Complexity Estimates for Three Uncoupling Algorithms

Alin Bostan, Frédéric Chyzak, Elie de Panafieu
INRIA, INRIA, LIAFA, DDMF Team

February 21, 2013

How to compute the characteristic polynomial of a matrix?

01

simple case: companion matrix C =

XX)=X"—cp— e X —...—cr X"

How to compute the characteristic polynomial of a matrix?

01

simple case: companion matrix C =

XX)=X"—cp— e X —...—cr X"

reformulation: find P invertible such that PMP~" is companion.

How to compute the characteristic polynomial of a matrix?

01
simple case: companion matrix C =
;
Co Ci ** Cn—1
XX)=X"—cp—c1 X —...—cra X",

reformulation: find P invertible such that PMP~" is companion.
[Krylov31]: [Keller-Gehrig85]'s algorithm, for a random row vector u

u uM
uM uM?
P = [:] ; PM= | . | =CP.

umn—1 uI\I/I”

How to compute the characteristic polynomial of a matrix?

01
simple case: companion matrix C =
;
Co Ci ** Cn—1
XX)=X"—cp—c1 X —...—cra X",

reformulation: find P invertible such that PMP~" is companion.

[Krylov31]: if uMX € Vect(u, uM, . .., uM 1), then

u

po= | PMP~! =[CO]; factor of degree k of y(X).
* *

Ex

How to compute the characteristic polynomial of a matrix?

01
simple case: companion matrix C =
;
Co C1 Cn—1
XX)=X"—cp—c1 X —...—cra X",

reformulation: find P invertible such that PMP~" is companion.
[Danilevski37]: pivot operations like in the Gaussian elimination

Ci
[0 [] ; partial factorisation of x(X).
Ct

How to uncouple a differential system 0Y = MY?

01

simple case: companion matrix Y = Y

0"y = coyr + c1Oys + ...+ 10" .

How to uncouple a differential system 0Y = MY?

01

simple case: companion matrix Y = Y
O"y1 = coyr + €10y + ...+ Cr1 0" 1.

reformulation: find P invertible such that Z := PY statisfies 0Z = CZ.

How to uncouple a differential system 0Y = MY?

0 1
simple case: companion matrix Y = Y

O"yi = coyr + c1Oy1 + ...+ ¢ 0" Ty

reformulation: find P invertible such that Z := PY statisfies 0Z = CZ.

Cyclic Vector Method: [Schlesinger08], [Cope36]
for a random row vector u

How to uncouple a differential system 0Y = MY?
0 1

simple case: companion matrix Y = Y

"1 = coyr + 1Oyt + ...+ 10" .

reformulation: find P invertible such that Z := PY statisfies 0Z = CZ.

Cyclic Vector Method: if Aku € Vect(u, Au, ..., A*"u), then

u

P= 2" A(P)P~" =[C0]; differential equation of order k.

[

How to uncouple a differential system 0Y = MY?

0 1
simple case: companion matrix Y = Y

0"y = coyr + c1Oys + ...+ 10" .

reformulation: find P invertible such that Z := PY statisfies 0Z = CZ.

[Deligne70], [Katz87], [Adjamagbo88], [Churchill-Kovacic02]:
compute u such that {u, Au, ..., A" u} is free.

How to uncouple a differential system 0Y = MY?

0 1
simple case: companion matrix Y = Y

O"yi = coyr + c1Oy1 + ...+ ¢ 0" Ty

reformulation: find P invertible such that Z := PY statisfies 0Z = CZ.

[Barkatou93] and [Ziircher94]: pivot operations like in the Gaussian
elimination

Ci
[¢0]; [] ; several differential equations.
Ct

Motivations

v

Apply algorithms that input differential equations to differential systems,

» preliminary work for the comparison with direct algorithms computing
the rational solutions of a differential system,

v

understand the links between the existing uncoupling algorithms,

» canonical shape for matrices in pseudo-linear Ore-algebras.

