Fast Algorithms for Discrete Differential Equations

Journées Nationales de Calcul Formel 2023 CIRM, Luminy, 6-10 March 2023

Hadrien Notarantonio (Inria Saclay)

Joint work with: Alin Bostan (Inria Saclay) Mohab Safey El Din (Sorbonne Université)

Enumeration refinement

 $c_{n,d} := \# \{n \text{ steps walks starting at 0} \\ \text{ and ending at height } d\}$

 $F(t, u) := \sum_{n=0}^{\infty} \sum_{d=0}^{n} c_{n,d} u^{d} t^{n}$ complete generating function

Enumeration refinement

$$c_{n,d} := \# \{n \text{ steps walks starting at } 0 \$$

and ending at height $d\}$

$$F(t, u) := \sum_{n=0}^{\infty} \sum_{d=0}^{n} c_{n,d} u^{d} t^{n}$$
 complete generating function

DDE of order 2

$$c_{n,d} = c_{n-1,d-1} + c_{n-1,d+2}$$

$$\uparrow$$

$$F(t,u) = 1 + t \cdot u \cdot F(t,u)$$

$$+ t \cdot \frac{F(t,u) - F(t,0) - u \cdot \partial_u F(t,0)}{u^2}$$

Enumeration refinement

$$c_{n,d} := \# \{n \text{ steps walks starting at } 0 \$$
and ending at height $d\}$

$$F(t, u) := \sum_{n=0}^{\infty} \sum_{d=0}^{n} c_{n,d} u^{d} t^{n}$$

complete generating function

DDE of order 2

$$c_{n,d} = c_{n-1,d-1} + c_{n-1,d+2}$$

$$\uparrow$$

$$F(t, u) = 1 + t \cdot u \cdot F(t, u)$$

$$+ t \cdot \frac{F(t, u) - F(t, 0) - u \cdot \partial_u F(t, 0)}{u^2}$$

$$c_{n,0} = c_n \implies F(t,0) = G(t)$$

$$\mathbb{K} = \mathbb{Q}, \mathbb{Q}(y), \ldots$$

Starting point: $F \in \mathbb{K}[u][[t]]$, solution of the discrete differential equation of order 2 $F(t, u) = 1 + t \cdot u \cdot F(t, u) + t \cdot \Delta^{(2)}F(t, u),$ where $\Delta F(t, u) := \frac{F(t, u) - F(t, 0)}{u}$ and $\Delta^{(2)}F(t, u) = \frac{F(t, u) - F(t, 0) - u \cdot \partial_u F(t, 0)}{u}.$

$$\mathbb{K} = \mathbb{Q}, \mathbb{Q}(y), \ldots$$

Starting point: $F \in \mathbb{K}[u][[t]]$, solution of the discrete differential equation of order 2 $F(t, u) = 1 + t \cdot u \cdot F(t, u) + t \cdot \Delta^{(2)}F(t, u),$ where $\Delta F(t, u) := \frac{F(t, u) - F(t, 0)}{u}$ and $\Delta^{(2)}F(t, u) = \frac{F(t, u) - F(t, 0) - u \cdot \partial_u F(t, 0)}{u^2}.$

Interest: Nature of F(t, 0).

$$\mathbb{K} = \mathbb{Q}, \mathbb{Q}(y), \ldots$$

Starting point: $F \in \mathbb{K}[u][[t]]$, solution of the discrete differential equation of order 2 $F(t, u) = 1 + t \cdot u \cdot F(t, u) + t \cdot \Delta^{(2)}F(t, u),$ where $\Delta F(t, u) := \frac{F(t, u) - F(t, 0)}{u}$ and $\Delta^{(2)}F(t, u) = \frac{F(t, u) - F(t, 0) - u \cdot \partial_u F(t, 0)}{u^2}.$

Interest: Nature of F(t, 0).

Classical: F, F(t, 0) and $\partial_{u}F(t, 0)$ are algebraic. [Bousquet-Mélou, Jehanne '06]

$$\mathbb{K} = \mathbb{Q}, \mathbb{Q}(y), \ldots$$

Starting point: $F \in \mathbb{K}[u][[t]]$, solution of the discrete differential equation of order 2 $F(t, u) = 1 + t \cdot u \cdot F(t, u) + t \cdot \Delta^{(2)}F(t, u),$ where $\Delta F(t, u) := \frac{F(t, u) - F(t, 0)}{u}$ and $\Delta^{(2)}F(t, u) = \frac{F(t, u) - F(t, 0) - u \cdot \partial_u F(t, 0)}{u^2}.$

Interest: Nature of F(t, 0).

