p-adic precision, differentials and the example of Gröbner bases. SpecFun Seminar

Tristan Vaccon

Université de Rennes I

23 mars 2014

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

Motivation for *p*-adic algorithm

Why should one work with *p*-adic numbers ?

■ Going from 𝑘_p to ℤ_p and then back to 𝑘_p enables more computation ;

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

Motivation for *p*-adic algorithm

Why should one work with *p*-adic numbers ?

- Going from \mathbb{F}_p to \mathbb{Z}_p and then back to \mathbb{F}_p enables more computation ;
- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;

Motivation for *p*-adic algorithm

Why should one work with *p*-adic numbers ?

- Going from \mathbb{F}_p to \mathbb{Z}_p and then back to \mathbb{F}_p enables more computation ;
- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- Some questions or algorithms are *p*-adic by nature.

Motivation for *p*-adic algorithm

Why should one work with *p*-adic numbers ?

- Going from \mathbb{F}_p to \mathbb{Z}_p and then back to \mathbb{F}_p enables more computation ;
- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- Some questions or algorithms are *p*-adic by nature.

Some examples of essentially *p*-adic algorithms

Polynomial factorization with Hensel lemma ;

úeì

Motivation for *p*-adic algorithm

Why should one work with *p*-adic numbers ?

- Going from \mathbb{F}_p to \mathbb{Z}_p and then back to \mathbb{F}_p enables more computation ;
- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- Some questions or algorithms are *p*-adic by nature.

Some examples of essentially *p*-adic algorithms

- Polynomial factorization with Hensel lemma ;
- Kedlaya's counting-point algorithm on hyperelliptic curves with p-adic cohomology;

úеь

Motivation for *p*-adic algorithm

Why should one work with *p*-adic numbers ?

- Going from \mathbb{F}_p to \mathbb{Z}_p and then back to \mathbb{F}_p enables more computation ;
- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- Some questions or algorithms are *p*-adic by nature.

Some examples of essentially *p*-adic algorithms

- Polynomial factorization with Hensel lemma ;
- Kedlaya's counting-point algorithm on hyperelliptic curves with p-adic cohomology;

úеь

Introduction : p-adic precision

p-adic algorithms : a first example

Hensel factorization

We would like to factor $Q \in \mathbb{Z}[X]$:

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

Introduction : p-adic precision

p-adic algorithms : a first example

Hensel factorization

We would like to factor $Q \in \mathbb{Z}[X]$:

1 Chose a *p* that is well-suited to the problem ;

p-adic algorithms : a first example

Hensel factorization

We would like to factor $Q \in \mathbb{Z}[X]$:

- **1** Chose a *p* that is well-suited to the problem ;
- **2** Factor $\overline{Q} \in \mathbb{Z}/p\mathbb{Z}[X]$;

p-adic algorithms : a first example

Hensel factorization

We would like to factor $Q \in \mathbb{Z}[X]$:

- 1 Chose a *p* that is well-suited to the problem ;
- **2** Factor $\overline{Q} \in \mathbb{Z}/p\mathbb{Z}[X]$;
- **3** Lift the factors into $\mathbb{Z}/p^k\mathbb{Z}[X]$ (with Hensel's lemma);

p-adic algorithms : a first example

Hensel factorization

We would like to factor $Q \in \mathbb{Z}[X]$:

- 1 Chose a p that is well-suited to the problem ;
- **2** Factor $\overline{Q} \in \mathbb{Z}/p\mathbb{Z}[X]$;
- **3** Lift the factors into $\mathbb{Z}/p^k\mathbb{Z}[X]$ (with Hensel's lemma);
- If p^k is big enough (*Mignotte's bound*), we can obtain a factorization over Q (up to the recombination of some factors).

p-adic algorithms : another example

Idea of Kedlaya's algorithm

Let C be an hyperelliptic curve of genus g over \mathbb{F}_p , defined by $y^2 = P(x)$ (with deg(P) = 2g + 1, squarefree). We would like to determine $|Jac(C, \mathbb{F}_p)|$.

p-adic algorithms : another example

Idea of Kedlaya's algorithm

Let C be an hyperelliptic curve of genus g over \mathbb{F}_p , defined by $y^2 = P(x)$ (with deg(P) = 2g + 1, squarefree). We would like to determine $|Jac(C, \mathbb{F}_p)|$.

• Let F be the Frobenius of \mathbb{F}_p . Then F acts as an endomorphims on $H^1_{MW}(C, A)$, the Monsky-Washnitzer cohomology with coefficients in A.

p-adic algorithms : another example

Idea of Kedlaya's algorithm

Let C be an hyperelliptic curve of genus g over \mathbb{F}_p , defined by $y^2 = P(x)$ (with deg(P) = 2g + 1, squarefree). We would like to determine $|Jac(C, \mathbb{F}_p)|$.

• Let *F* be the Frobenius of \mathbb{F}_p . Then *F* acts as an endomorphims on $H^1_{MW}(C, A)$, the Monsky-Washnitzer cohomology with coefficients in *A*.

• Let
$$A = \mathbb{Z}_p^{\dagger}[[x, y]]/(P)$$
. Then $|Jac(C, \mathbb{F}_p)| = \chi_F(1)$.

p-adic algorithms : another example

Idea of Kedlaya's algorithm

Let C be an hyperelliptic curve of genus g over \mathbb{F}_p , defined by $y^2 = P(x)$ (with deg(P) = 2g + 1, squarefree). We would like to determine $|Jac(C, \mathbb{F}_p)|$.