Contributions

Analysis of three uncoupling algorithms: CVM, DBZ and AZ
» new algebraic analysis of DBZ and AZ for general inputs,

> precise complexity analysis of DBZ and AZ for generic
inputs O(n® deg(M)),

> fast algorithm for CVM O(n*' deg(M)),

» magma implementation and benchmarks.

Uncoupling and companion matrices

Uncoupling

Transformation of a differential system
oY = My

where M is a matrix in Mat,, ,(I4[x]) and Y a vector of unknowns,

Uncoupling

Transformation of a differential system

oY = MY
where M is a matrix in Mat,, ,(I4[x]) and Y a vector of unknowns,
into one or several differential equations

Oy =coy+ Oy +---+ 10y

where the ¢; are rational functions,

Uncoupling

Transformation of a differential system
oY = My
where M is a matrix in Mat,, ,(I4[x]) and Y a vector of unknowns,
into one or several differential equations
Oy = coy + iy + -+ 10y

where the ¢; are rational functions,

and a correspondance between the solutions of the system and of the
equation.

The companion case

When M is a companion matrix, the transformation is simple:
the system 0Y = MY becomes

14 01 7
Y2 .)]

Yn CoCt - G Yn

The companion case

When M is a companion matrix, the transformation is simple:
the system 0Y = MY becomes

)4l 0 1 y1
Y2 .)]
9 = :
. 1 .
Yn L G0 C1 -+ Cn—t Yn
which implies
2)4
y2 Oyt
y.,.,] 8!1—.1y1

The companion case

When M is a companion matrix, the transformation is simple:
the system 0Y = MY becomes

)4l 01 y1
Y2 .)]
. o 1 .
Yn L G0 C1 -+ Cn—t Yn
which implies
2)4
y2 Ay1
y.,.,] 8!1—.1y1
and

0"y = coyr + c1Oys + -+ 10" .

The companion case

When M is a companion matrix, the transformation is simple:
the system 0Y = MY becomes

n [0 1 "
Y2 . Yo
0 = :
. 1 .
Yn L G0 C1 -+ Cn—t Yn
which implies
Yi T 1
y2 Ay1
y.,.,] 8!1—.1y1

and
0"y = coyr + c1Oys + -+ 10" .

Bijection between the solutions of the system and of the equation.

Block decomposition

oy =CY <= differential equation of order n

Block decomposition

aY =CY

— k —

<= differential equation of order n

<= differential equation of order k

Block decomposition

oy =CY <= differential equation of order n
— k —
oY = ¢ oly <= differential equation of order k
* *
— ki — — ki —
C
oY = . Y <= t differential equations of or-
ders ki, ...,k

Ct

Differential change of basis

In the differential system oY = My
the linear change of variable Z=PY

produces the new differential system 0Z = (PMP~' + (OP)P") Z.

Differential change of basis

In the differential system
the linear change of variable

produces the new differential system

Differential change of variable of M by P:

0Z = (PMP~' + (OP)P") Z.

P[M] := PMP~' + (OP)P .

Differential change of basis

In the differential system
the linear change of variable

produces the new differential system

Differential change of variable of M by P:

0Z = (PMP~' + (OP)P") Z.

P[M] := PMP~' + (OP)P .

Reformulation of the uncoupling problem:

find P such that P[M] = [¢ 2].

The Cyclic Vector Method

The Cyclic Vector Method (CVM)

Choose a row vector u and set A=vr— vM+ Ov.
Find k maximal such that F is free F={u, Au, ..., A"u}

and complement it into a basis FU{akt1,...,an}.

