrace{x_{1}, \ldots, x_{4}}_{F_{i}\left(U_{j}\right)}, \underbrace{z_{0}, z_{1}}_{F_{i}(t, 1)}, \underbrace{u_{1}, u_{2}}_{U_{i}} \Rightarrow 4+2+2=\mathbf{8}
$$

Hope: $\mathcal{S}_{\text {dup }}$ admits finitely many solutions in $\overline{\mathbb{Q}}(t)^{9}$.

A degenerate toy (SDDEs)

Modelling m-row restricted slicings:

$$
\left\{\begin{array}{l}
F_{1}=t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right), \\
F_{2}=t^{2} \mathbf{u} \frac{F_{2}-F_{2}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} \frac{F_{1}-F_{1}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} F_{2},
\end{array}\right.
$$

A degenerate toy (SDDEs)

Modelling m-row restricted slicings:

$$
\left\{\begin{array}{l}
F_{1}=t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right) \\
F_{2}=t^{2} \mathbf{u} \frac{F_{2}-F_{2}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} \frac{F_{1}-F_{1}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} F_{2}
\end{array}\right.
$$

Multiplying by $(u-1)$ gives

$$
\left\{\begin{array}{l}
E_{1}(\mathbf{u}):=-F_{1}+t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right)=0, \\
E_{2}(\mathbf{u}):=-F_{2}(\mathbf{u}-1)+t^{2} \mathbf{u} F_{1}+t^{2} \mathbf{u} F_{2}-t^{2} \mathbf{u} F_{1}(t, 1)-t^{2} \mathbf{u} F_{2}(t, 1)=0 .
\end{array}\right.
$$

A degenerate toy (SDDEs)

Modelling m-row restricted slicings:

$$
\left\{\begin{array}{l}
F_{1}=t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right) \\
F_{2}=t^{2} \mathbf{u} \frac{F_{2}-F_{2}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} \frac{F_{1}-F_{1}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} F_{2}
\end{array}\right.
$$

Multiplying by $(u-1)$ gives

$$
\left\{\begin{array}{l}
E_{1}(\mathbf{u}):=-F_{1}+t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right)=0, \\
E_{2}(\mathbf{u}):=-F_{2}(\mathbf{u}-1)+t^{2} \mathbf{u} F_{1}+t^{2} \mathbf{u} F_{2}-t^{2} \mathbf{u} F_{1}(t, 1)-t^{2} \mathbf{u} F_{2}(t, 1)=0 .
\end{array}\right.
$$

$$
\text { Det }:=\left(\begin{array}{ll}
\partial_{x_{1}} E_{1}(u) & \partial_{x_{2}} E_{1}(u) \\
\partial_{x_{1}} E_{2}(u) & \partial_{x_{2}} E_{2}(u)
\end{array}\right)=t^{2} \mathbf{u}^{2}+\mathbf{u}-1 .
$$

A degenerate toy (SDDEs)

Modelling m-row restricted slicings:

$$
\left\{\begin{array}{l}
F_{1}=t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right) \\
F_{2}=t^{2} \mathbf{u} \frac{F_{2}-F_{2}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} \frac{F_{1}-F_{1}(t, 1)}{\mathbf{u}-1}+t^{2} \mathbf{u} F_{2}
\end{array}\right.
$$

Multiplying by $(u-1)$ gives

$$
\left\{\begin{array}{l}
E_{1}(\mathbf{u}):=-F_{1}+t^{2} \mathbf{u}+t^{2} \mathbf{u}\left(F_{1}+F_{2}\right)=0, \\
E_{2}(\mathbf{u}):=-F_{2}(\mathbf{u}-1)+t^{2} \mathbf{u} F_{1}+t^{2} \mathbf{u} F_{2}-t^{2} \mathbf{u} F_{1}(t, 1)-t^{2} \mathbf{u} F_{2}(t, 1)=0 .
\end{array}\right.
$$

$$
\text { Det }:=\left(\begin{array}{ll}
\partial_{x_{1}} E_{1}(\mathbf{u}) & \partial_{\times_{2}} E_{1}(\mathbf{u}) \\
\partial_{x_{1}} E_{2}(\mathbf{u}) & \partial_{x_{2}} E_{2}(\mathbf{u})
\end{array}\right)=t^{2} \mathbf{u}^{2}+\mathbf{u}-1
$$

There exists only one solution $\mathbf{U}(t) \in \bigcup_{d \geq 1} \overline{\mathbb{Q}}\left[\left[t^{\frac{1}{d}}\right]\right] \ldots$ How to create more solutions in \mathbf{u} to $\operatorname{Det}(\mathbf{u})=0$?