- Let *F* be the Frobenius of \mathbb{F}_p . Then *F* acts as an endomorphims on $H^1_{MW}(C, A)$, the Monsky-Washnitzer cohomology with coefficients in *A*.
- Let $A = \mathbb{Z}_{p}^{\dagger}[[x, y]]/(P)$. Then $|Jac(C, \mathbb{F}_{p})| = \chi_{F}(1)$.
- We want to determine the action of F over A and $H^1_{MW}(C, A)$:

p-adic algorithms : another example

Idea of Kedlaya's algorithm

Let C be an hyperelliptic curve of genus g over \mathbb{F}_p , defined by $y^2 = P(x)$ (with deg(P) = 2g + 1, squarefree). We would like to determine $|Jac(C, \mathbb{F}_p)|$.

- Let *F* be the Frobenius of \mathbb{F}_p . Then *F* acts as an endomorphims on $H^1_{MW}(C, A)$, the Monsky-Washnitzer cohomology with coefficients in *A*.
- Let $A = \mathbb{Z}_p^{\dagger}[[x, y]]/(P)$. Then $|Jac(C, \mathbb{F}_p)| = \chi_F(1)$.
- We want to determine the action of F over A and $H^1_{MW}(C, A)$:

$$F(x) = x^{p} \mod p \qquad \qquad F(y) = y^{p} \mod p$$
$$P(F(x)) = F(y)^{2}$$

• With Weil's conjecture, $\chi_F \in \mathbb{Z}[T]$, and $|a_i| \leq 2^{2g}\sqrt{q}^i$.

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=-l}^{+\infty} a_i p^i$, with $a_i \in [[0, p-1]]$, $l \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\sum_{i=1}^{d-1} a_i p^i + O(p^d)$, with $l \in \mathbb{Z}$.

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=-l}^{+\infty} a_i p^i$, with $a_i \in [[0, p-1]]$, $l \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\sum_{i=1}^{d-1} a_i p^i + O(p^d)$, with $l \in \mathbb{Z}$.

Definition

The order, or the **absolute precision** of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d. Its **relative precision** corresponds to the number of its significant figures, and thus, is given by $d - \min \{i \in \mathbb{Z}, a_i \neq 0\}$.

UNIVERSITÉ DE

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=-l}^{+\infty} a_i p^i$, with $a_i \in [[0, p-1]]$, $l \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\sum_{i=1}^{d-1} a_i p^i + O(p^d)$, with $l \in \mathbb{Z}$.

Definition

The order, or the **absolute precision** of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d. Its **relative precision** corresponds to the number of its significant figures, and thus, is given by $d - \min \{i \in \mathbb{Z}, a_i \neq 0\}$.

Example

The order of $3 * 7^{-1} + 4 * 7^0 + 5 * 7^1 + 6 * 7^2 + O(7^3)$ is 3, and its relative precision is 4 = 3 - (-1).

úeì

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

Gröbner bases

└─ Step-by-step analysis

Table of contents

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

Gröbner bases

Step-by-step analysis

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Gröbner bases

Step-by-step analysis

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Gröbner bases

Step-by-step analysis

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of **Round-off error** :

$$(1 + 5 * 10^{-2}) + (2 + 6 * 10^{-2}) = 3 + 1 * 10^{-1} + 1 * 10^{-2}.$$

That is to say, if a and b are known up to precision 10^{-n} , then a + b is known up to $10^{(-n+1)}$.

úеь

Gröbner bases

Step-by-step analysis

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of **Round-off error** :

$$(1+5*10^{-2}) + (2+6*10^{-2}) = 3+1*10^{-1} + 1*10^{-2}.$$

That is to say, if a and b are known up to precision 10^{-n} , then a + b is known up to $10^{(-n+1)}$.

úеь

Gröbner bases

Step-by-step analysis

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0, k_1)})$$

Gröbner bases

Step-by-step analysis

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{\min(k_0 + v_p(x_1), k_1 + v_p(x_0))})$$

Gröbner bases

Step-by-step analysis

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0,k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{\min(k_0 + v_p(x_1), k_1 + v_p(x_0))})$$

Proposition (division)

$$\frac{xp^{a} + O(p^{b})}{yp^{c} + O(p^{d})} = x * y^{-1}p^{a-c} + O(p^{\min(d+a-2c,b-c)})$$

In particular,

$$\frac{1}{p^c y + O(p^d)} = y^{-1} p^{-c} + O(p^{d-2c})$$

NINES

úеь

nac

Gröbner bases

Loss in precision in the row-echelon form computation

Table of contents

Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computation

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

Gröbner bases

Loss in precision in the row-echelon form computation

The result for the Gauss method

Theorem

Let $M \in M_{n,m}(\mathbb{Z}_p)$ such that :

Gröbner bases

Loss in precision in the row-echelon form computation

The result for the Gauss method

Theorem

Let $M \in M_{n,m}(\mathbb{Z}_p)$ such that :

- its coefficients are known up to $O(p^k)$.
- $val(\Delta) < k$, with $\Delta = det((M_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n})$.

Gröbner bases

Loss in precision in the row-echelon form computation

The result for the Gauss method

Theorem

Let $M \in M_{n,m}(\mathbb{Z}_p)$ such that :

• its coefficients are known up to $O(p^k)$.

• $val(\Delta) < k$, with $\Delta = det((M_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n})$.

Then the **loss of precision** to compute a row-echelon form of M is $\leq val(\Delta)$.

Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

$$M = \begin{bmatrix} m_{1,1} + O(p^k) & m_{1,2} + O(p^k) & \cdots & m_{1,m} + O(p^k) \\ m_{2,1} + O(p^k) & m_{2,2} + O(p^k) & \cdots & m_{2,m} + O(p^k) \end{bmatrix}$$

We assume that,

$$\det \left(\begin{bmatrix} m_{1,1} + O(p^k) & m_{1,2} + O(p^k) \\ m_{2,1} + O(p^k) & m_{2,2} + O(p^k) \end{bmatrix} \right) \neq O(p^k).$$

ue.

Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

$$M \simeq \begin{bmatrix} \rho^{a_1} + O(\rho^k) & m_{1,2} + O(\rho^k) & \cdots & m_{1,m} + O(\rho^k) \\ \hline p^{a_2} + O(\rho^k) & m_{2,2} + O(\rho^k) & \cdots & m_{2,m} + O(\rho^k) \end{bmatrix} \qquad L_2 \leftarrow L_2 - \frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} L_1$$

Dac

Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

$$M \simeq \begin{bmatrix} \rho^{a_1} + O(p^k) & m_{1,2} + O(p^k) \cdots \dots & m_{1,m} + O(p^k) \\ 0 & m_{2,2}^{(2)} + O(p^{k-a_1}) \cdots & m_{2,m}^{(2)} + O(p^{k-a_1}) \end{bmatrix} \begin{bmatrix} L_2 \leftarrow L_2 - \frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} L_1 \end{bmatrix}$$

$$\begin{array}{l} \mbox{Indeed,} & \overbrace{M_{2,1}^{(n-1)} - \frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} * M_{1,1}^{(n-1)} = 0 }_{\text{(formally).}} \\ \mbox{In addition,} & \overbrace{M_{2,1}^{(n-1)}}{\frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} = \frac{p^{\vartheta_2} + O(p^k)}{p^{\vartheta_1} + O(p^k)} = p^{\vartheta_2 - \vartheta_1} + O(p^{k-\vartheta_1}), \mbox{ therefore} \\ \mbox{L}_2 - \frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} L_1 = L_2 + (p^{\vartheta_2 - \vartheta_1} + O(p^{k-\vartheta_1}))L_1 \\ \mbox{.} \end{array} .$$

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

úeì

Dac
Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

$$M \simeq \begin{bmatrix} p^{a_1} + O(p^k) & m_{1,2} + O(p^k) \cdots & m_{1,m} + O(p^k) \\ 0 & m_{2,2}^{(2)} + O(p^{k-a_1}) \cdots & m_{2,m}^{(2)} + O(p^{k-a_1}) \end{bmatrix} \qquad \boxed{L_2 \leftarrow L_2 + O(p^{k-a_1})L_1}$$

$$\begin{split} & \text{Indeed,} \quad \underbrace{M_{2,1}^{(n-1)} - \frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} * M_{1,1}^{(n-1)} = 0}_{\text{h} (\text{formally})} \text{ (formally)}. \\ & \text{In addition,} \quad \underbrace{\frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} = \frac{\rho^{\mathfrak{d}_2} + O(\rho^k)}{\rho^{\mathfrak{d}_1} + O(\rho^k)} = \rho^{\mathfrak{d}_2 - \mathfrak{d}_1} + O(\rho^{k-\mathfrak{d}_1}), \text{ therefore}}_{L_2} \\ & \underbrace{L_2 - \frac{M_{2,1}^{(n-1)}}{M_{1,1}^{(n-1)}} L_1 = L_2 + (\rho^{\mathfrak{d}_2 - \mathfrak{d}_1} + O(\rho^{k-\mathfrak{d}_1}))L_1}_{1}}_{.}. \end{split}$$

úеь

Dac

Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

In the end, we get :

$$M = \begin{bmatrix} p^{a_1} + O(p^k) & m_{1,2} + O(p^k) & \cdots & m_{1,m} + O(p^k) \\ 0 & p^{a_2} + O(p^{k-a_1}) & \cdots & m_{2,m} + O(p^{k-a_1}) \end{bmatrix}$$

The loss of precision on the second row is a_1 .

Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

In the end, we get :

$$M = \begin{bmatrix} p^{a_1} + O(p^k) & m_{1,2} + O(p^k) & \cdots & m_{1,m} + O(p^k) \\ 0 & p^{a_2} + O(p^{k-a_1}) & \cdots & m_{2,m} + O(p^{k-a_1}) \end{bmatrix}$$

The loss of precision on the second row is (a_1) .

Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss' method

In the end, we get :

$$M = \begin{bmatrix} p^{a_1} + O(p^k) & m_{1,2} + O(p^k) \cdots m_{1,m} + O(p^k) \\ 0 & p^{a_2} + O(p^{k-a_1}) \cdots m_{2,m} + O(p^{k-a_1}) \end{bmatrix}$$

$$val(\det\left(\begin{bmatrix} m_{1,1}+O(p^k) & m_{1,2}+O(p^k) \\ m_{2,1}+O(p^k) & m_{2,2}+O(p^k) \end{bmatrix}\right)) = a_1 + a_2, \text{ with } a_i > 0.$$

The loss in precision is upper-bounded by $val(\det((M_{i,j})_{1 \le i \le 2, 1 \le j \le 2})))$

úeì

Ja C

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

Table of contents

Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

The Macaulay matrix

Notations

From now on, k is a field, $n, s \in \mathbb{N}$, and $R = k[X_1, \ldots, X_n]$. We denote by R_d the homogeneous polynomials of degree d of R. Let ω be a monomial order on R.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

The Macaulay matrix

Notations

From now on, k is a field, $n, s \in \mathbb{N}$, and $R = k[X_1, \ldots, X_n]$. We denote by R_d the homogeneous polynomials of degree d of R. Let ω be a monomial order on R.