The Cyclic Vector Method (CVM)

Choose a row vector u and set A=v vM+ Ov.
Find k maximal such that F is free F={u, Au, ..., A"u}
and complement it into a basis FU{akt1,...,an}.
! £
The matrix Poyy = Aakk:“ then satisfies APgym = Aj’:U ,

an *

The Cyclic Vector Method (CVM)

Choose a row vector u and set A=v—vM+ Ov.
Find k maximal such that F is free F={u, Au, ..., A"u}
and complement it into a basis FU{akt1,...,an}.

u

Af—1y

The matrix Povm = | "5,

then satisfies APcym = [$ 2] Povm,

an

The Cyclic Vector Method (CVM)

Choose a row vector u and set

Find kK maximal such that F is free

and complement it into a basis

The matrix Poym =

u

ak+1

an

Af—1y

then satisfies

A=v vM-+Ov.
F={u, Au, ..., A"u}

FU{ak+1,...,an}.

PowmM + Peyw = [€ 0] Povm,

The Cyclic Vector Method (CVM)

Choose a row vector u and set
Find kK maximal such that F is free

and complement it into a basis
u

Af—1y

as | then satisfies

The matrix Poym =

an

A=v vM-+Ov.
F={u, Au, ..., A"u}

FU{ak+1,...,an}.

(PoymM + Poypy)Povn ' =

The Cyclic Vector Method (CVM)

Choose a row vector u and set A=v—vM+ Ov.
Find k maximal such that F is free F={u, Au, ..., A"u}
and complement it into a basis FU{akt1,...,an}.

u

A | then satisfies Powm[M] = [€9].

The matrix Povm = | "5,

an

The Cyclic Vector Method (CVM)

Choose a row vector u and set A=v—vM+ Ov.
Find k maximal such that F is free F={u, Au, ..., A"u}
and complement it into a basis FU{akt1,...,an}.

u

A | then satisfies Powm[M] = [€9].

The matrix Povm = | "5,

an

Furthermore, one can compute u such that Pcym[M] = C.
(survey in [Churchill-Kovacic02])

Remarks and experimental observations of CVM

CVM has bad reputation: its output is said to be “very complicated” in

comparison to other uncoupling methods [Hilali83], [Barkatou93],
[ZUrcher94], [Abramov99], [Gerhold02].

Remarks and experimental observations of CVM

CVM has bad reputation: its output is said to be “very complicated” in

comparison to other uncoupling methods [Hilali83], [Barkatou93],
[ZUrcher94], [Abramov99], [Gerhold02].

Experimental observations for random intputs M and u:
1 Poym[M] = Cinstead of [¢ 9],
2 deg(Poym) = (n — 1) deg(M) + deg(u),
3 deg(C) = w deg(M) + ndeg(u).

Remarks and experimental observations of CVM

CVM has bad reputation: its output is said to be “very complicated” in

comparison to other uncoupling methods [Hilali83], [Barkatou93],
[ZUrcher94], [Abramov99], [Gerhold02].

Experimental observations for random intputs M and u:
1 Poym[M] = Cinstead of [¢ 9],
2 deg(Poym) = (n — 1) deg(M) + deg(u),
3 deg(C) = w deg(M) + ndeg(u).

Explanations:
1 for a generic M, the family {u, Au, ..., A" "u} is free,
2,3 for any row vector v, with equality in the generic case
deg(Av) = deg(vM + dv) < deg(v) + deg(M)
[Cluzeau03]

The Danilevski-Barkatou-Ziircher algorithm

Step I:
M—[$2

Step Il:
Gy
[SS]—>[82]—>[]
Ct

or starts over and treats at least one more row.

The pivot operation

Differential change of basis by elementary matrices

——

-

Eij(a) = o Ef(a)M =

The pivot operation

Differential change of basis by elementary matrices

j
4
1
Eij(a) = " . Eij(a)[M] =
1
1
1

Eii(a)[M] =

<+~

The Danilevski-Barkatou-Zircher algorithm (DBZ): Step |

r 1 T 1
* X - X [=1 8 - X
o x - X O X - X
— X - X —O X - X
o X X OO X - X
L 1 L 1
r 1 T 1
* % - x o % x -k
o X - X O X - X
— X e 3 — X X - X
o x - X OO X - K
L 1 L 1
r 1 T 1
* X - X [=1 L8 - X
X X - X O~ % EE S
—x - X — XX - X
o x - X O X X - X
L 1 L 1
r 1 T 1
X X * X O X X - X
*x X - X (S - X
—x Y — XX . X
*x X - X O X X - K
L 1 L 1
r 1 T 1

