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Problem Statement

p,q,r €N
E a linear/affine subspace of p x g matrices with real entries

For (M) a p x g matrix, [[M|lg = />, Miz,j'

(M, Mb) = trace(My - MJ)
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Problem Statement

p,q,r €N
E a linear/affine subspace of p x g matrices with real entries

For (Mjj) a p x g matrix, M|z = /3>>;; Miz,j'

(M, Mb) = trace(My - MJ)

Structured Low-Rank Approximation

Given M € E, compute a matrix M € E such that
m Rank(M) < r;

’I\/I — MH is small.
F

“Behind every linear data modeling problem there is a (hidden)
low-rank approximation problem: the model imposes relations on
the data which render a matrix constructed

from exact data rank deficient.”

Markovsky, 08
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Examples and applications

m £ =Sylvester matrices ~~ univariate approximate GCD

das 0 b2 0 0
dy as bl b2 0
dr ar bo b1 b2
dg di 0 bo bl
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Examples and applications

m £ =Sylvester matrices ~~ univariate approximate GCD
m £ =Hankel matrices ~~ denoising, signal processing

m £ =affine coordinate spaces ~~ matrix completion
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Examples and applications

E =Sylvester matrices ~~ univariate approximate GCD
E =Hankel matrices ~~ denoising, signal processing

E =affine coordinate spaces ~~ matrix completion

E =Ruppert matrices ~» multivariate factorization

0 -2 —-a 0 -2b —d
-1 0 ¢ —-b O e
a 2c 0 d 2e 0
0 0 0 1 a c
0 0 0 —-b —d -e

XY? + aXY + bY? + cX +dY + e € C[X, Y] factors < rank < 4
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Structured Low-Rank Approximation

Given M € E, compute a matrix M € E such that
m Rank(M) < r;

m|M— MH is “small”.
F

Which notion of “small”, for which distance?
~ depends on the application
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Structured Low-Rank Approximation

Given M € E, compute a matrix M € E such that
m Rank(M) < r;

m|M— MH is “small”.
F

Which notion of “small”, for which distance?
~ depends on the application

Minimizing is hard

Option: “not too far” from the minimizer?
~» numerical algorithm, joint work with Eric Schost

Symbolical minimization

joint work with Giorgio Ottaviani and Bernd Sturmfels

~~ algebraic complexity of the problem

~~ gives useful information for numerical algorithms (e.g. bounds

on the number of local minima)
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Main results (numerical algorithm)

2, manifold of p x ¢ matrices of rank r
E: linear/affine subspace of p x g matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic
convergence under mild transversality assumptions.

y
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Main results (numerical algorithm)

2, manifold of p x ¢ matrices of rank r
E: linear/affine subspace of p x g matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic
convergence under mild transversality assumptions.

More precisely: for any smooth point ( € , N E where &, and E
intersect transversely, there exists a small neighborhood U O ¢
such that for any input matrix My € U,

m the sequence of iterates My, My, ... converges quadratically

towards Moo € 2, NE, i.e.
IM; = Mol < (1/2)* 7 [|Mo — M|
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Main results (numerical algorithm)

2, manifold of p x ¢ matrices of rank r
E: linear/affine subspace of p x g matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic
convergence under mild transversality assumptions.

More precisely: for any smooth point ( € , N E where &, and E
intersect transversely, there exists a small neighborhood U O ¢
such that for any input matrix My € U,

m the sequence of iterates My, My, ... converges quadratically
towards Moo € 2, NE, i.e.
IM; = Mool < (1/2)% 71 || Mo — M|

m Let M be the nearest solution;
then HI\/IOO - I\/IH = O(dist(Mo, 2, N E)?).

y
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Related problems

m £N %, is finite ~ MinRank problem.
~~ finite fields: Cryptology, Coding theory,. ..
Bettale, Buss, Courtois, Frandsen, Gaborit, Goubin, Kipnis,
Levy-dit-Vehel, Faugére, Perret, Ruatta, Safey, Shallit, Shamir,
S, ...
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Bettale, Buss, Courtois, Frandsen, Gaborit, Goubin, Kipnis,
Levy-dit-Vehel, Faugére, Perret, Ruatta, Safey, Shallit, Shamir,
S, ...

m Low-rank approximation and singular value decomposition
Demmel, Kahan, Golub, Van Loan,. ..
Approximate SVD, CUR decompositions:
Drineas, Halko, Martinsson, Tropp, Mahoney, Menon,. ..

m Structured Total Least Norm:
Park, Rosen, Kaltofen/Zhi/Yang

m Alternating projections: von Neumann, Cadzow

m Optimization: Chu/Funderlic/Plemmons
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Singular Value Decomposition

Eckart-Young theorem

Let M= U-S - VT be the Singular Value Decomposition of M,
where S = Diag(oy,...,04) with oy > --- > 04.

