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How to compute the characteristic polynomial of a matrix?

simple case: companion matrix C =

 0 1
. . .

1
c0 c1 ··· cn−1


χ(X) = X n − c0 − c1X − . . .− cn−1X n−1.

reformulation: find P invertible such that PMP−1 is companion.

[Danilevski37]: pivot operations like in the Gaussian elimination

[ C 0
? ? ] ;

[
C1

. . .
Ct

]
; partial factorisation of χ(X).
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. . .
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
χ(X) = X n − c0 − c1X − . . .− cn−1X n−1.

reformulation: find P invertible such that PMP−1 is companion.

[Krylov31]: [Keller-Gehrig85]’s algorithm, for a random row vector u

P :=

[ u
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...

uMn−1

]
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. . .

1
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
χ(X) = X n − c0 − c1X − . . .− cn−1X n−1.

reformulation: find P invertible such that PMP−1 is companion.

[Krylov31]: if uMk ∈ Vect(u, uM, . . . , uMk−1), then

P :=


u
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uMk−1

e?
...

e?
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? ? ] ; factor of degree k of χ(X).
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How to uncouple a differential system ∂Y = MY ?

simple case: companion matrix ∂Y =

 0 1
. . .

1
c0 c1 ··· cn−1

Y

∂ny1 = c0y1 + c1∂y1 + . . .+ cn−1∂
n−1y1.

reformulation: find P invertible such that Z := PY statisfies ∂Z = CZ .

[Barkatou93] and [Zürcher94]: pivot operations like in the Gaussian
elimination

[ C 0
? ? ] ;

[
C1

. . .
Ct

]
; several differential equations.



How to uncouple a differential system ∂Y = MY ?

simple case: companion matrix ∂Y =

 0 1
. . .

1
c0 c1 ··· cn−1

Y

∂ny1 = c0y1 + c1∂y1 + . . .+ cn−1∂
n−1y1.

reformulation: find P invertible such that Z := PY statisfies ∂Z = CZ .

[Barkatou93] and [Zürcher94]: pivot operations like in the Gaussian
elimination

[ C 0
? ? ] ;

[
C1

. . .
Ct

]
; several differential equations.



How to uncouple a differential system ∂Y = MY ?

simple case: companion matrix ∂Y =

 0 1
. . .

1
c0 c1 ··· cn−1

Y
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u
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]
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Motivations

I Apply algorithms that input differential equations to differential systems,

I preliminary work for the comparison with direct algorithms computing
the rational solutions of a differential system,

I understand the links between the existing uncoupling algorithms,

I canonical shape for matrices in pseudo-linear Ore-algebras.



Contributions

Analysis of three uncoupling algorithms: CVM, DBZ and AZ

I new algebraic analysis of DBZ and AZ for general inputs,

I precise complexity analysis of DBZ and AZ for generic
inputs Õ(n5 deg(M)),

I fast algorithm for CVM Õ(nω+1 deg(M)),

I magma implementation and benchmarks.



Uncoupling and companion matrices



Uncoupling

Transformation of a differential system

∂Y = MY

where M is a matrix in Matn,n(Kd [x]) and Y a vector of unknowns,

into one or several differential equations

∂k y = c0y + c1∂y + · · ·+ ck−1∂
k−1y

where the ci are rational functions,

and a correspondance between the solutions of the system and of the
equation.
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When M is a companion matrix, the transformation is simple:
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Block decomposition

∂Y = CY ⇐⇒ differential equation of order n

∂Y =

← k →
C 0

? ?

Y ⇐⇒ differential equation of order k

∂Y =

← k1 → ← kt →


C1

. . .

Ct

Y ⇐⇒ t differential equations of or-
ders k1, . . . , kt
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Differential change of basis

In the differential system ∂Y = MY

the linear change of variable Z = PY

produces the new differential system ∂Z =
(
PMP−1 + (∂P)P−1

)
Z .

Differential change of variable of M by P: P[M] := PMP−1 + (∂P)P−1.

Reformulation of the uncoupling problem:
find P such that P[M] = [ C 0

? ? ].
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)
Z .

Differential change of variable of M by P: P[M] := PMP−1 + (∂P)P−1.
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The Cyclic Vector Method



The Cyclic Vector Method (CVM)

Choose a row vector u and set ∆ = v 7→ vM + ∂v .

Find k maximal such that F is free F = {u, ∆u, . . . , ∆k−1u}

and complement it into a basis F ∪ {ak+1, . . . , an}.

The matrix PCVM =


u
...

∆k−1u
ak+1

...
an

 then satisfies

Furthermore, one can compute u such that
(survey in [Churchill-Kovacic02])

PCVM[M] = C.
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Remarks and experimental observations of CVM
CVM has bad reputation: its output is said to be “very complicated” in
comparison to other uncoupling methods [Hilali83], [Barkatou93],
[Zürcher94], [Abramov99], [Gerhold02].