Classical: F, F(t, 0) and $\partial_{u}F(t, 0)$ are algebraic. [Bousquet-Mélou, Jehanne '06]

Goals:

- Compute a polynomial $R \in \mathbb{K}[t, z_0] \setminus \{0\}$ such that R(t, F(t, 0)) = 0.
- Estimate the size of R for such DDEs.
- Complexity estimates (ops. in \mathbb{K}) for the computation of R.

State of the art

Let $k \ge 1$, $f \in \mathbb{K}[u]$ and $Q \in \mathbb{K}[x, y_1, \dots, y_k, t, u]$. For $F \in \mathbb{K}[u][[t]]$, define $\Delta(F) := (F - F(t, 0))/u \in \mathbb{K}[u][[t]]$ and $\Delta^{(i)}(F) := \Delta \circ \Delta^{(i-1)}(F)$.

Theorem [Bousquet-Mélou, Jehanne '06] There exists a unique solution $F \in \mathbb{K}[u][[t]]$ to $F(t, u) = f(u) + t \cdot Q(F, \Delta(F), \dots, \Delta^{(k)}(F), t, u),$ (DDE)

and moreover F(t, u) is algebraic over $\mathbb{K}(t, u)$.

Let $k \ge 1$, $f \in \mathbb{K}[u]$ and $Q \in \mathbb{K}[x, y_1, \dots, y_k, t, u]$. For $F \in \mathbb{K}[u][[t]]$, define $\Delta(F) := (F - F(t, 0))/u \in \mathbb{K}[u][[t]]$ and $\Delta^{(i)}(F) := \Delta \circ \Delta^{(i-1)}(F)$.

Theorem [Bousquet-Mélou, Jehanne '06] There exists a unique solution $F \in \mathbb{K}[u][[t]]$ to $F(t, u) = f(u) + t \cdot Q(F, \Delta(F), \dots, \Delta^{(k)}(F), t, u),$ (DDE) and moreover F(t, u) is algebraic over $\mathbb{K}(t, u)$. [Tutte, Brown 60's], [Zeilberger '92]: Guess-and-prove [Gessel, Zeilberger '14]: Guess-and-prove [Brown '65], [Bender, Canfield '94]: Quadratic method [Knuth '68], [Banderier, Flajolet '02], Kernel method (linear case) [Bousquet-Mélou, Petkovšek '00]: [Bousquet-Mélou, Jehanne '06]: Polynomial elimination Bostan, Chyzak, Polynomial elimination, Notarantonio, Safey El Din '22]: Hybrid guess-and-prove

We write $P(u) \equiv P(F(t, u), F(t, 0), \dots, \partial_u^{k-1}F(t, 0), t, u)$ and $\overline{\mathbb{K}}[[t^{\frac{1}{k}}]] \equiv \bigcup_{d>1} \overline{\mathbb{K}}[[t^{\frac{1}{d}}]]$

We write $P(u) \equiv P(F(t, u), F(t, 0), \dots, \partial_u^{k-1}F(t, 0), t, u)$ and $\overline{\mathbb{K}}[[t^{\frac{1}{\star}}]] \equiv \bigcup_{d>1} \overline{\mathbb{K}}[[t^{\frac{1}{d}}]]$

We write $P(u) \equiv P(F(t, u), F(t, 0), \dots, \partial_u^{k-1}F(t, 0), t, u)$ and $\overline{\mathbb{K}}[[t^{\frac{1}{4}}]] \equiv \bigcup_{d>1} \overline{\mathbb{K}}[[t^{\frac{1}{d}}]]$

$$\begin{array}{l} \bigcup_1(\mathbf{t}),\ldots,\bigcup_\ell(\mathbf{t})\in\\ \overline{\mathbb{K}}[[t^{\frac{1}{\star}}]]\setminus\overline{\mathbb{K}} \text{ distinct}\\ \text{ solutions in } u \text{ of}\\ \partial_1 P(u) = 0 \end{array}$$

We write $P(u) \equiv P(F(t, u), F(t, 0), \dots, \partial_u^{k-1}F(t, 0), t, u)$ and $\overline{\mathbb{K}}[[t^{\frac{1}{4}}]] \equiv \bigcup_{d>1} \overline{\mathbb{K}}[[t^{\frac{1}{d}}]]$