Proposition (D. Lazard 83)

For an homogeneous ideal $I = (f_1, ..., f_s) \subset R$ $(f_1, ..., f_s$ being homogeneous), $d \in \mathbb{N}$, $I \cap R_d = \langle x^{\alpha} f_i, |\alpha| + \deg(f_i) = d \rangle$, as k-vector spaces.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

The Macaulay matrix

 $\mathbf{v}^{\alpha_{1,1}}\mathbf{f}$

Definition (Macaulay's matrix)

We denote by $Mac_d(f_1, \ldots, f_s)$ the matrix :

$$x^{d_1} > \ldots > x^{d\binom{n+d-1}{n-1}}$$

$$\begin{bmatrix} x^{\alpha_{1,\binom{n+d-d_{1}-1}{n-1}}} f_{1} \\ \vdots \\ x^{\alpha_{2,1}} f_{2} \\ \vdots \\ x^{\alpha_{s,\binom{n+d-d_{s}-1}{n-1}}} f_{s} \end{bmatrix}$$

Its rows $x^{\alpha}f_i$ are written in the basis $x^{d_1}, \ldots, x^{d\binom{n+d-1}{n-1}}$, with $|\alpha| + \deg(f_i) = d$. Also, $x^{\alpha_{i,j}} < x^{\alpha_{i,j+1}}$.

úe

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm

The idea of the Matrix-F5 algorithm

The idea is to successively row-echelon the matrices $Mac_d(f_1, \ldots, f_i)$ iteratively with d and i.

If you know the profile of $Mac_d(f_1, \ldots, f_i)$, then you know what are the leading terms in $LT((f_1, \ldots, f_i)_d)$ and so, you can remove useless rows in $Mac_{d'}(f_1, \ldots, f_{i'})$ with d' > d and i' > i.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm

The Matrix-F5 algorithm

Algorithm 1 Matrix-F5 algorithm

```
Let F = (f_1, \ldots, f_s) \in R^s, of degree d_1, \ldots, d_s, and D \in \mathbb{N}.
G \leftarrow F
for d \in \llbracket 0, D \rrbracket do
   for i \in \llbracket 1, s \rrbracket do
      Build Mac_d f_1, \ldots, f_i:
      Remove the rows x^{\alpha}f_i such that x^{\alpha} is the leading term of a row
      of Mac_{d-d_i,i-1};
      Compute the row-echelon form Macd.i;
      Add to G the rows with a new leading monomial.
   end for
end for
```

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

The position of the leading terms ideals

Problem with testing nullity

A major issue can happen when dealing with finite-precision numbers : not being able to decide whether there is no non-zero pivot on a column or whether the precision is not enough.

Being able to compute the leading terms ideals

$$\begin{bmatrix} 1+O(p^{k}) & 1+O(p^{k}) & 1+O(p^{k}) & 0\\ 1+O(p^{k}) & 1+O(p^{k}) & 0 & 1+O(p^{k}) \end{bmatrix} \quad L_{2} \leftarrow L_{2} - \frac{M_{2,1}}{M_{1,1}}L_{1}$$

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

The position of the leading terms ideals

Problem with testing nullity

A major issue can happen when dealing with finite-precision numbers : not being able to decide whether there is no non-zero pivot on a column or whether the precision is not enough.

Being able to compute the leading terms ideals

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

The position of the leading terms ideals

Problem with testing nullity

A major issue can happen when dealing with finite-precision numbers : not being able to decide whether there is no non-zero pivot on a column or whether the precision is not enough.

Being able to compute the leading terms ideals

What is the leading term for the second row ?

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

Moreno-Socias conjecture

Definition (weakly-w-ideal)

```
I is said to be a weakly-w-ideal if :
```

■ for all x^α a leading monomial according to w of the reduced Gröbner basis of I,

• for all
$$x^{\beta}$$
 such that $|\alpha| = |\beta|$ and $x^{\beta} > x^{\alpha}$,

we have $x^{\beta} \in LM(I)$.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

Moreno-Socias conjecture

Definition (weakly-w-ideal)

```
I is said to be a weakly-w-ideal if :
```

 for all x^α a leading monomial according to w of the reduced Gröbner basis of I,

• for all
$$x^{\beta}$$
 such that $|\alpha| = |\beta|$ and $x^{\beta} > x^{\alpha}$,

we have $x^{\beta} \in LM(I)$.

Conjecture (Moreno-Socias)

If k is an infinite field, $s \in \mathbb{N}$, $d_1, \ldots, d_s \in \mathbb{N}$, then there is a non-empty Zariski-open subset U in $R_{d_1} \times \cdots \times R_{d_s}$ such that for all $(f_1, \ldots, f_s) \in U$, $I = (f_1, \ldots, f_s)$ is a weakly-grevlex ideal.

UNIVERSITÉ DE

úeì

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

Moreno-Socias conjecture

Definition (weakly-w-ideal)

```
I is said to be a weakly-w-ideal if :
```

■ for all x^α a leading monomial according to w of the reduced Gröbner basis of I,

• for all
$$x^{\beta}$$
 such that $|\alpha| = |\beta|$ and $x^{\beta} > x^{\alpha}$,

we have $x^{\beta} \in LM(I)$.

Conjecture (Moreno-Socias)

If k is an infinite field, $s \in \mathbb{N}$, $d_1, \ldots, d_s \in \mathbb{N}$, then there is a non-empty Zariski-open subset U in $R_{d_1} \times \cdots \times R_{d_s}$ such that for all $(f_1, \ldots, f_s) \in U$, $I = (f_1, \ldots, f_s)$ is a weakly-grevlex ideal.

Remark

If the conjecture holds, then regular sequences generating a weakly grevlex ideal are generic.

úеъ

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm suited for weakly-w-ideal

Proposition ("weak" F5M algorithm)

•
$$(f_1, \ldots, f_s)$$
 is a regular,

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm suited for weakly-w-ideal

Proposition ("weak" F5M algorithm)

- (f_1, \ldots, f_s) is a regular,
- the $< f_1, \ldots, f_l >$ are weakly-w-ideals,

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm suited for weakly-w-ideal

Proposition ("weak" F5M algorithm)

- (f_1, \ldots, f_s) is a regular,
- the $< f_1, \ldots, f_l >$ are weakly-w-ideals,
- precision on the f_i's is enough.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm suited for weakly-w-ideal

Proposition ("weak" F5M algorithm)

We assume :

- (f_1, \ldots, f_s) is a regular,
- the $< f_1, \ldots, f_l >$ are weakly-w-ideals,
- precision on the f_i's is enough.