Symbolic deformation argument in the general case

$$
\left\{\begin{array}{l}
F_{1}=f_{1}(\mathbf{u})+t \cdot Q_{1}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right) \\
F_{2}=f_{2}(\mathbf{u})+t \cdot Q_{2}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right)
\end{array}\right.
$$

Symbolic deformation argument in the general case

$$
\left\{\begin{array}{l}
F_{1}=f_{1}(\mathbf{u})+t \cdot Q_{1}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right) \\
F_{2}=f_{2}(\mathbf{u})+t \cdot Q_{2}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right)
\end{array}\right.
$$

(SDDEs)

\downarrow Symbolic deformation \downarrow

For integers $\alpha \gg \beta \gg 0$ and a deformation parameter ϵ, consider

$$
\left\{\begin{array}{l}
G_{1}=f_{1}(\mathbf{u})+t^{\alpha} \cdot Q_{1}\left(G_{1}, G_{2}, \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}, \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, t^{\alpha}, \mathbf{u}\right)+\epsilon t \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}+\epsilon t^{\beta} \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, \\
G_{2}=f_{2}(\mathbf{u})+t^{\alpha} \cdot Q_{2}\left(G_{1}, G_{2}, \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}, \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, t^{\alpha}, \mathbf{u}\right)+\epsilon t^{\beta \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}+4 \epsilon t \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}} .
\end{array}\right.
$$

Symbolic deformation argument in the general case

$$
\left\{\begin{array}{l}
F_{1}=f_{1}(\mathbf{u})+t \cdot Q_{1}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right) \\
F_{2}=f_{2}(\mathbf{u})+t \cdot Q_{2}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right)
\end{array}\right.
$$

(SDDEs)

\downarrow Symbolic deformation \downarrow

For integers $\alpha \gg \beta \gg 0$ and a deformation parameter ϵ, consider

$$
\left\{\begin{array}{l}
G_{1}=f_{1}(\mathbf{u})+t^{\alpha} \cdot Q_{1}\left(G_{1}, G_{2}, \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}, \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, t^{\alpha}, \mathbf{u}\right)+\epsilon t \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}+\epsilon t^{\beta} \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, \\
G_{2}=f_{2}(\mathbf{u})+t^{\alpha} \cdot Q_{2}\left(G_{1}, G_{2}, \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}, \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, t^{\alpha}, \mathbf{u}\right)+\epsilon t^{\beta} \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}+4 \epsilon t \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1} .
\end{array}\right.
$$

$G_{i}(t, \mathbf{u}, \epsilon)$ algebraic over $\mathbb{Q}(t, \mathbf{u}, \epsilon) \Rightarrow G_{i}(t, \mathbf{u}, 0)=F_{i}\left(t^{\alpha}, \mathbf{u}\right)$ algebraic over $\mathbb{Q}(t, \mathbf{u})$.

Symbolic deformation argument in the general case

$$
\left\{\begin{array}{l}
F_{1}=f_{1}(\mathbf{u})+t \cdot Q_{1}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right), \\
F_{2}=f_{2}(\mathbf{u})+t \cdot Q_{2}\left(F_{1}, F_{2}, \frac{F_{1}-F_{1}(t, 1)}{u-1}, \frac{F_{2}-F_{2}(t, 1)}{u-1}, t, \mathbf{u}\right) .
\end{array}\right.
$$

(SDDEs)