We write $P(u) \equiv P(F(t, u), F(t, 0), \dots, \partial_u^{k-1}F(t, 0), t, u)$ and $\overline{\mathbb{K}}[[t^{\frac{1}{4}}]] \equiv \bigcup_{d>1} \overline{\mathbb{K}}[[t^{\frac{1}{d}}]]$

$$F(t, u) = f(u) + t \cdot Q(F, \Delta(F), \dots, \Delta^{(k)}(F), t, u),$$
(DDE)
where $\Delta(F) := \frac{F(t, u) - F(t, 0)}{u}.$

$$F(t, u) = f(u) + t \cdot Q(F, \Delta(F), \dots, \Delta^{(k)}(F), t, u),$$
(DDE)
where $\Delta(F) := \frac{F(t, u) - F(t, 0)}{u}.$

- 1. Geometric analysis of Bousquet-Mélou and Jehanne's algorithm yielding:
 - Theoretical estimate for the degree of $R \in \mathbb{K}[t, z_0]$ s.t. R(t, F(t, 0)) = 0,
 - Arithmetic complexity.
- 2. New algorithm based on algebraic elimination + Gröbner bases,
- 3. Implementations yielding practical improvements.

Study the solutions of $\partial_1 P(F(t, u), F(t, 0), \partial_u F(t, 0), t, u) = 0$

$$u^2 = t(1 + u^3) \implies u = U_1(t), U_2(t) \in \{\sqrt{t} + O(t), -\sqrt{t} + O(t)\}$$

(Contribution 1)

Study the solutions of $\partial_1 P(F(t, u), F(t, 0), \partial_u F(t, 0), t, u) = 0$

$$u^2 = t(1+u^3) \implies u = U_1(t), U_2(t) \in \{\sqrt{t} + O(t), -\sqrt{t} + O(t)\}$$

(Contribution 1)

Hence $(x_1, u_1, x_2, u_2) = (F(t, U_1), U_1, F(t, U_2), U_2)$ is a solution of the constraints \mathcal{T}

$$\mathcal{T}: \quad \text{For } 1 \leq i \leq 2, \quad \begin{cases} \mathsf{P}(x_i, \mathsf{F}(t, 0), \partial_u \mathsf{F}(t, 0), t, u_i) = 0, \\ \partial_1 \mathsf{P}(x_i, \mathsf{F}(t, 0), \partial_u \mathsf{F}(t, 0), t, u_i) = 0, \\ \partial_u \mathsf{P}(x_i, \mathsf{F}(t, 0), \partial_u \mathsf{F}(t, 0), t, u_i) = 0. \end{cases} \qquad m \cdot (u_1 - u_2) = 1,$$

Study the solutions of $\partial_1 P(F(t, u), F(t, 0), \partial_u F(t, 0), t, u) = 0$

$$u^2 = t(1+u^3) \implies u = U_1(t), U_2(t) \in \{\sqrt{t} + O(t), -\sqrt{t} + O(t)\}$$

(Contribution 1)

Hence $(x_1, u_1, x_2, u_2) = (F(t, U_1), U_1, F(t, U_2), U_2)$ is a solution of the constraints \mathcal{T}

$$\mathcal{T}: \quad \text{For } 1 \leq i \leq 2, \quad \begin{cases} P(x_i, F(t, 0), \partial_u F(t, 0), t, u_i) = 0, \\ \partial_1 P(x_i, F(t, 0), \partial_u F(t, 0), t, u_i) = 0, \\ \partial_u P(x_i, F(t, 0), \partial_u F(t, 0), t, u_i) = 0. \end{cases} \quad m \cdot (u_1 - u_2) = 1,$$

Permuting (x_1, u_1) and (x_2, u_2) does not change the solution set $\Rightarrow \mathfrak{S}_2$ acts on $V(\mathcal{T})$ and preserves the $\{z_0, z_1, t\}$ -coordinate space.

Study the solutions of $\partial_1 P(F(t, u), F(t, 0), \partial_u F(t, 0), t, u) = 0$

$$u^2 = t(1+u^3) \implies u = U_1(t), U_2(t) \in \{\sqrt{t} + O(t), -\sqrt{t} + O(t)\}$$

Hence $(x_1, u_1, x_2, u_2) = (F(t, U_1), U_1, F(t, U_2), U_2)$ is a solution of the constraints \mathcal{T}

$$\mathcal{T}: \quad \text{For } 1 \leq i \leq 2, \quad \begin{cases} \mathsf{P}(x_i, F(t, 0), \partial_u F(t, 0), t, u_i) = 0, \\ \partial_1 \mathsf{P}(x_i, F(t, 0), \partial_u F(t, 0), t, u_i) = 0, \\ \partial_u \mathsf{P}(x_i, F(t, 0), \partial_u F(t, 0), t, u_i) = 0. \end{cases} \quad m \cdot (u_1 - u_2) = 1,$$

Permuting (x_1, u_1) and (x_2, u_2) does not change the solution set $\implies \mathfrak{S}_2$ acts on $V(\mathcal{T})$ and preserves the $\{z_0, z_1, t\}$ -coordinate space.