Set S = Diag(o1,...,0r,0,...,0).

Then M= U-S - VT is the rank r matrix which minimizes the
Frobenius distance to M. )
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Singular Value Decomposition

Eckart-Young theorem

Let M= U-S - VT be the Singular Value Decomposition of M,
where S = Diag(oy,...,04) with oy > --- > 04.

Set S = Diag(o1,...,0r,0,...,0).

Then M= U-S - VT is the rank r matrix which minimizes the
Frobenius distance to M.

Cadzow'’s algorithm (Cadzow, 88, Lewis/Malick 08):

m project on Z, (the manifold of matrices of rank r) with SVD;
m project back on E.

Converges linearly towards a point in 9, N E.
Does not converge to the nearest solution.
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Cadzow's algorithm
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Newton's method

Classical Newton’s method for f : R" — R”"
Nr(x) = DF(x) 1 (f(x)).

Quadratic convergence when Df is locally invertible.
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Newton's method

Classical Newton’s method for f : R" — R”"
Nr(x) = DF(x) 1 (f(x)).

Quadratic convergence when Df is locally invertible.

Newton’s method for underdetermined systems:
f i R™ — R", Ne(x) = Df(x)T(f(x)).
DfT: Moore-Penrose pseudo-inverse.

Quadratic convergence towards a point x5, such that f(xx) =0
when Df is locally surjective.
If xp is the starting point of the iteration, let

% = argming(,)—olly — xol|-
Does not converge to the nearest solution %X, but
%0 — &Il = O (llxo — %|1%) -

Ben-Israel 66, Allgower/Georg 90, Beyn 93,

ShubiSmale 96i DedieuiShub 00i DedieuiKim 02i Dedieu 06
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Newton's method
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Newton's method

1 E
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Newton's method
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NewtonSLRA
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Normal space of determinantal varieties

9,: algebraic variety of matrices of rank at most r.
~ well-studied in algebraic geometry/commutative algebra
Bruns, Conca, Eisenbud, Herzog, Lascoux, Room, Sturmfels,. . .
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Normal space of determinantal varieties

9,: algebraic variety of matrices of rank at most r.
~ well-studied in algebraic geometry/commutative algebra
Bruns, Conca, Eisenbud, Herzog, Lascoux, Room, Sturmfels,. . .

Classical theorem

Let M be p x g matrix of rank r.
Then the normal space to &, at M is

Ker(MT) @ Ker(M).

Bases of the kernels of M and MT can be read off from the
Singular Value Decomposition of M.
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NewtonSLRA

1. procedure NewtonSLRA(M € E, (Ei,..., E4) an orthonormal

O 00 N O b W N

[ = S S
w N = O

14:

basis of E, r € N)

(U, S, V) < SVD(M)

S, < r X r top-left submatrix of S

U, < first r columns of U

V, « first r columns of V

MU, -S, - V]

Ui,...,Up—r < last p — r columns of U

Vi,...,Vq_r < last ¢ — r columns of V

forie{l,...,p—r},je{l,...,g—r} do
Nii-1) (- < Ui - V'

end for

A < ((Ni, Ej))i

b+ ((N,‘, M — M>),

return M+ [E1 ... Eg|-AT-b

15: end procedure
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Rate of convergence

Quadratic convergence
For any smooth point ( € &, N E where &, and E intersect
transversely, there exists a small neighborhood U O ( such that
for any input matrix My € U,
m the sequence of iterates My, My, ... converges quadratically
towards a matrix M € Z, NE, ie.
[M; — Moo || < (1/2)* 7 [[Mo — M|
m Let M be the nearest solution;
then Hl\/lm - MH — O(dist(Mo, Z, N E)?).
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Rate of convergence

Quadratic convergence

For any smooth point ( € &, N E where &, and E intersect
transversely, there exists a small neighborhood U O ( such that
for any input matrix My € U,
m the sequence of iterates My, My, ... converges quadratically
towards a matrix M € Z, NE, ie.
IM; — Mool < (1/2)* 7 [[Mo — Moo
m Let M be the nearest solution;
then HMQO - MH — O(dist(Mo, Z, N E)?).