\downarrow Symbolic deformation \downarrow

For integers $\alpha \gg \beta \gg 0$ and a deformation parameter ϵ, consider
$\left\{\begin{array}{l}G_{1}=f_{1}(\mathrm{u})+t^{\alpha} \cdot Q_{1}\left(G_{1}, G_{2}, \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}, \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, t^{\alpha}, \mathbf{u}\right)+\epsilon t \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}+\epsilon t^{\beta} \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, \\ G_{2}=f_{2}(\mathrm{u})+t^{\alpha} \cdot Q_{2}\left(G_{1}, G_{2}, \frac{G_{1}-G_{1}(t, 1, \epsilon)}{u-1}, \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1}, t^{\alpha}, \mathbf{u}\right)+\epsilon t^{\beta} \frac{\mathcal{G}_{1}-G_{1}(t, 1, \epsilon)}{u-1}+4 \epsilon t \frac{G_{2}-G_{2}(t, 1, \epsilon)}{u-1} .\end{array}\right.$
$G_{i}(t, \mathbf{u}, \epsilon)$ algebraic over $\mathbb{Q}(t, \mathbf{u}, \epsilon) \Rightarrow G_{i}(t, \mathbf{u}, 0)=F_{i}\left(t^{\alpha}, \mathbf{u}\right)$ algebraic over $\mathbb{Q}(t, \mathbf{u})$.
(slight abuse of notations)

$$
E_{i}\left(G_{1}, G_{2}, G_{1}(t, 1, \epsilon), G_{2}(t, 1, \epsilon), t, \mathbf{u}, \epsilon\right)=0, \text { for } i=1,2
$$

The deformation of (SDDEs) ensures good properties

Lemma 1: There are 2 distinct solutions U_{1}, U_{2} in $\overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]$ to $\operatorname{Det}(\mathbf{u})=0$.

The deformation of (SDDEs) ensures good properties

Lemma 1: There are 2 distinct solutions U_{1}, U_{2} in $\overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]$ to $\operatorname{Det}(\mathbf{u})=0$.

Idea: Show that $\operatorname{Det}(\mathbf{u})=(\mathbf{u}-t \epsilon) \cdot\left(\mathbf{u}-4 t \epsilon^{2}\right) \bmod t^{\beta}$, then Newton-Puiseux algorithm.

The deformation of (SDDEs) ensures good properties

Lemma 1: There are 2 distinct solutions U_{1}, U_{2} in $\overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]$ to $\operatorname{Det}(\mathbf{u})=0$.

Idea: Show that $\operatorname{Det}(\mathbf{u})=(\mathbf{u}-t \epsilon) \cdot\left(\mathbf{u}-4 t \epsilon^{2}\right) \bmod t^{\beta}$, then Newton-Puiseux algorithm.

$$
\text { Let } \mathcal{P}:=\left(G_{1}\left(t, U_{1}, \epsilon\right), \ldots, G_{2}\left(t, U_{2}, \epsilon\right), U_{1}, U_{2}, G_{1}(t, 1, \epsilon), G_{2}(t, 1, \epsilon)\right) \in \overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]^{8} \text {. }
$$

The deformation of (SDDEs) ensures good properties

Lemma 1: There are 2 distinct solutions U_{1}, U_{2} in $\overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]$ to $\operatorname{Det}(\mathbf{u})=0$.

Idea: Show that $\operatorname{Det}(\mathbf{u})=(\mathbf{u}-t \epsilon) \cdot\left(\mathbf{u}-4 t \epsilon^{2}\right) \bmod t^{\beta}$, then Newton-Puiseux algorithm.

Let $\mathcal{P}:=\left(G_{1}\left(t, U_{1}, \epsilon\right), \ldots, G_{2}\left(t, U_{2}, \epsilon\right), U_{1}, U_{2}, G_{1}(t, 1, \epsilon), G_{2}(t, 1, \epsilon)\right) \in \overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]^{8}$.

Lemma 2: Let $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}$ be the Jacobian matrix of $\mathcal{S}_{\text {dup }}$ w.r.t. $\underline{\mathbf{x}}, \underline{\mathbf{u}}, \underline{\mathbf{z}}$, then $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})$ is invertible and the saturated ideal $\left\langle\mathcal{S}_{\text {dup }}\right\rangle: \operatorname{det}\left(\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}\right)^{\infty}$ is 0 -dimensional over $\mathbb{K}(t, \epsilon)$.