Then, we can proceed :

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm suited for weakly-w-ideal

Proposition ("weak" F5M algorithm)

We assume :

- (f_1, \ldots, f_s) is a regular,
- the $< f_1, \ldots, f_l >$ are weakly-w-ideals,
- precision on the f_i's is enough.

Then, we can proceed :

At first, we proceed like in the normal F5M algorithm ;

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

An algorithm suited for weakly-w-ideal

Proposition ("weak" F5M algorithm)

We assume :

- (f_1, \ldots, f_s) is a regular,
- the $< f_1, \ldots, f_l >$ are weakly-w-ideals,
- precision on the f_i's is enough.

Then, we can proceed :

At first, we proceed like in the normal F5M algorithm ;

But, as soon as a column with no non-zero pivot is encountered, we halt the row-echelon computation. Instead, we replace the non-reduced rows by (already reduced) multiples of the rows of Mac_{d-1,i}, so as to get a matrix under row-echelon form.

*u*e

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

3 quadrics in 6 variables

An example

With 3 generic quadrics in 6 variables, what we get after reducing the Macauly matrix in degree 3 is the following :

a 9x9 invertible block (loss in precision : determinant of the 9x9 matrix)

0

9 rows, multiples of rows of the matrix in degree 2

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

About strongly stable ideals

Strongly stable ideal is not enough

In $\mathbb{Q}_{\rho}[x, y, z]$, let us take $f_1 = x^3 + xy^2$, $f_2 = x^2y$, and $f_3 = x^2z$. They generate a strongly stable initial ideal regarding to grevlex.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

About strongly stable ideals

Strongly stable ideal is not enough

In $\mathbb{Q}_p[x, y, z]$, let us take $f_1 = x^3 + xy^2$, $f_2 = x^2y$, and $f_3 = x^2z$. They generate a strongly stable initial ideal regarding to grevlex. Yet, one can not recover the initial ideal from approximations of $f_1, f_2, f_1 + f_3$.

$$x^3 > x^2y > xy^2 > y^3 > x^2z > \dots$$

$$Mac_{3}(f_{1}, f_{2}, f_{1} + f_{3}) \simeq \begin{vmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ \ddots \\ \end{vmatrix}$$

úeì

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

About strongly stable ideals

Strongly stable ideal is not enough

 ${}^{Mac_3(f_1,\ f_2,\ f_1+\ f_3)}\simeq \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}$

In $\mathbb{Q}_p[x, y, z]$, let us take $f_1 = x^3 + xy^2$, $f_2 = x^2y$, and $f_3 = x^2z$. They generate a strongly stable initial ideal regarding to grevlex. Yet, one can not recover the initial ideal from approximations of $f_1, f_2, f_1 + f_3$.

$$x^3 > x^2y > xy^2 > y^3 > x^2z > \dots$$

0 0 0... 0 0 0... 0 1 0...

úеъ

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

To sum up in one result

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

To sum up in one result

Proposition

We assume :

Structure : regular sequence, and weakly- ω ideals $< f_1, \ldots, f_i > .$

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

To sum up in one result

Proposition

- **Structure** : regular sequence, and weakly- ω ideals $< f_1, \ldots, f_i > .$
- **Precision** : bigger than the valuation of the biggest principal minors.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

To sum up in one result

Proposition

We assume :

- **Structure** : regular sequence, and weakly- ω ideals $< f_1, \ldots, f_i > .$
- **Precision** : bigger than the valuation of the biggest principal minors.

Then we can compute, by an F5M algorithm, an approximate Gröbner basis of I for ω , with the right leading monomials.

Gröbner bases

└─ The Matrix-F5 algorithm and *p*-adic computations

To sum up in one result

Proposition

We assume :

- **Structure** : regular sequence, and weakly- ω ideals $< f_1, \ldots, f_i > .$
- **Precision** : bigger than the valuation of the biggest principal minors.

Then we can compute, by an F5M algorithm, an approximate Gröbner basis of I for ω , with the right leading monomials.

Remark

Moreno-Socias conjecture implies that Structure is generic for grevlex.

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

UNIVERSITÉ DE

úеъ

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Table of contents

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations
- **2** *p*-adic precision (with X.Caruso and D.Roe)
 - The limits of step-by-step analysis
 - The Main lemma
 - SOMOS-4
 - Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

- p-adic precision (with X.Caruso and D.Roe)
 - └─ The limits of step-by-step analysis

Optimality

Step-by-step analysis is not optimal.

Let
$$f: \begin{array}{ccc} \mathbb{Q}_p^2 & \to & \mathbb{Q}_p^2 \\ (x,y) & \mapsto & (x+y,x-y). \end{array}$$

úеь

Ja A

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Optimality

Step-by-step analysis is not optimal.

Let
$$f: \begin{array}{ccc} \mathbb{Q}_{\rho}^{2} & \rightarrow & \mathbb{Q}_{\rho}^{2} \\ (x,y) & \mapsto & (x+y,x-y). \end{array}$$

We would like to compute $f \circ f(x,y)$ with $(x,y) = (1 + O(\rho^{10}), 1 + O(\rho)).$

n

úеь

Ja A

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Optimality

Step-by-step analysis is not optimal.