*x X LR S o X - K

*x X [R S o ¥ - X

* X EES — X - X

* X - X o X - X

L 1 L 1

The Danilevski-Barkatou-Zircher algorithm (DBZ): Step |

[* * % *] [x 1 % -0 %7 ro1 - %7 r010 - %1 ro10 - %7
* ok ok * * ok ke ok Kok ok ek * ok Kk ok * ok ko K
Lk xd Lass xd L % o oo K L% %k oe L% % 4 oee e d
F010 - 07 r010-- 07 r010-- 07 ro10-- 01 ro10-- 07
ok ke x * ok ke K *k 1 x 0*x 1 % 001 - %

* ok ok ok * Kok o ok * ok Kk e Kk * ok K ek
b d L ggg o x) Ligi e ad Lissid Liss o &

When the upper-diagonal coefficient is 0, invert it with a non-zero coefficient
further on the same row.

The Danilevski-Barkatou-Zircher algorithm (DBZ): Step |

[* % % o0 %] [x 1 % -0 %7 ro1 - %7 r010 - %1 ro10 - %7
* ok ko Kk * ok ke ok Kok ok ek * ok ke Kk * ok ko K
Lk xd Lass xd L % o oo K L% %k oe L% % 4 oee e d
F010 - 07 r010-- 07 r010-- 07 ro10-- 01 ro10-- 07
ok ke x koK ko K *k 1 x 0*x 1 % 001 - *%

* ok ok ok * ok ke ok * ok Kk e Kk * ok K ek
b d L ggg o x) Ligi e ad Lissid Liss o &

When the upper-diagonal coefficient is 0, invert it with a non-zero coefficient
further on the same row. If there are none, we have reached

01 0.0

0 0 1

...... 0--0 | =[CO
a0 0 = [C0]

DBZ: Step Il

By elementary differential changes of basis, M then reaches the shape:
00

DBZ: Step Il

By elementary differential changes of basis, M then reaches the shape:
00

x 00 0+ 0 | If all the x are Os, then the matrix is [82] and
* DBZ is applied to the lower-right block, lead-

Cy
ing eventually to the decomposition[]
Ci

DBZ: Step Il

By elementary differential changes of basis, M then reaches the shape:
00

00| If all the x are Os, then the matrix is [§ 9] and
DBZ is applied to the lower-right block, lead-

>*

Cy
ing eventually to the decomposition] .
Ci

Else a cyclic change of basis is applied

c :
0 0- 0
* 0 - e 0 * - %

DBZ: Step Il

By elementary differential changes of basis, M then reaches the shape:
00

00| If all the x are Os, then the matrix is [§ 9] and
* DBZ is applied to the lower-right block, lead-

Cy
ing eventually to the decomposition] .
Ci

Else a cyclic change of basis is applied

c :
0 . o 00 DBZ starts over. The particular shape of this ma-
* 0 eee e * e Kk

. . trix ensures that one more row will be treated,
* 0 0 S which proves that the algorithm terminates.

Experimental observations of DBZ

Tests of DBZ for random inputs.

Expectations

Observations

diagonal block-companion

exponential growth of the degrees
(as observed in the Gaussian
elimination algorithm)

one companion matrix

quadratic growth of the degrees
differential Bareiss phenomenon ?

Experimental observations of DBZ

Tests of DBZ for random inputs.