The deformation of (SDDEs) ensures good properties

Lemma 1: There are 2 distinct solutions U_{1}, U_{2} in $\overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]$ to $\operatorname{Det}(\mathbf{u})=0$.

Idea: Show that $\operatorname{Det}(\mathbf{u})=(\mathbf{u}-t \epsilon) \cdot\left(\mathbf{u}-4 t \epsilon^{2}\right) \bmod t^{\beta}$, then Newton-Puiseux algorithm.

Let $\mathcal{P}:=\left(G_{1}\left(t, U_{1}, \epsilon\right), \ldots, G_{2}\left(t, U_{2}, \epsilon\right), U_{1}, U_{2}, G_{1}(t, 1, \epsilon), G_{2}(t, 1, \epsilon)\right) \in \overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]^{8}$.

Lemma 2: Let $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}$ be the Jacobian matrix of $\mathcal{S}_{\text {dup }}$ w.r.t. $\underline{\mathbf{x}}, \underline{\mathbf{u}}, \underline{\mathbf{z}}$, then $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})$ is invertible and the saturated ideal $\left\langle\mathcal{S}_{\text {dup }}\right\rangle: \operatorname{det}\left(\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}\right)^{\infty}$ is 0 -dimensional over $\mathbb{K}(t, \epsilon)$.

Idea: Show that $\operatorname{det}\left(\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})\right) \neq 0$, then use the Jacobian criterion.

The deformation of (SDDEs) ensures good properties

Lemma 1: There are 2 distinct solutions U_{1}, U_{2} in $\overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]$ to $\operatorname{Det}(\mathbf{u})=0$.

Idea: Show that $\operatorname{Det}(\mathbf{u})=(\mathbf{u}-t \epsilon) \cdot\left(\mathbf{u}-4 t \epsilon^{2}\right) \bmod t^{\beta}$, then Newton-Puiseux algorithm.

Let $\mathcal{P}:=\left(G_{1}\left(t, U_{1}, \epsilon\right), \ldots, G_{2}\left(t, U_{2}, \epsilon\right), U_{1}, U_{2}, G_{1}(t, 1, \epsilon), G_{2}(t, 1, \epsilon)\right) \in \overline{\mathbb{Q}}(\epsilon)[[\sqrt{t}]]^{8}$.

Lemma 2: Let $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}$ be the Jacobian matrix of $\mathcal{S}_{\text {dup }}$ w.r.t. $\underline{\mathbf{x}}, \underline{\mathbf{u}}, \underline{\mathbf{z}}$, then $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})$ is invertible and the saturated ideal $\left\langle\mathcal{S}_{\text {dup }}\right\rangle: \operatorname{det}\left(\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}\right)^{\infty}$ is 0 -dimensional over $\mathbb{K}(t, \epsilon)$.

Idea: Show that $\operatorname{det}\left(\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})\right) \neq 0$, then use the Jacobian criterion.

Main steps for proving the invertibility of the Jacobian matrix

- Up to elementary operations, $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})$ is an upper-block triangular matrix:

$$
\operatorname{Jac}_{\mathcal{S}_{\text {dup }}(\mathcal{P})} \sim\left(\begin{array}{ccc}
\mathbf{A}\left(\mathbf{U}_{1}\right) & 0 & \star \\
0 & \mathbf{A}\left(\mathbf{U}_{2}\right) & \star \\
0 & 0 & \mathbf{\Lambda}\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right)
\end{array}\right)
$$

Main steps for proving the invertibility of the Jacobian matrix

- Up to elementary operations, $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})$ is an upper-block triangular matrix:

$$
\operatorname{Jac}_{\mathcal{S}_{\text {dup }}(\mathcal{P})} \sim\left(\begin{array}{ccc}
\mathbf{A}\left(\mathbf{U}_{1}\right) & 0 & \star \\
0 & \mathbf{A}\left(\mathbf{U}_{2}\right) & \star \\
0 & 0 & \mathbf{\Lambda}\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right)
\end{array}\right)
$$