«

Dr

- X

Sketch of proof:
m lower bound for «;
m Taylor approximation of Mg, ;

m manage corrective terms when
dim(2,NE) > 0.

PJ Spaenlehauer



Main features of NewtonSLRA

m Combines the generality of alternating projections and the
quadratic convergence of Newton's method.

m Computationally most intensive step: computing the SVD
(polynomial in p, g at fixed precision).

m Algorithm for SLRA with proven quadratic rate of
convergence.

15 PJ Spaenlehauer



Application to approximate GCD

Approximate GCD

Let m,n,d € N, f, g € R[x] with deg(f) = m, deg(g) = n.
Find f*, g* € R[x], deg(f*) = m, deg(g*) = n such that

deg(GCD(f*,g%)) > d
and (f*, g*) are close to (f, g).
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Application to approximate GCD

Approximate GCD
Let m,n,d € N, f, g € R[x] with deg(f) = m, deg(g) = n.
Find f*, g* € R[x], deg(f*) = m, deg(g*) = n such that

deg(GCD(f*,g%)) > d
and (f*, g*) are close to (f, g).

m Euclidean distance on the pairs (f, g):

m oo ) m &
IQ_ . D) =3 2+ &
i=0 j=0 i=0 Jj=0

m What does “close” mean
~ quasi-GCD, Schénhage 85
~+ e-GCD, Emiris/Galligo/Lombardi 97, Zeng/Dayton 04,
Bini/Boito 06-09
~ nearest pair for a given norm, Karmarkar/Lakshman 98,

Kaltofen/Zhi/Yang 05-08, Terui 09
"



Experimental results

Comparison with GPGCD, Terui, ISSAC09.

sizes of iteration steps 10-22|
iteration | NewtonSLRA | GPGCD .
1 0.9e-1 0.9e-1 _;Ej
2 0.5e-3 0.5e-3 %07“5— .
3 0.6e-8 0.2e-5 .
4 0.1le-17 0.8e-8 y
5 0.1e-36 0.4e-10 o\
25 o 10 0 100 200 300 400 500
n—m=— , = . n
n=m=2d.
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Experimental results

Comparison with GPGCD, Terui, ISSAC09.

sizes of iteration steps 10-22|

iteration | NewtonSLRA | GPGCD .

1 0.9e-1 0.9e-1 _;Ej

2 0.5e-3 0.5e-3 g"’“’”

3 0.6e-8 0.2e-5

4 0.1le-17 0.8e-8

5 0.1e-36 0.4e-10 10725

25 d 10 0 100 200 360 400 500
n=m= . = . n
n=m=2d.

Fast convergence towards &, N E
~ starting point for a certified Gauss-Newton iteration
Auroux/Chéze/Masmoudi/Yakoubsohn 06
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Matrix Completion

Unknown matrix of rank r:

7?77
7
7
777
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Unknown matrix of rank r:
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Uncover m entries at random.
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Matrix Completion

Unknown matrix of rank r:
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Matrix Completion

Unknown matrix of rank r:
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Matrix Completion

Unknown matrix of rank r:

74077
FO Y
1 7 9 7
[

Uncover m entries at random.
How many entries do we need? How to reconstruct the matrix?