Let
$$f: \begin{array}{ccc} \mathbb{Q}_p^2 & \to & \mathbb{Q}_p^2 \\ (x,y) & \mapsto & (x+y,x-y). \end{array}$$

We would like to compute $f \circ f(x,y)$ with $(x,y) = (1 + O(p^{10}), 1 + O(p)).$

■ If we apply *f* two times, we get :

$$f \circ f(x, y) = (2 + O(p), 2 + O(p)).$$

úeì

- p-adic precision (with X.Caruso and D.Roe)
 - └─ The limits of step-by-step analysis

Optimality

Step-by-step analysis is not optimal.

Let
$$f: \begin{array}{ccc} \mathbb{Q}_p^2 & \to & \mathbb{Q}_p^2 \\ (x,y) & \mapsto & (x+y,x-y). \end{array}$$

We would like to compute $f \circ f(x,y)$ with $(x,y) = (1 + O(p^{10}), 1 + O(p)).$

■ If we apply *f* two times, we get :

$$f \circ f(x, y) = (2 + O(p), 2 + O(p)).$$

If we remark that
$$f \circ f = 2Id$$
, we get :

$$f \circ f(x, y) = (2 + O(p^{10}), 2 + O(p)).$$

úeì

Ja C
- p-adic precision (with X.Caruso and D.Roe)
 - └─ The limits of step-by-step analysis

Optimality

Step-by-step analysis is not optimal.

Let
$$f: \begin{array}{ccc} \mathbb{Q}_p^2 & \to & \mathbb{Q}_p^2 \\ (x,y) & \mapsto & (x+y,x-y). \end{array}$$

We would like to compute $f \circ f(x,y)$ with $(x,y) = (1 + O(p^{10}), 1 + O(p)).$

■ If we apply *f* two times, we get :

$$f \circ f(x, y) = (2 + O(p)), 2 + O(p)).$$

• If we remark that $f \circ f = 2Id$, we get :

$$f \circ f(x,y) = (2 + O(p^{10})), 2 + O(p)).$$

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Non intrinsic

X.Caruso (12) : Step-by-step analysis is algorithm-dependent.

Let $M \in M_d(\mathbb{Z}_p)$ be a random matrix whose all entries are known up to precision $O(p^N)$.

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Non intrinsic

X.Caruso (12) : Step-by-step analysis is algorithm-dependent.

Let $M \in M_d(\mathbb{Z}_p)$ be a random matrix whose all entries are known up to precision $O(p^N)$. We would like to compute M = LU the LU factorization of M. Then :

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Non intrinsic

X.Caruso (12) : Step-by-step analysis is algorithm-dependent.

Let $M \in M_d(\mathbb{Z}_p)$ be a random matrix whose all entries are known up to precision $O(p^N)$. We would like to compute M = LU the LU factorization of M. Then :

If we apply Gaussian elimination, the average precision on L is $O(p^{n-\frac{2d}{p-1}})$.

p-adic precision (with X.Caruso and D.Roe)

└─ The limits of step-by-step analysis

Non intrinsic

X.Caruso (12) : Step-by-step analysis is algorithm-dependent.

Let $M \in M_d(\mathbb{Z}_p)$ be a random matrix whose all entries are known up to precision $O(p^N)$.

We would like to compute M = LU the LU factorization of M. Then :

- If we apply Gaussian elimination, the average precision on L is $O(p^{n-\frac{2d}{p-1}})$.
- If we study Cramer-style formulae, the intrinsic precision determined for *L* is $O(p^{n-2\log_p(d)})$.

- p-adic precision (with X.Caruso and D.Roe)

L The Main lemma

Table of contents

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

p-adic precision (with X.Caruso and D.Roe)

L The Main lemma

The Main lemma of *p*-adic differential precision

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a differentiable mapping.

p-adic precision (with X.Caruso and D.Roe)

L The Main lemma

The Main lemma of *p*-adic differential precision

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a **differentiable** mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

p-adic precision (with X.Caruso and D.Roe)

└─ The Main lemma

The Main lemma of *p*-adic differential precision

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough,

 $f(x+B) = f(x) + f'(x) \cdot B.$

 X^+

└─ *p*-adic precision (with X.Caruso and D.Roe)

└─ The Main lemma

Geometrical meaning

Interpretation

В

+ f(x)

└─ *p*-adic precision (with X.Caruso and D.Roe)

└─ The Main lemma

Geometrical meaning

Interpretation

└─ *p*-adic precision (with X.Caruso and D.Roe)

└─ The Main lemma

Geometrical meaning

Interpretation

p-adic precision (with X.Caruso and D.Roe)

└─ The Main lemma

Geometrical meaning

Interpretation

p-adic precision (with X.Caruso and D.Roe)

L The Main lemma

Geometrical meaning

Interpretation

p-adic precision (with X.Caruso and D.Roe)

L The Main lemma

Geometrical meaning

Interpretation

-p-adic precision (with X.Caruso and D.Roe)

└─somos-4

Table of contents

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

p-adic precision (with X.Caruso and D.Roe)

└─ somos-4

Introduction to the Somos-4 sequence

Definition

We define the Somos-4 sequence by recursion, with :

$$x_0, x_1, x_2, x_3 \in \mathbb{Z}_p^{\times}$$

$$x_{n+4} = \frac{x_{n+1}x_{n+3} + x_{n+2}^2}{x_n}$$

p-adic precision (with X.Caruso and D.Roe)

└─ somos-4

Introduction to the Somos-4 sequence

Definition

We define the Somos-4 sequence by recursion, with :

$$x_0, x_1, x_2, x_3 \in \mathbb{Z}_p^{\times},$$

$$x_{n+4} = \frac{x_{n+1}x_{n+3} + x_{n+2}^2}{x_n}$$

Remark

This formula comes from the *Z*-coordinate of [m]P + Q for some *P*, *Q* points on the **elliptic curve** $y^2 + y = x^3 + x$.