Expectations Observations

diagonal block-companion one companion matrix

exponential growth of the degrees | quadratic growth of the degrees
(as observed in the Gaussian | differential Bareiss phenomenon ?
elimination algorithm)

M = E[M] deg(M()) < 3d deg(M()) = 3d
M@ = EM[MD)] deg(M®)) < 9d deg(M?)) = 6d
MG = E@Q[MP)] deg(MP®)) < 27d deg(M®)) = 10d

M@ = EG[MEC)] deg(M®)) < 81d deg(M*)) = 15d

The Abramov-Zima algorithm

Step I:
oY =MY - 0Zz=[I0]z

Step II:
1. extract a differential equation that cancels e Y,

2. solve this equation,
3. inject the solutions into the initial differential system,

4. start over.

The Abramov-Zima algorithm (AZ): Step |

)i
Y2
Yo
Z1 =N

_z1 —
Z2

Ly

Zq
Z2
Z3

8}’4

¥n

* ok
...... *
...... H
1

*

1

* 1

21
Z2
Z3
Ya

Yn

22:[*”.*][51
et [}

When the upper-diagonal coefficient
is 0, invert it with a non-zero coeffi-
cient further on the same row. If there

are none, the matrix has shape [I 2],
* 1

where T =

The Abramov-Zima algorithm (AZ): Step |

Zy .

]
Y2

* ot %

* ok %

Z1 1

12

Z2 K oeee eee *

s | 1 r2
}’.n | 1 Yn
Z1 1

Z2 1 5;
23 Y3
Ya — 1
};n ' 1 Yn

When the upper-diagonal coefficient
is 0, invert it with a non-zero coeffi-
cient further on the same row. If there

are none, the matrix has shape [T 9],
* 1

where T =

AZ:

Step I

. Extract from

8[:2] - E.-.-.. [:2]
Z-k . .'-1 Z-k

a differential equation of order k that cancels z; = y;.
For example, pivot operations to shape T into a companion matrix.

2. Solve it and inject the solutions into the initial differential system.

AZ is then applied to this new smaller system.

AZ: Step Il

1. Extract from

8[:2] - E.-.-.. [:2]
Z-k . .'-1 Z-k

a differential equation of order k that cancels z; = y;.
For example, pivot operations to shape T into a companion matrix.

2. Solve it and inject the solutions into the initial differential system.
3. AZis then applied to this new smaller system.

Remarks:

Step | the matrix of change of basis is U - Perm where U is upper-triangular
and Perm is a permutation matrix,

Step Il the matrix of change of basis L is lower-triangular with 1s on its
diagonal.

Experimental observations of AZ

Tests of AZ for random inputs.

Expectations Observations

block-decomposition [T 9 only one block T

exponential growth of the degrees | quadratic growth of the degrees
same output as DBZ and CVM (ey)
the matrices L and U are the LU de-

composition of the matrix of change
of basis computed by DBZ.

Algebraic Analysis

Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of Y = MY.

A(uY) =ud(Y)+ 0(u)Y = (uM + du) Y = A(u)Y

Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of Y = MY.

A(uY) =ud(Y)+ 0(u)Y = (uM + du) Y = A(u)Y

8k(UY) = Co(UY) + C18(UY) +---+ Ck_1ak71(UY)

Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of Y = MY.

A(uY) =ud(Y)+ 0(u)Y = (uM + du) Y = A(u)Y

(Aku) Y = CoUY+ C1(AU)Y + o4+ Ck—1(Ak71U)Y

Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of Y = MY.

A(uY) =ud(Y)+0(u)Y = (uM + du) Y = A(u)Y

(Aku) Y = (cou+ cAu+ -+ Ck_1Ak—1u) y

by the Cauchy-Lipschitz a.k.a. Picard-Lindel6f Theorem,
there is a fundamental system of solutions.

Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of Y = MY.

A(uY) =ud(Y)+0(u)Y = (uM + du) Y = A(u)Y

Au=cu+ciAu+ -+ c 1A

by the Cauchy-Lipschitz a.k.a. Picard-Lindel6f Theorem
there is a fundamental system of solutions.

Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of Y = MY.