Experimental observations for random intputs M and u:

1 PCVM[M] = C instead of [ C 0
? ? ],

2 deg(PCVM) = (n − 1) deg(M) + deg(u),

3 deg(C) = n(n+1)
2 deg(M) + n deg(u).

Explanations:

1 for a generic M, the family {u,∆u, . . . ,∆n−1u} is free,

2,3 for any row vector v , with equality in the generic case

deg(∆v) = deg(vM + ∂v) ≤ deg(v) + deg(M)

[Cluzeau03]
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The Danilevski-Barkatou-Zürcher algorithm

Step I:
M → [ C 0

? ? ]

Step II:

[ C 0
? ? ]→ [ C 0

0 ? ]→

[
C1

. . .
Ct

]
or starts over and treats at least one more row.



The pivot operation

Differential change of basis by elementary matrices

Ei,j(a) =

j
↓



1

. . .

i → a
. . .

1

Ei,j(a)[M] =

j ← i



|

j |

↓ |

i — ? — — —

|

Ei,i(a) =
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The Danilevski-Barkatou-Zürcher algorithm (DBZ): Step I

[ ? ? ? ··· ?
? ? ? ··· ?
...

...
...

...
? ? ? ··· ?

] [ ? 1 ? ··· ?
? ? ? ··· ?
...

...
...

...
? ? ? ··· ?

] [ 0 1 ? ··· ?
? ? ? ··· ?
...

...
...

...
? ? ? ··· ?

] [ 0 1 0 ··· ?
? ? ? ··· ?
...

...
...

...
? ? ? ··· ?

] [ 0 1 0 ··· ?
? ? ? ··· ?
...

...
...

...
? ? ? ··· ?

]

[ 0 1 0 ··· 0
? ? ? ··· ?
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0 1
. . .
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? ··· ··· ?
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...
0 ··· 0

? ··· ··· ?
...

...
? ··· ··· ?

? ··· ?
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...
? ··· ?
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The Danilevski-Barkatou-Zürcher algorithm (DBZ): Step I
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DBZ: Step II

By elementary differential changes of basis, M then reaches the shape:
C

0 ··· 0
...

...
0 ··· 0

?
...
?

0 ··· 0
...

...
0 ··· 0

?

.

If all the ? are 0s, then the matrix is [ C 0
0 ? ] and

DBZ is applied to the lower-right block, lead-

ing eventually to the decomposition

[
C1

. . .
Ct

]
.

Else a cyclic change of basis is applied
? 1 0 ··· 0 ? ··· ?
0
...
0

C

0 ··· 0
...

...
0 ··· 0

?
...
?

0 ··· ··· 0
...

...
0 ··· ··· 0

? ··· ?
...

...
? ··· ?

 DBZ starts over. The particular shape of this ma-
trix ensures that one more row will be treated,
which proves that the algorithm terminates.
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Experimental observations of DBZ
Tests of DBZ for random inputs.

Expectations Observations

diagonal block-companion one companion matrix

exponential growth of the degrees
(as observed in the Gaussian
elimination algorithm)

quadratic growth of the degrees
differential Bareiss phenomenon ?

M(1) = E[M] deg(M(1)) ≤ 3d deg(M(1)) = 3d

M(2) = E(1)[M(1)] deg(M(2)) ≤ 9d deg(M(2)) = 6d

M(3) = E(2)[M(2)] deg(M(3)) ≤ 27d deg(M(3)) = 10d

M(4) = E(3)[M(3)] deg(M(4)) ≤ 81d deg(M(4)) = 15d
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The Abramov-Zima algorithm

Step I:
∂Y = MY → ∂Z = [ T 0

? ? ] Z

Step II:

1. extract a differential equation that cancels e1Y ,

2. solve this equation,

3. inject the solutions into the initial differential system,

4. start over.



The Abramov-Zima algorithm (AZ): Step I

∂

 y1
y2

...
yn

 =

[ ? ? ··· ?
? ··· ··· ?
...

...
? ··· ··· ?

] y1
y2

...
yn

 z2 = [ ? ··· ? ]

[
y2

...
yn

]

z1 := y1

∂

 z1
z2
y3

...
yn

 =

 ? 1
? ? ? ··· ?
? ··· ··· ··· ?
...

...
? ··· ··· ··· ?

 z1
z2
y3

...
yn

 z3 = [ ? ··· ? ]

[
y3

...
yn

]

∂


z1
z2
z3
y4

...
yn

 =

 ? 1
? ? 1
? ··· ··· ··· ?
...