UNIVERSITÉ DE

úеь

└─ somos-4

Introduction to the Somos-4 sequence

Definition

We define the Somos-4 sequence by recursion, with :

$$x_0, x_1, x_2, x_3 \in \mathbb{Z}_p^{\times},$$

$$x_{n+4} = \frac{x_{n+1}x_{n+3} + x_{n+2}^2}{x_n}$$

Remark

This formula comes from the Z-coordinate of [m] P + Q for some P, Q points on the **elliptic curve** $y^2 + y = x^3 + x$.

Proposition

For all
$$n, x_n \in \mathbb{Z}_p$$
, i.e. $v_p(x_n) \ge 0$.

*u*e

p-adic precision (with X.Caruso and D.Roe)

└─ SOMOS-4

The Laurent phenomenon

Remark

If x_0, x_1, x_2, x_3 are known up to $O(p^m)$, then because of the division by x_n , a naive step-by-step analysis show that x_{n+4} is known up to $O(p^{m-\sum_{k=0}^{n} v_p(x_k)})$.

p-adic precision (with X.Caruso and D.Roe)

└─ SOMOS-4

The Laurent phenomenon

Remark

If x_0, x_1, x_2, x_3 are known up to $O(p^m)$, then because of the division by x_n , a naive step-by-step analysis show that x_{n+4} is known up to $O(p^{m-\sum_{k=0}^{n} v_p(x_k)})$.

Theorem (Fomin, Zelevinsky)

Let P_n be the rational fraction defined by the recursion formula defining Somos-4 :

$$x_n = P_n(x_0, x_1, x_2, x_3).$$

-p-adic precision (with X.Caruso and D.Roe)

└─ SOMOS-4

The Laurent phenomenon

Remark

If x_0, x_1, x_2, x_3 are known up to $O(p^m)$, then because of the division by x_n , a naive step-by-step analysis show that x_{n+4} is known up to $O(p^{m-\sum_{k=0}^{n} v_p(x_k)})$.

Theorem (Fomin, Zelevinsky)

Let P_n be the rational fraction defined by the recursion formula defining Somos-4 :

$$x_n = P_n(x_0, x_1, x_2, x_3).$$

Then $P_n \in \mathbb{Z}[x_0^{\pm 1}, x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}].$

úeì

p-adic precision (with X.Caruso and D.Roe)

└_somos-4

p-adic precision (with X.Caruso and D.Roe)

└_somos-4

Consequence

Theorem

$$P_n \in \mathbb{Z}[x_0^{\pm 1}, x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}].$$

└─ *p*-adic precision (with X.Caruso and D.Roe)

└_somos-4

Consequence

Theorem

$$P_n \in \mathbb{Z}[x_0^{\pm 1}, x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}].$$

Remark

If *m* is big enough,

$$P_n(x_0 + O(p^m), x_1 + O(p^m), x_2 + O(p^m), x_3 + O(p^m)) = x_n + P'_n(x_0, x_1, x_2, x_3) \cdot (O(p^m), O(p^m), O(p^m))^t$$

└─ *p*-adic precision (with X.Caruso and D.Roe)

└_somos-4

Consequence

Theorem

$$P_n \in \mathbb{Z}[x_0^{\pm 1}, x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}].$$

Remark

If m is big enough,

$$P_n(x_0 + O(p^m), x_1 + O(p^m), x_2 + O(p^m), x_3 + O(p^m)) = x_n + P'_n(x_0, x_1, x_2, x_3) \cdot (O(p^m), O(p^m), O(p^m), O(p^m))^t$$

Coefficients of $P'_n(x_0, x_1, x_2, x_3)$ are in \mathbb{Z}_p .

p-adic precision (with X.Caruso and D.Roe)

└─somos-4

Consequence

Theorem

$$P_n \in \mathbb{Z}[x_0^{\pm 1}, x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}].$$

Remark

If m is big enough,

$$P_n(x_0 + O(p^m), x_1 + O(p^m), x_2 + O(p^m), x_3 + O(p^m)) = x_n + P'_n(x_0, x_1, x_2, x_3) \cdot (O(p^m), O(p^m), O(p^m), O(p^m))^t.$$

Coefficients of $P'_n(x_0, x_1, x_2, x_3)$ are in \mathbb{Z}_p .

There is no intrinsic loss of precision : x_n is determined up to $O(p^m)$.

úеъ

p-adic precision (with X.Caruso and D.Roe)

Improvements

Table of contents

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

└─ *p*-adic precision (with X.Caruso and D.Roe)

Improvements

Lattices

p-adic precision (with X.Caruso and D.Roe)

Improvements

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough,

$$f(x+B) = f(x) + f'(x) \cdot B.$$

p-adic precision (with X.Caruso and D.Roe)

Improvements

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a **differentiable** mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**. Then for any ball B = B(0, r) **small enough**, for any open **lattice** $H \subset B$

$$f(x+H) = f(x) + f'(x) \cdot H.$$

Improvements

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a **differentiable** mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**. Then for any ball B = B(0, r) **small enough**, for any open **lattice** $H \subset B$

$$f(x+H) = f(x) + f'(x) \cdot H.$$

Remark

This allows more models of precision, like

$$(x, y) = (1 + O(p^{10}), 1 + O(p)).$$

úеь

p-adic precision (with X.Caruso and D.Roe)

Improvements

Higher differentials

p-adic precision (with X.Caruso and D.Roe)

Improvements

Higher differentials

What is small enough

How can we determine when the lemma applies ?

p-adic precision (with X.Caruso and D.Roe)

Improvements

Higher differentials

What is small enough

How can we determine when the lemma applies ? When f is locally analytic, it corresponds to

$$\sum_{k=2}^{+\infty}rac{1}{k!}f^{(k)}(x)\cdot H^k\subset f'(x)\cdot H.$$

Improvements

Higher differentials

What is small enough

How can we determine when the lemma applies ? When f is locally analytic, it corresponds to

$$\sum_{k=2}^{+\infty}rac{1}{k!}f^{(k)}(x)\cdot H^k\subset f'(x)\cdot H.$$

This can be determined with Newton-polygon techniques.