A(uY) = ud(Y)+ 0(u)Y = (uM + du) Y = A(u)Y

Au
Aku = [Co vt Ck—1] :
Ak

Algebraic interpretation of CVM

In particular, the differential equation of smallest order that cancels e Y for
every solution of 0Y = MY

Oy =coy+ Oy +--+ 10y

is characterized by

> (ey,ey,..., A ey is free,

Ae
> Ake1 = [Co Ck71]

A"_‘e1

Structure of the output of DBZ and AZ

Theorem: DBZ("), AZ and CVM (&) compute the differential equation of
smallest order that cancels e; Y for every solution of Y = MY.

Structure of the output of DBZ and AZ

Theorem: DBZ("), AZ and CVM (&) compute the differential equation of
smallest order that cancels e; Y for every solution of Y = MY.

Proof:

» DBZ(") and AZ both compute a matrix of change of basis P such that,
if Y = MY and Z = PY, then

9z =[°9]z

* K

where C is a companion matrix of dimension denoted by k,

Structure of the output of DBZ and AZ

Theorem: DBZ("), AZ and CVM (&) compute the differential equation of
smallest order that cancels e; Y for every solution of Y = MY.

Proof:

» DBZ(") and AZ both compute a matrix of change of basis P such that,
if Y = MY and Z = PY, then

9z =[°9]z

* K

where C is a companion matrix of dimension denoted by k,

» because of the shape of this system, the differential equation encoded
by C cancels e;Z and has minimal order,

Structure of the output of DBZ and AZ

Theorem: DBZ("), AZ and CVM (&) compute the differential equation of
smallest order that cancels e; Y for every solution of Y = MY.

Proof:

» DBZ(") and AZ both compute a matrix of change of basis P such that,
if Y = MY and Z = PY, then

0z=[¢%]2

where C is a companion matrix of dimension denoted by k,

» because of the shape of this system, the differential equation encoded
by C cancels e;Z and has minimal order,

» in both cases, the first row of P is ey, because all the matrices of
change of basis involved have first row ey, so

eiZ =eY.

Intermediate matrices of DBZ and AZ
More precisely, when treating the ith row, the change of basis computed by

DBZ() is of the form
e
Ae1

X Permutation Matrix .

Ai71e1
[

€x

Intermediate matrices of DBZ and AZ
More precisely, when treating the ith row, the change of basis computed by

DBZ(") is of the form
e
Ae1

A~1e, | x Permutation Matrix .
[

e
Similarly, the matrices Pf\g and PA(\IQ computed by AZ when treating the ith

row at Step | or Il are the LU decomposition of some

&

Ai—1 e
(e

€%

Complexity analysis for a generic input

Degree and complexity analysis of DBZ for a generic input

Let 0Z = P(’)[M]Z denote the differential system manipulated by DBZ after
the ith row has been treated, then

deg(P) = O(i deg(M)),
deg(PO[M]) = O(i2 deg(M))

by matrix inversion of P.

Degree and complexity analysis of DBZ for a generic input

Let 0Z = P(’)[M]Z denote the differential system manipulated by DBZ after
the ith row has been treated, then

deg(P")) = O(ideg(M)),
deg(PU[M]) = O(# deg(M))

by matrix inversion of P.
Therefore, the modification of the ith row has complexity

O(n?i? deg(M))

Degree and complexity analysis of DBZ for a generic input

Let 0Z = P(’)[M]Z denote the differential system manipulated by DBZ after
the ith row has been treated, then

deg(P")) = O(ideg(M)),
deg(PU[M]) = O(# deg(M))

by matrix inversion of P.
Therefore, the modification of the ith row has complexity

O(n?? deg(M))
and, by summation, for a generic input

Complexity DBZ = O(n® deg(M)).

Degree and complexity analysis of AZ

For a generic input M, the same analysis as for DBZ leads to

Complexity AZ = O(n° deg(M))
using the lemma from [Bareiss68] that the LU decomposition of a matrix of
dimension n and degree d satisfies

deg(L),deg(U),deg(L™"),deg(U™") = O(nd).