...
? ··· ··· ··· ?




z1
z2
z3
y4

...
yn


When the upper-diagonal coefficient
is 0, invert it with a non-zero coeffi-
cient further on the same row. If there
are none, the matrix has shape [ T 0

? ? ],

where T =


? 1
...

. . .
. . .

...
. . . 1

? ··· ··· ?

.



The Abramov-Zima algorithm (AZ): Step I

∂

 y1
y2

...
yn

 =

[ ? ? ··· ?
? ··· ··· ?
...

...
? ··· ··· ?

] y1
y2

...
yn

  z1
z2
y3

...
yn

 =

 1
? ··· ··· ?

1
. . .

1

 y1
y2

...
yn


z1 := y1

∂

 z1
z2
y3

...
yn

 =

 ? 1
? ? ? ··· ?
? ··· ··· ··· ?
...

...
? ··· ··· ··· ?

 z1
z2
y3

...
yn




z1
z2
z3
y4

...
yn

 =


1

1
? ··· ··· ?

1
. . .

1


 z1

z2
y3

...
yn



∂


z1
z2
z3
y4

...
yn

 =

 ? 1
? ? 1
? ··· ··· ··· ?
...

...
? ··· ··· ··· ?




z1
z2
z3
y4

...
yn


When the upper-diagonal coefficient
is 0, invert it with a non-zero coeffi-
cient further on the same row. If there
are none, the matrix has shape [ T 0

? ? ],

where T =


? 1
...

. . .
. . .

...
. . . 1

? ··· ··· ?

.



AZ: Step II

1. Extract from

∂

[ z1
z2

...
zk

]
=


? 1
...

. . .
. . .

...
. . . 1

? ··· ··· ?

[ z1
z2

...
zk

]

a differential equation of order k that cancels z1 = y1.
For example, pivot operations to shape T into a companion matrix.

2. Solve it and inject the solutions into the initial differential system.

3. AZ is then applied to this new smaller system.

Remarks:

Step I the matrix of change of basis is U · Perm where U is upper-triangular
and Perm is a permutation matrix,

Step II the matrix of change of basis L is lower-triangular with 1s on its
diagonal.



AZ: Step II

1. Extract from

∂

[ z1
z2

...
zk

]
=


? 1
...

. . .
. . .

...
. . . 1

? ··· ··· ?

[ z1
z2

...
zk

]

a differential equation of order k that cancels z1 = y1.
For example, pivot operations to shape T into a companion matrix.

2. Solve it and inject the solutions into the initial differential system.

3. AZ is then applied to this new smaller system.

Remarks:

Step I the matrix of change of basis is U · Perm where U is upper-triangular
and Perm is a permutation matrix,

Step II the matrix of change of basis L is lower-triangular with 1s on its
diagonal.



Experimental observations of AZ

Tests of AZ for random inputs.

Expectations Observations

block-decomposition [ T 0
? ? ] only one block T

exponential growth of the degrees quadratic growth of the degrees

same output as DBZ and CVM (e1)

the matrices L and U are the LU de-
composition of the matrix of change
of basis computed by DBZ.



Algebraic Analysis



Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of ∂Y = MY .

∂(uY ) = u∂(Y ) + ∂(u)Y = (uM + ∂u) Y = ∆(u)Y

∂k (uY ) = c0(uY ) + c1∂(uY ) + · · ·+ ck−1∂
k−1(uY )
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Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of ∂Y = MY .

∂(uY ) = u∂(Y ) + ∂(u)Y = (uM + ∂u) Y = ∆(u)Y

(
∆k u

)
Y =

(
c0u + c1∆u + · · ·+ ck−1∆k−1u

)
Y

by the Cauchy-Lipschitz a.k.a. Picard-Lindelöf Theorem,
there is a fundamental system of solutions.
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Algebraic interpretation of CVM

Let u be a row vector, CVM computes the differential equation of smallest
order that cancels uY for any solution of ∂Y = MY .

∂(uY ) = u∂(Y ) + ∂(u)Y = (uM + ∂u) Y = ∆(u)Y

∆k u = [ c0 ··· ck−1 ]

[ u
∆u
...

∆k−1u

]



Algebraic interpretation of CVM

In particular, the differential equation of smallest order that cancels e1Y for
every solution of ∂Y = MY

∂k y = c0y + c1∂y + · · ·+ ck−1∂
k−1y

is characterized by

I (e1,∆e1, . . . ,∆
k−1e1) is free,

I ∆k e1 = [ c0 ··· ck−1 ]

 e1
∆e1

...
∆k−1e1

.



Structure of the output of DBZ and AZ
Theorem: DBZ(I), AZ and CVM (e1) compute the differential equation of
smallest order that cancels e1Y for every solution of ∂Y = MY .