Impact of this group action?

(Contribution 1)

... yielding theoretical improvements

Denote by \mathcal{I} the ideal generated by the k duplications of $(P, \partial_1 P, \partial_u P)$ and $m \cdot \prod_{i \neq j} (u_i - u_j) - 1 = 0$.

(Contribution 1)

Assume that:

- there exist k distinct solutions $u = U_1, \ldots, U_k \in \overline{\mathbb{K}}[[t^{\frac{1}{\star}}]]$ of $\partial_1 P(u) = 0$,
- \mathcal{I} is radical and of dimension 0 over $\mathbb{K}(t)$. (3k equations and 3k unknowns)

Denote by \mathcal{I} the ideal generated by the k duplications of $(P, \partial_1 P, \partial_u P)$ and $m \cdot \prod_{i \neq j} (u_i - u_j) - 1 = 0$.

Assume that:

- there exist k distinct solutions $u = U_1, \ldots, U_k \in \overline{\mathbb{K}}[[t^{\frac{1}{k}}]]$ of $\partial_1 P(u) = 0$,
- \mathcal{I} is radical and of dimension 0 over $\mathbb{K}(t)$. (3k equations and 3k unknowns)

Theorem [Bostan, N., Safey El Din '23]

- Let δ := deg(P). There exists a nonzero polynomial R ∈ K[t, z₀] whose partial degrees are bounded by δ^k(δ − 1)^{2k}/k! and such that R(t, F(t, 0)) = 0.
- There exists an algorithm computing R in $\tilde{O}(\delta^{6k}(k^2\delta^{k+3} + \delta^{1.89k}/k!))$ ops. in K.

Ideas of the proof:

- \rightarrow Bézout bound + \mathfrak{S}_k acts on $V(\mathcal{I}_{dup})$ and preserves the z_0 -coordinate space.
- → Parametric geometric resolution [Schost '03], [Giusti, Lecerf, Salvy '01]

 $\mathbf{z}_0 = V(t,\lambda)/\partial_\lambda W(t,\lambda), W(t,\lambda) = 0$

(Contribution 1)

- → Change of monomial ordering: Stickelberger's theorem [Cox '21] $R = \text{Sqfree}(\text{Res}_{\lambda}(z_0 \cdot \partial_{\lambda}W - V, W))$
- + bivariate resultants [Villard '18], [van der Hoeven, Lecerf '21]

(Contribution 2)

Summary of the initial problem: $\underline{z} \equiv z_0, \dots, z_{k-1}; P = \text{"numer"}(DDE) \in \mathbb{K}(t)[x, \mathbf{u}, \underline{z}]$ There exist k solutions $(x, \mathbf{u}) \in \overline{\mathbb{K}(t)}^2$ with distinct u-coordinates to

$$\begin{cases}
P(x, \mathbf{u}, F(t, 0), \dots, \partial_u^{k-1} F(t, 0)) = 0, \\
\partial_1 P(x, \mathbf{u}, F(t, 0), \dots, \partial_u^{k-1} F(t, 0)) = 0, \quad \mathbf{u} \neq 0, \\
\partial_u P(x, \mathbf{u}, F(t, 0), \dots, \partial_u^{k-1} F(t, 0)) = 0.
\end{cases}$$

Geometric modelling of the problem

Summary of the initial problem: $\underline{z} \equiv z_0, \dots, z_{k-1}; P = \text{"numer"}(DDE) \in \mathbb{K}(t)[x, \mathbf{u}, \underline{z}]$ There exist k solutions $(x, \mathbf{u}) \in \overline{\mathbb{K}(t)}^2$ with distinct u-coordinates to

(Contribution 2)

$$\begin{cases}
P(x, \mathbf{u}, F(t, 0), \dots, \partial_{u}^{k-1}F(t, 0)) = 0, \\
\partial_{1}P(x, \mathbf{u}, F(t, 0), \dots, \partial_{u}^{k-1}F(t, 0)) = 0, \quad \mathbf{u} \neq 0, \\
\partial_{u}P(x, \mathbf{u}, F(t, 0), \dots, \partial_{u}^{k-1}F(t, 0)) = 0.
\end{cases}$$

