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Problem Statement

p, q, r ∈ N
E a linear/a�ne subspace of p × q matrices with real entries

For (Mi ,j) a p × q matrix, ‖M‖F =
√∑

i ,j M
2
i ,j ,

〈M1,M2〉 = trace(M1 ·Mᵀ2 )

Structured Low-Rank Approximation

Given M ∈ E , compute a matrix M̂ ∈ E such that

Rank(M̂) ≤ r ;∥∥∥M − M̂
∥∥∥
F
is small.

�Behind every linear data modeling problem there is a (hidden)
low-rank approximation problem: the model imposes relations on

the data which render a matrix constructed
from exact data rank de�cient.�

Markovsky, 08
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Examples and applications

E =Sylvester matrices  univariate approximate GCD

E =Hankel matrices  denoising, signal processing

E =a�ne coordinate spaces  matrix completion

E =Ruppert matrices  multivariate factorization


a3 0 b2 0 0
a2 a3 b1 b2 0
a1 a2 b0 b1 b2
a0 a1 0 b0 b1
0 a0 0 0 b0



XY 2 + aXY + bY 2 + cX + dY + e ∈ C[X ,Y ] factors ⇔ rank ≤ 4
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Examples and applications

E =Sylvester matrices  univariate approximate GCD
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Speci�cation

Structured Low-Rank Approximation

Given M ∈ E , compute a matrix M̂ ∈ E such that

Rank(M̂) ≤ r ;∥∥∥M − M̂
∥∥∥
F
is �small�.

Which notion of �small� , for which distance?
 depends on the application

Minimizing is hard

Option: �not too far� from the minimizer?
 numerical algorithm, joint work with Éric Schost

Symbolical minimization
joint work with Giorgio Ottaviani and Bernd Sturmfels
 algebraic complexity of the problem
 gives useful information for numerical algorithms (e.g. bounds
on the number of local minima)
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Main results (numerical algorithm)

Dr : manifold of p × q matrices of rank r
E : linear/a�ne subspace of p × q matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic
convergence under mild transversality assumptions.

More precisely: for any smooth point ζ ∈ Dr ∩ E where Dr and E
intersect transversely, there exists a small neighborhood U ⊃ ζ
such that for any input matrix M0 ∈ U,

the sequence of iterates M1,M2, . . . converges quadratically
towards M∞ ∈ Dr ∩ E , i.e.
‖Mi −M∞‖ ≤ (1/2)2

i−1 ‖M0 −M∞‖
Let M̂ be the nearest solution;
then

∥∥∥M∞ − M̂
∥∥∥ = O(dist(M0,Dr ∩ E )2).
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Related problems

E ∩Dr is �nite  MinRank problem.
 �nite �elds: Cryptology, Coding theory,. . .
Bettale, Buss, Courtois, Frandsen, Gaborit, Goubin, Kipnis,
Levy-dit-Vehel, Faugère, Perret, Ruatta, Safey, Shallit, Shamir,
S., . . .

Low-rank approximation and singular value decomposition
Demmel, Kahan, Golub, Van Loan,. . .
Approximate SVD, CUR decompositions:
Drineas, Halko, Martinsson, Tropp, Mahoney, Menon,. . .

Structured Total Least Norm:
Park, Rosen, Kaltofen/Zhi/Yang

Alternating projections: von Neumann, Cadzow

Optimization: Chu/Funderlic/Plemmons
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Singular Value Decomposition

Eckart-Young theorem

Let M = U · S · V ᵀ be the Singular Value Decomposition of M,
where S = Diag(σ1, . . . , σq) with σ1 ≥ · · · ≥ σq.
Set Ŝ = Diag(σ1, . . . , σr , 0, . . . , 0).

Then M̂ = U · Ŝ · V ᵀ is the rank r matrix which minimizes the
Frobenius distance to M.

Cadzow's algorithm (Cadzow, 88, Lewis/Malick 08):

project on Dr (the manifold of matrices of rank r) with SVD;

project back on E .

Converges linearly towards a point in Dr ∩ E .
Does not converge to the nearest solution.
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Cadzow's algorithm

E

Dr
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Newton's method

Classical Newton's method for f : Rn → Rn

Nf (x) = Df (x)−1(f (x)).

Quadratic convergence when Df is locally invertible.

Newton's method for underdetermined systems:
f : Rm → Rn, Nf (x) = Df (x)†(f (x)).
Df †: Moore-Penrose pseudo-inverse.

Quadratic convergence towards a point x∞ such that f (x∞) = 0
when Df is locally surjective.
If x0 is the starting point of the iteration, let

x̂ = argminf (y)=0‖y − x0‖.
Does not converge to the nearest solution x̂ , but

‖x∞ − x̂‖ = O
(
‖x0 − x̂‖2

)
.