- For $i=1,2$, we have $\operatorname{val}_{\mathrm{t}}\left(\operatorname{det}\left(\mathbf{A}\left(\mathbf{U}_{\mathbf{i}}\right)\right)\right)<+\infty$,

Main steps for proving the invertibility of the Jacobian matrix

- Up to elementary operations, $\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}(\mathcal{P})$ is an upper-block triangular matrix:

$$
\operatorname{Jac}_{\mathcal{S}_{\text {dup }}(\mathcal{P})} \sim\left(\begin{array}{ccc}
\mathbf{A}\left(\mathbf{U}_{1}\right) & 0 & \star \\
0 & \mathbf{A}\left(\mathbf{U}_{2}\right) & \star \\
0 & 0 & \mathbf{\Lambda}\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right)
\end{array}\right)
$$

- For $i=1,2$, we have $\operatorname{val}_{\mathrm{t}}\left(\operatorname{det}\left(\mathbf{A}\left(\mathbf{U}_{\mathbf{i}}\right)\right)\right)<+\infty$,
- There exists $\gamma \in \mathbb{Z}_{>0}$ such that

$$
\operatorname{det}\left(\boldsymbol{\Lambda}\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right)\right)=\mathbf{U}_{1}^{\gamma} \cdot \mathbf{U}_{2}^{\gamma} \cdot\left(\mathbf{U}_{1}-\mathbf{U}_{2}\right) \cdot \mathbf{H} \quad \bmod t^{\alpha},
$$

for some $\mathrm{H} \in \mathbb{Q}[t, \epsilon] \backslash\{0\}$ whose degree is independent of α.

A first polynomial time algorithm

$$
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right), F_{2}=f_{2}(u)+t \cdot Q_{2}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right) .
$$

A first polynomial time algorithm

$$
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right), F_{2}=f_{2}(u)+t \cdot Q_{2}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right)
$$

Define the "numerators" E_{1}, E_{2} and the polynomials

$$
\text { Det }:=\operatorname{det}\left(\begin{array}{ll}
\partial_{x_{1}} E_{1} & \partial_{x_{2}} E_{1} \\
\partial_{x_{1}} E_{2} & \partial_{x_{2}} E_{2}
\end{array}\right) \quad \text { and } \quad P:=\operatorname{det}\left(\begin{array}{cc}
\partial_{x_{1}} E_{1} & \partial_{u} E_{1} \\
\partial_{x_{1}} E_{2} & \partial_{u} E_{2}
\end{array}\right) .
$$

The duplicated polynomial system \mathcal{S} vanishes at

$$
\mathcal{P}:=\left(F_{1}\left(t, U_{1}\right), F_{2}\left(t, U_{1}\right), F_{1}\left(t, U_{2}\right), F_{2}\left(t, U_{2}\right), U_{1}, U_{2}, F_{1}(t, 1), F_{2}(t, 1)\right) .
$$

Compute a generator R of $\left\langle\mathcal{S}, m \cdot\left(U_{1}-U_{2}\right)-1\right\rangle \cap \mathbb{Q}\left[t, z_{0}\right]$.

A first polynomial time algorithm

$$
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right), F_{2}=f_{2}(u)+t \cdot Q_{2}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right) .
$$

Define the "numerators" E_{1}, E_{2} and the polynomials

$$
\text { Det }:=\operatorname{det}\left(\begin{array}{ll}
\partial_{x_{1}} E_{1} & \partial_{x_{2}} E_{1} \\
\partial_{x_{1}} E_{2} & \partial_{x_{2}} E_{2}
\end{array}\right) \quad \text { and } \quad P:=\operatorname{det}\left(\begin{array}{ll}
\partial_{x_{1}} E_{1} & \partial_{u} E_{1} \\
\partial_{x_{1}} E_{2} & \partial_{u} E_{2}
\end{array}\right) \text {. }
$$

The duplicated polynomial system \mathcal{S} vanishes at

$$
\mathcal{P}:=\left(F_{1}\left(t, U_{1}\right), F_{2}\left(t, U_{1}\right), F_{1}\left(t, U_{2}\right), F_{2}\left(t, U_{2}\right), U_{1}, U_{2}, F_{1}(t, 1), F_{2}(t, 1)\right) .
$$