Complexity analysis of CVM for a generic input

P :=[u]
v:i=Au
while v is not in Leftimage(P), do
p=1]
v:i=vM+4 Jv
C:=A(P)P!

return P and ¢

Complexity analysis of CVM for a generic input

P :=[u]
v:i=Au
while v is not in Leftimage(P), do
p=1]
v:i=vM+4 Jv
C:=A(P)P!

return P and ¢

Av =vM+ Ov

deg(Av) < deg(v) + deg(M)
Assume deg(u) = 0.

deg(v) < ndeg(M)

Complexity analysis of CVM for a generic input

P :=[u]
v:i=Au
while v is not in Leftimage(P), do
p=1]
v:i=vM+4 Jv
C:=A(P)P!

return P and ¢

Av = vM + 9v deg(P) < ndeg(M)
deg(Av) < deg(v) + deg(M) deg(c) < n* deg(M)
Assume deg(u) = 0. size(P)= O(n®deg(M))
deg(v) < ndeg(M) size(c)= O(n® deg(M))

Complexity analysis of CVM for a generic input

P :=[u]
v:i=Au
while v is not in Leftimage(P), do
p=1]
v:i=vM+4 Jv
C:=A(P)P!

return P and ¢

Av = vM + 9v deg(P) < ndeg(M)
deg(Av) < deg(v) + deg(M) deg(c) < n* deg(M)
Assume deg(u) = 0. size(P)= O(n®deg(M))
deg(v) < ndeg(M) size(c)= O(n® deg(M))

Complexity analysis of CVM for a generic input

P = u]

v:i=Au

while v is not in Leftimage(P), do
P=[V]
v:=VvM+ dv

C:= A(P)P”!

return P and ¢

Av = vM 4+ Ov

deg(Av) < deg(v) + deg(M)

)
Assume deg(u) =0
deg(v) < ndeg(M)

balanced vector-matrix product

deg(P) < ndeg(M)
deg(c) < n” deg(M)
size(P)= O(n® deg(M))
size(¢)=.0O(n® deg(M))

Complexity analysis of CVM for a generic input

P = u]
v:i=Au
while v is not in Leftimage(P), do
P=[7]
v:i=VvM+ Ov
C:=A(P)P!

return P and ¢

Av =vM+ 0v

deg(Av) < deg(v) + deg(M)
Assume deg(u) = 0.

deg(v) < ndeg(M)

deg(P) < ndeg(M)
deg(c) < n deg()
size(P)= O(n® deg(M))
size(c)=-O(n® deg(M))

Complexity analysis of CVM for a generic input

P :=[u]
v:i=Au
while v is not in Leftimage(P), do O(n**" deg(M))
P:=[7]
v:=VvM+ Jv O(n* deg(M))
C:= A(P)P"

return P and ¢

Av = vM + 9v deg(P) < ndeg(M)
deg(Av) < deg(v) + deg(M) deg(c) < n®deg(M)
Assume deg(u) = 0. size(P)= O(n® deg(M))
deg(v) < ndeg(M) size(c)= O(n® deg(M))

Complexity analysis of CVM for a generic input

P = [u]

v:=Au

while v is not in Leftimage(P), do
P=[7]
v:i=vM+4 Jv

¢ := row vector solution of v = cP
return P and ¢

Av = vM + Ov

deg(Av) < deg(v) + deg(M)
Assume deg(u) = 0.

deg(v) < ndeg(M)

O(n**" deg(M))

@(n‘” deg(M))

deg(P) eg(M)

deg(c) deg()

size(P)= O(n® deg(M))
)=

O(n® deg(M))

I/\ I/\

size(c

Complexity analysis of CVM for a generic input

P = [u]

v:=Au

while v is not in Leftimage(P), do
P=[7]
v:i=vM+4 Jv

¢ := row vector solution of v = cP

return P and ¢

Av = vM + Ov

deg(Av) < deg(v) + deg(M)
Assume deg(u) = 0.

deg(v) < ndeg(M)

O(n**" deg(M))