Ben-Israel 66, Allgower/Georg 90, Beyn 93,
Shub/Smale 96, Dedieu/Shub 00, Dedieu/Kim 02, Dedieu 06
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Normal space of determinantal varieties

Dr : algebraic variety of matrices of rank at most r .
 well-studied in algebraic geometry/commutative algebra
Bruns, Conca, Eisenbud, Herzog, Lascoux, Room, Sturmfels,. . .

Classical theorem

Let M be p × q matrix of rank r .
Then the normal space to Dr at M is

Ker(Mᵀ)⊗ Ker(M).

Bases of the kernels of M and Mᵀ can be read o� from the
Singular Value Decomposition of M.
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NewtonSLRA

1: procedure NewtonSLRA(M ∈ E , (E1, . . . ,Ed ) an orthonormal
basis of E , r ∈ N)

2: (U, S ,V )← SVD(M)
3: Sr ← r × r top-left submatrix of S
4: Ur ← �rst r columns of U
5: Vr ← �rst r columns of V
6: M̃ ← Ur · Sr · V ᵀr
7: ũ1, . . . , ũp−r ← last p − r columns of U
8: ṽ1, . . . , ṽq−r ← last q − r columns of V
9: for i ∈ {1, . . . , p − r}, j ∈ {1, . . . , q − r} do

10: N(i−1)(q−r)+j ← ũi · ṽjᵀ
11: end for
12: A← (〈Ni ,Ej〉)i ,j
13: b ← (〈Ni , M̃ −M〉)i
14: return M +

[
E1 . . . Ed

]
· A† · b

15: end procedure

13 PJ Spaenlehauer



Rate of convergence

Quadratic convergence

For any smooth point ζ ∈ Dr ∩ E where Dr and E intersect
transversely, there exists a small neighborhood U ⊃ ζ such that
for any input matrix M0 ∈ U,

the sequence of iterates M1,M2, . . . converges quadratically
towards a matrix M∞ ∈ Dr ∩ E , i.e.
‖Mi −M∞‖ ≤ (1/2)2

i−1 ‖M0 −M∞‖
Let M̂ be the nearest solution;
then

∥∥∥M∞ − M̂
∥∥∥ = O(dist(M0,Dr ∩ E )2).

α

E

Dr

Sketch of proof:

lower bound for α;

Taylor approximation of ΠDr
;

manage corrective terms when
dim(Dr ∩ E ) > 0.
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Main features of NewtonSLRA

Combines the generality of alternating projections and the
quadratic convergence of Newton's method.

Computationally most intensive step: computing the SVD
(polynomial in p, q at �xed precision).

Algorithm for SLRA with proven quadratic rate of
convergence.

15 PJ Spaenlehauer



Application to approximate GCD

Approximate GCD

Let m, n, d ∈ N, f , g ∈ R[x ] with deg(f ) = m, deg(g) = n.
Find f ∗, g∗ ∈ R[x ], deg(f ∗) = m, deg(g∗) = n such that

deg(GCD(f ∗, g∗)) ≥ d

and (f ∗, g∗) are close to (f , g).

Euclidean distance on the pairs (f , g):

‖(
m∑
i=0

fix
i ,

n∑
j=0

gjx
j)‖2 =

m∑
i=0

f 2i +
n∑

j=0

g2j .

What does �close� mean
 quasi-GCD, Schönhage 85
 ε-GCD, Emiris/Galligo/Lombardi 97, Zeng/Dayton 04,
Bini/Boito 06-09
 nearest pair for a given norm, Karmarkar/Lakshman 98,
Kaltofen/Zhi/Yang 05-08, Terui 09
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Experimental results

Comparison with GPGCD, Terui, ISSAC'09.

sizes of iteration steps

iteration NewtonSLRA GPGCD

1 0.9e-1 0.9e-1
2 0.5e-3 0.5e-3
3 0.6e-8 0.2e-5
4 0.1e-17 0.8e-8
5 0.1e-36 0.4e-10

n = m = 25, d = 10.
0 100 200 300 400 500

10−2.3

10−2.25

10−2.2

n

pe
rt
ur
ba
ti
on

n = m = 2d .

Fast convergence towards Dr ∩ E
 starting point for a certi�ed Gauss-Newton iteration
Auroux/Chèze/Masmoudi/Yakoubsohn 06
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Matrix Completion

Unknown matrix of rank r :
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?



Uncover m entries at random.

How many entries do we need? How to reconstruct the matrix?

Algebraic structure, Merle/Giusti, '81

Alternating minimization, Jain, Netrapalli, Sanghavi, 12

Riemannian optimization,
Absil/Amodei/Meyer 12, Vandereycken 12

Convex relaxation, Candes, Tao, Plan, Recht, 09-13
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Experimental results

Overdetermined SLRA problems
Transversality assumption do not hold  no quadratic convergence.
Square matrix of size p = 40
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m/p2

r(
2p
−
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/
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NewtonSLRA fail convex
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An algebraic approach to SLRA

The Euclidean distance degree
Draisma/Horobet/Ottaviani/Sturmfels/Thomas 13

V ∈ Cn an algebraic variety, u ∈ Cn a generic point. The
EDdegree of V is the number of complex critical points of the
function

λ1(x1 − u1)2 + · · ·+ λn(xn − un)2

on the smooth locus of V .