Define

$$\pi_{x} : (\mathbf{x}, \mathbf{u}, \underline{\mathbf{z}}) \in \overline{\mathbb{K}(t)}^{k+2} \mapsto (\mathbf{u}, \underline{\mathbf{z}}) \in \overline{\mathbb{K}(t)}^{k+1},$$

$$\pi_{u} : (\mathbf{u}, \underline{\mathbf{z}}) \in \overline{\mathbb{K}(t)}^{k+1} \mapsto (\underline{\mathbf{z}}) \in \overline{\mathbb{K}(t)}^{k},$$

and consider $\mathbf{W} := \pi_{\times}(V(P, \partial_1 P, \partial_u P) \setminus V(\mathbf{u})).$

Geometric modelling of the problem

Summary of the initial problem: $\underline{z} \equiv z_0, \dots, z_{k-1}; P = \text{"numer"}(DDE) \in \mathbb{K}(t)[x, \mathbf{u}, \underline{z}]$ There exist k solutions $(x, \mathbf{u}) \in \overline{\mathbb{K}(t)}^2$ with distinct u-coordinates to

(Contribution 2)

$$\begin{cases}
P(x, \mathbf{u}, F(t, 0), \dots, \partial_{u}^{k-1}F(t, 0)) = 0, \\
\partial_{1}P(x, \mathbf{u}, F(t, 0), \dots, \partial_{u}^{k-1}F(t, 0)) = 0, \quad \mathbf{u} \neq 0, \\
\partial_{u}P(x, \mathbf{u}, F(t, 0), \dots, \partial_{u}^{k-1}F(t, 0)) = 0.
\end{cases}$$

Define

$$\pi_{x}: (x, \mathbf{u}, \underline{z}) \in \overline{\mathbb{K}(t)}^{k+2} \mapsto (\mathbf{u}, \underline{z}) \in \overline{\mathbb{K}(t)}^{k+1},$$

$$\pi_{u}: (\mathbf{u}, \underline{z}) \in \overline{\mathbb{K}(t)}^{k+1} \mapsto (\underline{z}) \in \overline{\mathbb{K}(t)}^{k},$$

and consider $\mathbf{W} := \pi_{\mathsf{X}}(V(P, \partial_1 P, \partial_u P) \setminus V(\mathbf{u})).$

Geometric modelling of the problem

Summary of the initial problem: $\underline{z} \equiv z_0, \dots, z_{k-1}; P = \text{"numer"}(DDE) \in \mathbb{K}(t)[x, \mathbf{u}, \underline{z}]$ There exist k solutions $(x, \mathbf{u}) \in \overline{\mathbb{K}(t)}^2$ with distinct u-coordinates to

$$\begin{cases}
P(x, \mathbf{u}, F(t, 0), \dots, \partial_u^{k-1}F(t, 0)) = 0, \\
\partial_1 P(x, \mathbf{u}, F(t, 0), \dots, \partial_u^{k-1}F(t, 0)) = 0, & \mathbf{u} \neq 0, \\
\partial_u P(x, \mathbf{u}, F(t, 0), \dots, \partial_u^{k-1}F(t, 0)) = 0.
\end{cases}$$

Define

$$\pi_{x}: (\mathbf{x}, \mathbf{u}, \underline{z}) \in \overline{\mathbb{K}(t)}^{k+2} \mapsto (\mathbf{u}, \underline{z}) \in \overline{\mathbb{K}(t)}^{k+1},$$

$$\pi_{u}: (\mathbf{u}, \underline{z}) \in \overline{\mathbb{K}(t)}^{k+1} \mapsto (\underline{z}) \in \overline{\mathbb{K}(t)}^{k},$$

and consider $\mathbf{W} := \pi_x(V(P, \partial_1 P, \partial_u P) \setminus V(\mathbf{u})).$

Objective:

(Contribution 2)

Characterize with polynomial constraints $\mathcal{F}_k := \{ \alpha_{\underline{z}} \in \overline{\mathbb{K}(t)}^k | \ \# \ \pi_u^{-1}(\alpha_{\underline{z}}) \cap \mathbf{W} \ge k \}$ **Example:** (Walks in \mathbb{N} with steps in $\{+1, -2\}$)

 $P := (1-x)u^2 + tu^3x + t(x - z_0 - uz_1) \in \mathbb{K}(t)[x, u, z_0, z_1], \qquad k = 2.$