O(n” deg(M))
[Storjohann02]'s algorithm

deg(P) < ndeg(M)
deg(c) < n deg()
size(P)= O(n® deg(M))
size(c)= O(n® deg(M))

Complexity analysis of CVM for a generic input

P :=[u]

v:=Au

while v is not in Leftimage(P), do
P=[V]
v:i=vM+4 Jv

¢ := row vector solution of v = cP

return P and ¢

Av = vM + Ov

deg(Av) < deg(v) + deg(M)
Assume deg(u) = 0.

deg(v) < ndeg(M)

O(r**" deg(M))

G

(n* deg(M))
O(n**" deg(M))

deg(P) < ndeg(M)
deg(c) < n” deg(M)
size(P)= O(n® deg(M))
size(c)= O(n® deg(M))

Implementation and benchmarks

» Magma implementation of DBZ and variants of CVM,

Implementation and benchmarks

» Magma implementation of DBZ and variants of CVM,

> the experimental exponent
fit the theoretical complexities ¢ x deg(M)€ x n® for n but not for deg(M),

n =100 n=5 n =230
Algorithm c e P d=1 d=100 | d =230
CVM 681077 | 1.81 | w+1 | 3.88 103 3.53 155
DBz 7.51078 | 1.61 5 6.01 [e%S) 2.3 14409
BalConstr 241078 | 1.001 | w+1 | 3.00 12.55 0.5 2.7
NaiveConstr 3.3107° 1.90 4 4.00 1.24 0.2 1.64
StorjohannSolve | 8.21077 | 1.75 | w+1 | 3.87 83.60 3.48 153
NaiveSolve 481078 | 1.52 5 6.22 106352 0.85 13806

The exponents are obtained by linear regression on suitable domains
for each algorithm.

Implementation and benchmarks

» Magma implementation of DBZ and variants of CVM,

> the experimental exponent fit the theoretical
complexities ¢ x deg(M)¢ x n® for n but not for deg(M),
The exponents are obtained by linear regression on suitable domains
for each algorithm.

» the resolution step dominates the timings,

Implementation and benchmarks

» Magma implementation of DBZ and variants of CVM,

» the experimental exponent fit the theoretical
complexities ¢ x deg(M)¢ x n® for n but not for deg(M),
The exponents are obtained by linear regression on suitable domains
for each algorithm.

» the resolution step dominates the timings,

» space consumption limits this implementation.

Implementation and benchmarks

Log(time)
sl
)=
al
2r ¢ +4CVM
0t - -BalConstr
¢ . ++StorjohannSolve
PO +4DBZ
LR 1N + *NaiveConstr
ol ¢ ‘) +-NaiveSolve Log(n)
3 4 6 7

Timings on input matrices of dimension n and coefficients with fixed degree d = 15
(smaller marks) or d = 20 (larger marks)

Extensions and futur works

» Extension of the degree and complexity analysis to other Ore algebras
over rational functions fields, like the finite differences case, and to
inhomogeneous differential systems.

Extensions and futur works

» Extension of the degree and complexity analysis to other Ore algebras
over rational functions fields, like the finite differences case, and to
inhomogeneous differential systems.

» We have achieved analgebraic analysis leading to complexity analysis.

Extensions and futur works

» Extension of the degree and complexity analysis to other Ore algebras
over rational functions fields, like the finite differences case, and to
inhomogeneous differential systems.

» We have achieved analgebraic analysis leading to complexity analysis.

» Conversely, we are developing a new algorithm combining the general
diagonal companion-block decomposition of DBZ with CVM formalism.

Extensions and futur works

» Extension of the degree and complexity analysis to other Ore algebras
over rational functions fields, like the finite differences case, and to
inhomogeneous differential systems.

» We have achieved analgebraic analysis leading to complexity analysis.

» Conversely, we are developing a new algorithm combining the general
diagonal companion-block decomposition of DBZ with CVM formalism.

> non-generic matrices:
» structured,
> sparse,
» find matrices that decompose into several companion blocks.