Algebraic structure, Merle/Giusti, '81
Alternating minimization, Jain, Netrapalli, Sanghavi, 12

m Riemannian optimization,
Absil/Amodei/Meyer 12, Vandereycken 12

m Convex relaxation, Candes, Tao, Plan, Recht, 09-13
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Experimental results

Overdetermined SLRA problems
Transversality assumption do not hold ~» no quadratic convergence.
Square matrix of size p = 40

1 T T o Jd o ev ¢
° ° ° ® o o . o o9 °
. e o
. o ° e o o
° ] [ o © ° o °
° ° ° °
oy O ° ° ° s ° O35
° ° ° o L A Yo
g ° ° o °,
3 . ° N ° .
~ ° ° ° 05 LI
| 0.6 ° . °
° ° . o,
c& ° L] ° ° Cn
h ° ° °,
. O 5 °,
° o, .
41 . ®e Te. .
®e . Ce,
L] ° o .
‘lNewtonSLRAofailoconvex ‘ e,
Il Il
982 03 04 05 06 07 08 09 1
m/p?
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An algebraic approach to SLRA

The Euclidean distance degree
Draisma/Horobet/Ottaviani/Sturmfels/Thomas 13
V € C" an algebraic variety, u € C" a generic point. The

EDdegree of V is the number of complex critical points of the
function

)‘l(Xl - U1)2 P oooF An(xn - Un)2

on the smooth locus of V. |
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An algebraic approach to SLRA

The Euclidean distance degree
Draisma/Horobet/Ottaviani/Sturmfels/Thomas 13
V € C" an algebraic variety, u € C" a generic point. The

EDdegree of V is the number of complex critical points of the
function

)‘l(Xl - U1)2 P oooF An(xn - Un)2

on the smooth locus of V. |

Nearest solution of SLRA:

critical point of the distance func-

tion on a linear section of a deter-

minantal variety 2, N E.
EDdegree(ellipse) = 4.
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The EDdegree as a complexity measure

Line
EDdegree=1
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The EDdegree as a complexity measure

Line Circle
EDdegree=1 EDdegree= 2
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The EDdegree as a complexity measure
Line

EDdegree=1
Parabola
3

EDdegree=

PJ Spaenlehauer

Circle
EDdegree= 2

Ellipse
EDdegree= 4




The EDdegree as a complexity measure

Y @
N

Line Circle

EDdegree= EDdegree= 2
Parabola Ellipse
EDdegree= 3 EDdegree= 4

Strong experimental correlation between timings (symbolic
solving with Grobner bases) and EDdegree.
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Structured Low-Rank Approximation:
~ family of computationally hard problems

with (relatively) low algebraic degree!

Timings of Grébner basis software (FGb, Magma):
~ related to the EDdegree
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Structured Low-Rank Approximation:

~ family of computationally hard problems

with (relatively) low algebraic degree!

Timings of Grébner basis software (FGb, Magma):
~ related to the EDdegree

Goals:

m find efficient formulations as polynomial systems;
m Algebraic geometry techniques for estimating the EDdegree;

m Certification of numerical methods?

22 PJ Spaenlehauer



A general bound

critical points of Ay 1(x11 — u171)2 + - Ap q(xpq — up7q)2 on Vimooth
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A general bound

critical points of Ay 1(x11 — u171)2 + - Ap q(xpq — up,q)2 on Vimooth

Ottaviani/S./Sturmfels "13

Let £ be a generic codimension s linear space of p X g matrices,
and V be the variety of rank-deficient matrices in £. The
generic EDdegree of V equals

g+ -+ 5pq—2—s‘

where

ptq—2
i (k+1
— _1)pta—k
o= 3 (55w

ve = [P0 (14 5)P(1 + B)9(t + 5)*.
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A general bound

critical points of Ay 1(x11 — u171)2 + - Ap q(xpq — up7q)2 on Vimooth

Ottaviani/S./Sturmfels "13

Let £ be a generic codimension s linear space of p X g matrices,
and V be the variety of rank-deficient matrices in £. The
generic EDdegree of V equals

g+ -+ 5pq—2—s‘

where
p+q—2
k+1
5 = _1)pta—k
= R ()
vk = [sp’ltq’l] (1+5)P(1+ t)9(t + s)k.
+ conjectured formula for the Frobenius norm (\; =... = ), , = 1).

23 PJ Spaenlehauer



Special linear subspaces: resultant and approximate GCD

F(X) = fpX™+-+HX+
gX) = gX"+---+;X+1h
I(F,8)II2 = amf2+ -+ aoff + Bag2 + - + Bog?