Compute a generator R of $\left\langle\mathcal{S}, m \cdot\left(U_{1}-U_{2}\right)-1\right\rangle \cap \mathbb{Q}\left[t, z_{0}\right]$.
[N., Yurkevich '23]

$$
(\delta \geq \operatorname{deg}(\mathcal{S}))
$$

- The polynomial R has its total degree in $O\left(\delta^{8}\right)$.
- Moreover, R can be computed in $O\left(\delta^{200}\right)$ ops. in \mathbb{Q}.

A first polynomial time algorithm

$$
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right), F_{2}=f_{2}(u)+t \cdot Q_{2}\left(F_{1}, \Delta F_{1}, F_{2}, \Delta F_{2}, t, u\right) .
$$

Define the "numerators" E_{1}, E_{2} and the polynomials

$$
\text { Det }:=\operatorname{det}\left(\begin{array}{ll}
\partial_{x_{1}} E_{1} & \partial_{x_{2}} E_{1} \\
\partial_{x_{1}} E_{2} & \partial_{x_{2}} E_{2}
\end{array}\right) \quad \text { and } \quad P:=\operatorname{det}\left(\begin{array}{ll}
\partial_{x_{1}} E_{1} & \partial_{u} E_{1} \\
\partial_{x_{1}} E_{2} & \partial_{u} E_{2}
\end{array}\right) \text {. }
$$

The duplicated polynomial system \mathcal{S} vanishes at

$$
\mathcal{P}:=\left(F_{1}\left(t, U_{1}\right), F_{2}\left(t, U_{1}\right), F_{1}\left(t, U_{2}\right), F_{2}\left(t, U_{2}\right), U_{1}, U_{2}, F_{1}(t, 1), F_{2}(t, 1)\right) .
$$

Compute a generator R of $\left\langle\mathcal{S}, m \cdot\left(U_{1}-U_{2}\right)-1\right\rangle \cap \mathbb{Q}\left[t, z_{0}\right]$.
[N., Yurkevich '23]

$$
(\delta \geq \operatorname{deg}(\mathcal{S}))
$$

- The polynomial R has its total degree in $O\left(\delta^{8}\right)$.
- Moreover, R can be computed in $O\left(\delta^{200}\right)$ ops. in \mathbb{Q}.

Conclusion and perspectives

- Polynomial time algorithm computing witnesses of algebraicity,
- Constructive proof of algebraicity of solutions of SDDEs.

Conclusion and perspectives

- Polynomial time algorithm computing witnesses of algebraicity,
- Constructive proof of algebraicity of solutions of SDDEs.
- Efficient algorithms in the system case?
- More nested catalytic variables? (M. Bousquet-Mélou)

Conclusion and perspectives

- Polynomial time algorithm computing witnesses of algebraicity,
- Constructive proof of algebraicity of solutions of SDDEs.
- Efficient algorithms in the system case?
- More nested catalytic variables? (M. Bousquet-Mélou)

Thank you for listening!

A polynomial system for systems of DDEs

Consider

$$
\left\{\begin{array}{c}
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right) \\
\vdots \\
F_{n}=f_{n}(u)+t \cdot Q_{n}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right)
\end{array}\right.
$$

(SDDEs)

A polynomial system for systems of DDEs

Consider

$$
\left\{\begin{array}{c}
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right) \\
\vdots \\
F_{n}= \\
\vdots
\end{array}\right.
$$

(SDDEs)

Perturbe (SDDEs) and define the "numerators" E_{1}, \ldots, E_{n} and the polynomials
$\operatorname{Det}:=\operatorname{det}\left(\begin{array}{ccc}\partial_{x_{1}} E_{1} & \ldots & \partial_{x_{n}} E_{1} \\ \vdots & \ddots & \vdots \\ \partial_{x_{1}} E_{n} & \ldots & \partial_{x_{n}} E_{n}\end{array}\right)$

$$
\text { and } \quad P:=\operatorname{det}\left(\begin{array}{cccc}
\partial_{x_{1}} E_{1} & \ldots & \partial_{x_{n-1}} E_{1} & \partial_{u} E_{1} \\
\vdots & \ddots & \vdots & \vdots \\
\partial_{x_{1}} E_{n-1} & \ldots & \partial_{x_{n-1}} E_{n-1} & \partial_{u} E_{n-1} \\
\partial_{x_{1}} E_{n} & \ldots & \partial_{x_{n-1}} E_{n} & \partial_{u} E_{n}
\end{array}\right)
$$