 G_u Gröbner basis of $\langle P, \partial_1 P, \partial_u P, mu-1 \rangle \cap \mathbb{K}[u, t, z_0, z_1]$ for $\{u\} \succ_{lex} \{t, z_0, z_1\}$:

$$\begin{array}{ll} \text{Example: (Walks in } \mathbb{N} \text{ with steps in } \{+1,-2\}) \\ P := (1-x)u^2 + tu^3x + t(x-z_0-uz_1) \in \mathbb{K}(t)[x,u,z_0,z_1], \\ G_u \text{ Gröbner basis of } \langle P, \partial_1 P, \partial_u P, mu-1 \rangle \cap \mathbb{K}[u,t,z_0,z_1] \text{ for } \{u\} \succ_{lex} \{t,z_0,z_1\}: \\ \mathbf{B}_0: & \gamma_0 \\ \mathbf{B}_1: \begin{cases} \beta_1 \cdot u + \gamma_1 \\ \vdots \\ \beta_r \cdot u + \gamma_r \end{cases} \\ \mathbf{B}_2: & g_2 := u^2 + \beta_{r+1} \cdot u + \gamma_{r+1} \end{cases} \quad \begin{array}{l} \text{``At } (z_0,z_1) \text{ fixed in } \overline{\mathbb{K}(t)}^2, \\ \text{there exist two distinct roots in } u'' \end{cases}$$

(Contribution 2)

B

В

$$\begin{array}{l} \textbf{Example: (Walks in } \mathbb{N} \text{ with steps in } \{+1, -2\}) \\ P := (1-x)u^2 + tu^3 x + t(x-z_0-uz_1) \in \mathbb{K}(t)[x, u, z_0, z_1], \\ G_u \text{ Gröbner basis of } \langle P, \partial_1 P, \partial_u P, mu-1 \rangle \cap \mathbb{K}[u, t, z_0, z_1] \text{ for } \{u\} \succ_{lex} \{t, z_0, z_1\}: \\ \textbf{B}_0: & \gamma_0 \\ \textbf{B}_1: \begin{cases} \beta_1 \cdot u + \gamma_1 \\ \vdots \\ \beta_r \cdot u + \gamma_r \end{cases} \\ \textbf{B}_1: \begin{cases} \beta_1 \cdot u + \gamma_1 \\ \vdots \\ \beta_r \cdot u + \gamma_r \end{cases} \text{ there exist two distinct roots in } u^n \end{cases}$$

(Contribution 2)

$$\mathbf{B}_2: \quad g_2:=\mathbf{u}^2+\beta_{r+1}\cdot\mathbf{u}+\gamma_{r+1}$$

Necessary condition:At $\alpha \in V(G_u \cap \mathbb{K}[t, z_0, z_1])$ fixed,there exist two roots in u $\implies \beta_i, \gamma_j = 0$ (equations)

$$\begin{array}{l} \text{Example: (Walks in } \mathbb{N} \text{ with steps in } \{+1,-2\}) \\ P := (1-x)u^2 + tu^3x + t(x-z_0-uz_1) \in \mathbb{K}(t)[x,u,z_0,z_1], \\ G_u \text{ Gröbner basis of } \langle P,\partial_1P,\partial_uP,mu-1\rangle \cap \mathbb{K}[u,t,z_0,z_1] \text{ for } \{u\} \succ_{lex} \{t,z_0,z_1\}: \\ \textbf{B}_0: \qquad \gamma_0 \\ \textbf{B}_1: \begin{cases} \beta_1 \cdot u + \gamma_1 \\ \vdots \\ \beta_r \cdot u + \gamma_r \end{cases} \\ \textbf{B}_2: g_2 := u^2 + \beta_{r+1} \cdot u + \gamma_{r+1} \end{cases} \quad \begin{array}{l} \text{``At } (z_0,z_1) \text{ fixed in } \overline{\mathbb{K}(t)}^2, \\ \text{there exist two distinct roots in } u'' \end{cases}$$

Necessary condition:At $\alpha \in V(G_u \cap \mathbb{K}[t, z_0, z_1])$ fixed,there exist two roots in u $\implies \beta_i, \gamma_j = 0$ (equations)

Extension theorem:The pre-image of α by π_u is well-defined \Longrightarrow LeadingCoeff $_u(g_2) \neq 0$ Distinct roots in $u \implies \operatorname{disc}_u(g_2) \neq 0$ (inequations)