V C C™"*2; vanishing locus of the resultant.
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Special linear subspaces: resultant and approximate GCD

F(X) = fpX™+-+HX+
gX) = gX"+---+;X+1h
I(F,8)II2 = amf2+ -+ aoff + Bag2 + - + Bog?

V C C™"*2; vanishing locus of the resultant.

Ottaviani/S./Sturmfels "13

The generic EDdegree of V equals 4(m + n) — 2.

For all weights («, 3), the number of locally nearest pairs (', g’)
with a non trivial GCD is bounded by 4(m + n) — 2.

In the case of the rotation invariant quadratic form, we
conjecture that the ED degree equals 2 max(n, m).

24 PJ Spaenlehauer



The conormal variety

f?//l//// Let X C C" be an affine cone
¢ T 117 / (the vanishing locus of homogeneous

\ T / polynomials). The conormal variety
4 Nx € C" x C" is defined as

Nx = {(x,v) : X € Xsmootn, v € Ny X}
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The conormal variety

Ll |
i ! 7, Let X C C" be an affine cone
>

AR (the vanishing locus of homogeneous
\ TT f // polynomials). The conormal variety
4 Nx € C" x C" is defined as

Nx = {(x,v) : X € Xsmootn, v € Ny X}

x € Xsmooth critical point of > \;i(x; — u;)?
V3 Ai(xi — uj)? € Ny X

2)\1X1 — W 2)\1 u
: = | i | for(x,v) € Nx
2AnXn — Vp 2AnUn

25 PJ Spaenlehauer



Proposition (Draisma/Horobet/Ottaviani/Sturmfels/ Thomas)

The EDdegree of a projective variety is bounded by the sum of
the degrees of its polar classes. Equality holds when the
diagonal of the conormal variety is empty.

Duality:

Nx = {(x,V) : X € Xsmooth,V € NxX}.
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Nx = {(x,v) : X € Xsmooth,V € NxX}.
m: Nx — C° X* =TIm(m)

(x,v) — v

Rank r matrices are dual to corank r matrices.
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(x,v) — v

Rank-deficient matrices are dual to rank 1 matrices
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Proposition (Draisma/Horobet/Ottaviani/Sturmfels/ Thomas)

The EDdegree of a projective variety is bounded by the sum of
the degrees of its polar classes. Equality holds when the
diagonal of the conormal variety is empty.

Duality:

Nx = {(x,V) : X € Xsmooth,V € NxX}.

m: Nx — C° X* = Tm(my)
(x,v) — v
Rank-deficient matrices are dual to rank 1 matrices
~+ Segre varieties.
Other applications:
m low-rank approximation of tensors

m low-rank approximation of Hankel matrices
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Open questions

What about the number of real critical points/local minima?
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Open questions

What about the number of real critical points/local minima?

Open even for unstructured weighted low-rank approximation!

Question: is the number of local minima of rank 1 (resp. corank
1) approximation bounded by min(p, q) (Rey'13)7
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Open questions

What about the number of real critical points/local minima?

Open even for unstructured weighted low-rank approximation!

Question: is the number of local minima of rank 1 (resp. corank
1) approximation bounded by min(p, q) (Rey'13)7

Ottaviani/S./Sturmfels’13: negative answer

—-59 11 59 9 6 1
U=]11 59 59 A=16 1 9
59 59 11 1 96

Rank 1 approximation of U has 7 local minima. EDdegree = 39,
number of real critical points: 19.
Can we find more real critical points/local minima?
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Conclusions and perspectives

\Linear sections of determinantal varieties\
rich structure with a lot of facets
(numeric/symbolic, finite fields/characteristic 0, real solutions)
which appears in many applications.

m Replacing the SVD by other rank approximation techniques
to speed up the computations

Model of noise
Impact of the choice of the distance
Certification of NewtonSLRA a /a Dedieu: a7y theorems?

Algebraic properties of special linear subspaces.
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Conclusions and perspectives

\Linear sections of determinantal varieties\
rich structure with a lot of facets
(numeric/symbolic, finite fields/characteristic 0, real solutions)
which appears in many applications.

m Replacing the SVD by other rank approximation techniques
to speed up the computations

Model of noise
Impact of the choice of the distance
Certification of NewtonSLRA a /a Dedieu: a7y theorems?

Algebraic properties of special linear subspaces.

Thank you!
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