Proof:

I DBZ(I) and AZ both compute a matrix of change of basis P such that,
if ∂Y = MY and Z = PY , then

∂Z = [ C 0
? ? ] Z

where C is a companion matrix of dimension denoted by k ,

I because of the shape of this system, the differential equation encoded
by C cancels e1Z and has minimal order,

I in both cases, the first row of P is e1, because all the matrices of
change of basis involved have first row e1, so

e1Z = e1Y .
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I DBZ(I) and AZ both compute a matrix of change of basis P such that,
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Intermediate matrices of DBZ and AZ
More precisely, when treating the i th row, the change of basis computed by
DBZ(I) is of the form 

e1
∆e1

...
∆i−1e1

e?
...

e?

× Permutation Matrix .

Similarly, the matrices P(I)
AZ and P(II)

AZ computed by AZ when treating the i th
row at Step I or II are the LU decomposition of some

e1

...
∆i−1e1

e?
...

e?

 .
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Complexity analysis for a generic input



Degree and complexity analysis of DBZ for a generic input

Let ∂Z = P(i)[M]Z denote the differential system manipulated by DBZ after
the i th row has been treated, then

deg(P(i)) = O(i deg(M)),

deg(P(i)[M]) = O(i2 deg(M))

by matrix inversion of P.

Therefore, the modification of the i th row has complexity

Õ(n2i2 deg(M))

and, by summation, for a generic input

Complexity DBZ = Õ(n5 deg(M)).



Degree and complexity analysis of DBZ for a generic input

Let ∂Z = P(i)[M]Z denote the differential system manipulated by DBZ after
the i th row has been treated, then

deg(P(i)) = O(i deg(M)),

deg(P(i)[M]) = O(i2 deg(M))

by matrix inversion of P.
Therefore, the modification of the i th row has complexity
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Let ∂Z = P(i)[M]Z denote the differential system manipulated by DBZ after
the i th row has been treated, then

deg(P(i)) = O(i deg(M)),

deg(P(i)[M]) = O(i2 deg(M))

by matrix inversion of P.
Therefore, the modification of the i th row has complexity

Õ(n2i2 deg(M))

and, by summation, for a generic input
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Degree and complexity analysis of AZ

For a generic input M, the same analysis as for DBZ leads to

Complexity AZ = Õ(n5 deg(M))

using the lemma from [Bareiss68] that the LU decomposition of a matrix of
dimension n and degree d satisfies

deg(L), deg(U), deg(L−1), deg(U−1) = O(nd).



Complexity analysis of CVM for a generic input

P := [ u ]

v := ∆u

while v is not in LeftImage(P), do

P := [ P
v ]

v := vM + ∂v

C := ∆(P)P−1

return P and c

∆v = vM + ∂v

deg(∆v) ≤ deg(v) + deg(M)

Assume deg(u) = 0.

deg(v) ≤ n deg(M)

deg(P) ≤ n deg(M)

deg(c) ≤ n2 deg(M)

size(P)= O(n3 deg(M))

size(c)= O(n3 deg(M))
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Implementation and benchmarks

I Magma implementation of DBZ and variants of CVM,

I the experimental exponent fit the theoretical
complexities c × deg(M)e × np for n but not for deg(M),
The exponents are obtained by linear regression on suitable domains
for each algorithm.

I the resolution step dominates the timings,

I space consumption limits this implementation.
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n = 100 n = 5 n = 30

Algorithm c e p d = 1 d = 100 d = 30

CVM 6.8 10−7 1.81 ω + 1 3.88 103 3.53 155

DBZ 7.5 10−8 1.61 5 6.01 ∞ 2.3 14409

BalConstr 2.4 10−6 1.01 ω + 1 3.00 12.55 0.5 2.7

NaiveConstr 3.3 10−9 1.90 4 4.00 1.24 0.2 1.64

StorjohannSolve 8.2 10−7 1.75 ω + 1 3.87 83.60 3.48 153

NaiveSolve 4.8 10−8 1.52 5 6.22 106352 0.85 13806
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I space consumption limits this implementation.
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Implementation and benchmarks

Timings on input matrices of dimension n and coefficients with fixed degree d = 15
(smaller marks) or d = 20 (larger marks)



Extensions and futur works

I Extension of the degree and complexity analysis to other Ore algebras
over rational functions fields, like the finite differences case, and to
inhomogeneous differential systems.

I We have achieved analgebraic analysis leading to complexity analysis.

I Conversely, we are developing a new algorithm combining the general
diagonal companion-block decomposition of DBZ with CVM formalism.

I non-generic matrices:
I structured,
I sparse,
I find matrices that decompose into several companion blocks.
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