(Contribution 2)

$$\begin{array}{ll} \mbox{Example: (Walks in \mathbb{N} with steps in $\{+1,-2$)$} \\ P := (1-x)u^2 + tu^3x + t(x-z_0-uz_1) \in \mathbb{K}(t)[x,u,z_0,z_1], & k=2. \\ G_u \mbox{ Gröbner basis of $\langle P,\partial_1P,\partial_uP,mu-1\rangle \cap \mathbb{K}[u,t,z_0,z_1]$ for $\{u\} \succ_{lex} \{t,z_0,z_1\}$:} \\ \mbox{B}_0: & \gamma_0 \\ \mbox{B}_1: \begin{cases} \beta_1 \cdot u + \gamma_1 \\ \vdots & ,\gamma_i,\beta_j \in \mathbb{K}[t,z_0,z_1] \\ \beta_r \cdot u + \gamma_r \\ \mbox{B}_2: & g_2 := u^2 + \beta_{r+1} \cdot u + \gamma_{r+1} \end{cases} & \mbox{ ``At } (z_0,z_1) \mbox{ fixed in } \overline{\mathbb{K}(t)}^2, \\ \mbox{ there exist two distinct roots in u''} \\ \mbox{B}_2: & g_2 := u^2 + \beta_{r+1} \cdot u + \gamma_{r+1} \end{cases}$$

(Contribution 2)

Necessary condition:Extension theorem:At $\alpha \in V(G_u \cap \mathbb{K}[t, z_0, z_1])$ fixed,
there exist two roots in uThe pre-image of α by π_u is well-defined $\Rightarrow \beta_i, \gamma_j = 0$ (equations)Distinct roots in $u \implies \text{disc}_u(g_2) \neq 0$

After adding these constraints to G_u and eliminating u and z_1 : $R(t, z_0) = t^3 z_0^3 - z_0 + 1$ satisfies R(t, F(t, 0)) = 0

- Projecting: Elimination theorem
- Lifting points of the projections: Extension theorems

Cardinality conditions on the fibers:

- Extension theorem (Gröbner bases version)
- g(u, α_z) ∈ K(t)[u] of degree k + j has at least k distinct roots
 ⇒ One of the (k × k)-minors of the Hermite quadratic form associated with g does not vanish at α_z

Ideals, Varieties, and Algorithms

An Introduction to Computational Algebraic Geometry and Commutative Algebra

Fourth Edition

2 Springer

- Projecting: Elimination theorem
- Lifting points of the projections: Extension theorems

Cardinality conditions on the fibers:

- Extension theorem (Gröbner bases version)
- g(u, α_z) ∈ K(t)[u] of degree k + j has at least k distinct roots
 ⇔ One of the (k × k)-minors of the Hermite quadratic form associated with g does not vanish at α_z

Varieties, and Algorithms

An Introduction to Computational Algebraic Geometry and Commutative Algebra

Fourth Edition

2 Springer

[Bostan, N., Safey El Din '23] :

Conjunctions of polynomial equations and inequations whose zero set is \mathcal{F}_k

3-Tamari, $k = 3$				
Α	Т	dt	d _{z0}	
D	2d2h	5	16	
DE	2m	5	16	
HGP + DE	1h40m	5	16	

5-constellations, $k = 4$				
A	Т	dt	d _{z0}	
D	∞	—	—	
DE	∞	26 🗕	53 🗕	
HGP + DE	6h7m	2	5	

- •: data obtained after a computation mod p = 65521.
- A: Algorithm used (D: duplication, DE: direct elimination, HGP: Hybrid Guess-and-Prove [Bostan, Chyzak, N., Safey El Din '22]),
- T: total timing needed to obtain an output in $\mathbb{Q}[t, z_0]$,
- d_{Z} : degree in $Z \in \{t, z_0\}$ of output $R \in \mathbb{Q}[t, z_0]$ s.t. R(t, F(t, a)) = 0,

Intel[®] Xeon[®] Gold CPU 6246R v4 @ 3.40GHz and 1.5TB of RAM with a single thread.

(Contribution 3)

Gröbner bases computations are performed using the C library msolve, and all guessing computations are performed using the gfun Maple package.

Conclusion

- New geometric interpretations of the problem "solving a DDE",
- New algorithm based on algebraic elimination and Gröbner bases,
- Some promising practical results,
- (In the preprint) New geometric algorithm based on Stickelberger's theorem.

Future works

- Study the *minimality* and the *genericity* of the introduced assumptions,
- Provide a maple package for solving DDEs, together with a tutorial paper.