A polynomial system for systems of DDEs

Consider

$$
\left\{\begin{array}{c}
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right) \\
\vdots \\
F_{n}=f_{n}(u)+t \cdot Q_{n}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right)
\end{array}\right.
$$

(SDDEs)

Perturbe (SDDEs) and define the "numerators" E_{1}, \ldots, E_{n} and the polynomials
$\operatorname{Det}:=\operatorname{det}\left(\begin{array}{ccc}\partial_{x_{1}} E_{1} & \ldots & \partial_{x_{n}} E_{1} \\ \vdots & \ddots & \vdots \\ \partial_{x_{1}} E_{n} & \ldots & \partial_{x_{n}} E_{n}\end{array}\right) \quad$ and $\quad P:=\operatorname{det}\left(\begin{array}{cccc}\partial_{x_{1}} E_{1} & \ldots & \partial_{x_{n-1}} E_{1} & \partial_{u} E_{1} \\ \vdots & \ddots & \vdots & \vdots \\ \partial_{x_{1}} E_{n-1} & \ldots & \partial_{x_{n-1}} E_{n-1} & \partial_{u} E_{n-1} \\ \partial_{x_{1}} E_{n} & \ldots & \partial_{x_{n-1}} E_{n} & \partial_{u} E_{n}\end{array}\right)$,
Set up the duplicated polynomial system $\left(\mathcal{S}_{\text {dup }}\right)$, consisting in the $n k$ duplications of the polynomials E_{1}, \ldots, E_{n}, Det, P. It has $n k(n+2)$ variables and equations.

A polynomial system for systems of DDEs

Consider

$$
\left\{\begin{array}{c}
F_{1}=f_{1}(u)+t \cdot Q_{1}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right) \\
\vdots \\
F_{n}=f_{n}(u)+t \cdot Q_{n}\left(\nabla^{k} F_{1}, \ldots, \nabla^{k} F_{n}, t, u\right)
\end{array}\right.
$$

(SDDEs)

Perturbe (SDDEs) and define the "numerators" E_{1}, \ldots, E_{n} and the polynomials
$\operatorname{Det}:=\operatorname{det}\left(\begin{array}{ccc}\partial_{x_{1}} E_{1} & \ldots & \partial_{x_{n}} E_{1} \\ \vdots & \ddots & \vdots \\ \partial_{x_{1}} E_{n} & \ldots & \partial_{x_{n}} E_{n}\end{array}\right) \quad$ and $\quad P:=\operatorname{det}\left(\begin{array}{cccc}\partial_{x_{1}} E_{1} & \ldots & \partial_{x_{n-1}} E_{1} & \partial_{u} E_{1} \\ \vdots & \ddots & \vdots & \vdots \\ \partial_{x_{1}} E_{n-1} & \ldots & \partial_{x_{n-1}} E_{n-1} & \partial_{u} E_{n-1} \\ \partial_{x_{1}} E_{n} & \ldots & \partial_{x_{n-1}} E_{n} & \partial_{u} E_{n}\end{array}\right)$,
Set up the duplicated polynomial system $\left(\mathcal{S}_{\text {dup }}\right)$, consisting in the $n k$ duplications of the polynomials E_{1}, \ldots, E_{n}, Det, P. It has $n k(n+2)$ variables and equations.

Compute a non-trivial element of $\left(\left\langle\mathcal{S}_{\text {dup }}\right\rangle: \operatorname{det}\left(\operatorname{Jac}_{\mathcal{S}_{\text {dup }}}\right)^{\infty}\right) \cap \mathbb{K}\left[t, z_{0}, \epsilon\right]$, then set ϵ to 0 .