EDdegree(ellipse) = 4.

Nearest solution of SLRA:

critical point of the distance func-
tion on a linear section of a deter-
minantal variety Dr ∩ E .
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The EDdegree as a complexity measure

Line
EDdegree= 1

Circle
EDdegree= 2

Parabola
EDdegree= 3

Ellipse
EDdegree= 4

Strong experimental correlation between timings (symbolic
solving with Gröbner bases) and EDdegree.
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Problems

Structured Low-Rank Approximation:
 family of computationally hard problems

with (relatively) low algebraic degree!

Timings of Gröbner basis software (FGb, Magma):
 related to the EDdegree

Goals:

�nd e�cient formulations as polynomial systems;

Algebraic geometry techniques for estimating the EDdegree;

Certi�cation of numerical methods?

22 PJ Spaenlehauer
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A general bound

critical points of λ1,1(x1,1 − u1,1)2 + · · ·+ λp,q(xp,q − up,q)2 on Vsmooth

Ottaviani/S./Sturmfels '13

Let L be a generic codimension s linear space of p × q matrices,
and V be the variety of rank-de�cient matrices in L. The
generic EDdegree of V equals

δ0 + · · ·+ δpq−2−s .

where

δ` =

p+q−2∑
k=`

(−1)p+q−k
(
k + 1
`+ 1

)
vk

vk =
[
sp−1tq−1

]
(1 + s)p(1 + t)q(t + s)k .

+ conjectured formula for the Frobenius norm (λ1 = . . . = λp,q = 1).
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Special linear subspaces: resultant and approximate GCD

f (X ) = fmX
m + · · ·+ f1X + f0

g(X ) = gnX
n + · · ·+ g1X + f0

‖(f , g)‖2 = αmf
2
m + · · ·+ α0f

2
0 + βng

2
n + · · ·+ β0g

2
0

V ⊂ Cm+n+2: vanishing locus of the resultant.

Ottaviani/S./Sturmfels '13

The generic EDdegree of V equals 4(m + n)− 2.

For all weights (α, β), the number of locally nearest pairs (f ′, g ′)
with a non trivial GCD is bounded by 4(m + n)− 2.

In the case of the rotation invariant quadratic form, we
conjecture that the ED degree equals 2max(n,m).
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The conormal variety

Let X ⊂ Cn be an a�ne cone
(the vanishing locus of homogeneous
polynomials). The conormal variety
NX ⊂ Cn × Cn is de�ned as

NX = {(x, v) : x ∈ Xsmooth, v ∈ NxX}.

x ∈ Xsmooth critical point of
∑
λi (xi − ui )

2

m
∇
∑
λi (xi − ui )

2 ∈ NxX
m2λ1x1 − v1

...
2λnxn − vn

 =

2λ1u1...
2λnun

 for (x, v) ∈ NX
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Duality

Proposition (Draisma/Horobet/Ottaviani/Sturmfels/Thomas)

The EDdegree of a projective variety is bounded by the sum of
the degrees of its polar classes. Equality holds when the
diagonal of the conormal variety is empty.

Duality:
NX = {(x, v) : x ∈ Xsmooth, v ∈ NxX}.

π2 : NX → Cn X ∗ = Im(π2)
(x, v) 7→ v

Rank-de�cient matrices are dual to rank 1 matrices
 Segre varieties.

Other applications:

low-rank approximation of tensors

low-rank approximation of Hankel matrices
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Open questions

What about the number of real critical points/local minima?

Open even for unstructured weighted low-rank approximation!

Question: is the number of local minima of rank 1 (resp. corank
1) approximation bounded by min(p, q) (Rey'13)?

Ottaviani/S./Sturmfels'13: negative answer

U =

−59 11 59
11 59 −59
59 −59 11

 Λ =

9 6 1
6 1 9
1 9 6


Rank 1 approximation of U has 7 local minima. EDdegree = 39,
number of real critical points: 19.
Can we �nd more real critical points/local minima?
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Conclusions and perspectives

Linear sections of determinantal varieties
rich structure with a lot of facets

(numeric/symbolic, �nite �elds/characteristic 0, real solutions)
which appears in many applications.

Perspectives

Replacing the SVD by other rank approximation techniques
to speed up the computations

Model of noise

Impact of the choice of the distance

Certi�cation of NewtonSLRA a la Dedieu: α,γ theorems?

Algebraic properties of special linear subspaces.

Thank you!
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