Bibliography

E	C. Banderier and P. Flajolet.
	Basic analytic combinatorics of directed lattice paths.
	volume 281, pages 37-80. 2002.
	Selected papers in honour of M. Nivat.
	E. A. Bender and E. R. Canfield.
	The number of degree-restricted rooted maps on the sphere.
	SIAM J. Discrete Math., 7(1):9-15, 1994.
	A. Bostan, F. Chyzak, H. Notarantonio, and M. S. El Din.
	Algorithms for discrete differential equations of order 1.
	In ISSAC'22, pages 101-110. ACM, New York, [2022] ©2022.
R	M. Bousquet-Mélou, E. Fusy, and LF. Préville-Ratelle.
	The number of intervals in the <i>m</i> -Tamari lattices.
	Electron. J. Combin., 18(2):Paper 31, 26, 2012.
	M. Bousquet-Mélou and A. Jehanne.
	Polynomial equations with one catalytic variable, algebraic series and map enumeration.
	J. Combin. Theory Ser. B, 96(5):623-672, 2006.
	M. Bousquet-Mélou and M. Petkovšek.
	Linear recurrences with constant coefficients: the multivariate case.
	Discrete Math., 225(1-3):51-75, 2000.
	Formal power series and algebraic combinatorics (Toronto, ON, 1998).
	I. M. Gessel and D. Zeilberger.
	An Empirical Method for Solving (Rigorously!) Algebraic-Functional Equations of the Form $F(P(x, t), P(x, 1), x, t) = 0$, 2014.
	Published in the Personal Journal of Shalosh B. Ekhad and Doron Zeilberger,
	https://sites.math.rutgers.edu/-zeilberg/mamarim/mamarimhtml/funeq.html.
	D. E. Knuth.
	The art of computer programming. Vol. 1: Fundamental algorithms.
	Second printing. Addison-Wesley, Reading, MA, 1968.
	G. Pólya.
	Guessing and proving.
	The Two-Year College Mathematics Journal, 9(1):21-27, 1978.
	B. Salvy and P. Zimmermann.
	Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable.
	ACM Transactions on Mathematical Software, 20(2):163-177, 1994.
	É. Schost.
	Computing parametric geometric resolutions.

Appl. Algebra Eng. Commun. Comput., 13(5):349-393, 2003.

Input: $P(F(t, u), F(t, 0), ..., \partial_u^{k-1}F(t, 0), t, u) = 0, \ \delta := \deg(P).$ **Output:** $R \in \mathbb{K}[t, z_0] \setminus \{0\}$ annihilating $F_0 = F(t, 0)$, i.e. $R(t, F_0) = 0.$ **Input:** $P(F(t, u), F(t, 0), ..., \partial_u^{k-1}F(t, 0), t, u) = 0, \ \delta := \deg(P).$ **Output:** $R \in \mathbb{K}[t, z_0] \setminus \{0\}$ annihilating $F_0 = F(t, 0)$, i.e. $R(t, F_0) = 0.$

Input: $P(F(t, u), F(t, 0), ..., \partial_u^{k-1}F(t, 0), t, u) = 0, \ \delta := \deg(P).$ Output: $R \in \mathbb{K}[t, z_0] \setminus \{0\}$ annihilating $F_0 = F(t, 0)$, i.e. $R(t, F_0) = 0.$

Input: $P(F(t, u), F(t, 0), ..., \partial_u^{k-1}F(t, 0), t, u) = 0, \delta := \deg(P).$ **Output:** $R \in \mathbb{K}[t, z_0] \setminus \{0\}$ annihilating $F_0 = F(t, 0)$, i.e. $R(t, F_0) = 0.$

Counting walks in \mathbb{N} with steps in $\{+1, -2\}$ $F(t, u) = 1 + t \cdot u \cdot F(t, u) + t \cdot \frac{F(t, u) - F(t, 0) - u \cdot \partial_u F(t, 0)}{u^2}$

- Draw a random c = 1341, and a prime number p = 19541,
- Using the new algorithm based on elimination theory, we obtain:
 - $R(t,c) \mod p = t^3 + 15794$,
 - $R(c, z_0) \mod p = z_0^3 + 18182z_0 + 1319.$
- Set $b_t = 3$, $b_{z_0} = 3$,
- Compute $F(t,0) = 1 + t^3 + 3t^6 + 12t^9 + 55t^{12} + 273t^{15} + 1428t^{18} + O(t^{2 \cdot b_t \cdot b_{z_0} + 1})$
- Guess $A := t^3 z_0^3 z0 + 1$ such that $A(t, F(t, 0)) = O(t^{(b_t+1) \cdot (b_{z_0}+1)-1})$,
- Check that $A(t, F(t, 0)) = O(t^{2 \cdot b_t \cdot b_{z_0} + 1})$

The output A is certified.