- p-adic precision (with X.Caruso and D.Roe)

Improvements

Higher differentials

What is small enough

How can we determine when the lemma applies ? When f is locally analytic, it corresponds to

$$\sum_{k=2}^{+\infty}rac{1}{k!}f^{(k)}(x)\cdot H^k\subset f'(x)\cdot H.$$

This can be determined with Newton-polygon techniques.

Remark

Concerning the Somos-4 sequence, since $P_n \in \mathbb{Z}[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}, X_3^{\pm 1}]$, all the coefficients of $\frac{1}{k!}f^{(k)}(x)$ are in \mathbb{Z} .

úei

-p-adic precision (with X.Caruso and D.Roe)

Improvements

Higher differentials

What is small enough

How can we determine when the lemma applies ? When f is locally analytic, it corresponds to

$$\sum_{k=2}^{+\infty}rac{1}{k!}f^{(k)}(x)\cdot H^k\subset f'(x)\cdot H.$$

This can be determined with Newton-polygon techniques.

Remark

Concerning the Somos-4 sequence, since $P_n \in \mathbb{Z}[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}, X_3^{\pm 1}]$, all the coefficients of $\frac{1}{k!}f^{(k)}(x)$ are in \mathbb{Z} . As a consequence,

$$\frac{1}{k!}f^{(k)}(x)\cdot(p^m\mathbb{Z}_p)^k\subset p^m\mathbb{Z}_p.$$

úeì

- Applications, Gröbner bases

About implementation

Table of contents

Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

Applications, Gröbner bases About implementation

- Classical operations
- Differential of Gröbner bases

Applications, Gröbner bases

About implementation

Computation in SOMOS-4

$$\begin{aligned} x_0 &= 1 + O(5^{20}) \\ x_1 &= 1 + O(5^{20}) \\ x_2 &= 1 + O(5^{20}) \\ x_3 &= -1 + 5 + O(5^{20}) \end{aligned}$$

Applications, Gröbner bases

About implementation

Computation in SOMOS-4

$$\begin{aligned} x_0 &= 1 + O(5^{20}) \\ x_1 &= 1 + O(5^{20}) \\ x_2 &= 1 + O(5^{20}) \\ x_3 &= -1 + 5 + O(5^{20}) \\ x_4 &= 4 * 5 + \dots + O(5^{20}) \end{aligned}$$

Applications, Gröbner bases

About implementation

Computation in SOMOS-4

$$\begin{aligned} x_0 &= 1 + O(5^{20}) \\ x_1 &= 1 + O(5^{20}) \\ x_2 &= 1 + O(5^{20}) \\ x_3 &= -1 + 5 + O(5^{20}) \\ x_4 &= 4 * 5 + \dots + O(5^{20}) \\ x_8 &= 4 + \dots + O(5^{19}) \end{aligned}$$

Applications, Gröbner bases

About implementation

Computation in SOMOS-4

$$\begin{aligned} x_0 &= 1 + O(5^{20}) \\ x_1 &= 1 + O(5^{20}) \\ x_2 &= 1 + O(5^{20}) \\ x_3 &= -1 + 5 + O(5^{20}) \\ x_4 &= 4 * 5 + \dots + O(5^{20}) \\ x_8 &= 4 + \dots + O(5^{19}) \\ x_{40} &= 4 + \dots + O(5^{13}) \end{aligned}$$

Applications, Gröbner bases

About implementation

Computation in SOMOS-4

Loss in precision in SOMOS-4 with Sage ?!

$$\begin{aligned} x_0 &= 1 + O(5^{20}) \\ x_1 &= 1 + O(5^{20}) \\ x_2 &= 1 + O(5^{20}) \\ x_3 &= -1 + 5 + O(5^{20}) \\ x_4 &= 4 * 5 + \dots + O(5^{20}) \\ x_8 &= 4 + \dots + O(5^{19}) \\ x_{40} &= 4 + \dots + O(5^{13}) \end{aligned}$$

Tristan Vaccon

p-adic precision, differentials and the example of Gröbner bases.

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

Applications, Gröbner bases

About implementation

Lifting techniques

Methods comparison

- Applications, Gröbner bases

Classical operations

Table of contents

1 Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operations
- Differential of Gröbner bases

Applications, Gröbner bases

Classical operations

Some calculus

Differential of the euclidean division

Let $A, B \in \mathbb{Q}_p[X]$. We would like to differentiate A = BQ + R.

Applications, Gröbner bases

Classical operations

Some calculus

Differential of the euclidean division

Let $A, B \in \mathbb{Q}_p[X]$. We would like to differentiate A = BQ + R. We can write $A + \delta A = (B + \delta B)(Q + \delta Q) + R + \delta R$.

Applications, Gröbner bases

Classical operations

Some calculus

Differential of the euclidean division

Let $A, B \in \mathbb{Q}_p[X]$. We would like to differentiate A = BQ + R. We can write $A + \delta A = (B + \delta B)(Q + \delta Q) + R + \delta R$. Then,

$$\delta A - Q\delta B = B\delta Q + \delta R.$$

Applications, Gröbner bases

Classical operations

Some calculus

Differential of the euclidean division

Let $A, B \in \mathbb{Q}_p[X]$. We would like to differentiate A = BQ + R. We can write $A + \delta A = (B + \delta B)(Q + \delta Q) + R + \delta R$. Then,

$$\delta A - Q\delta B = B\delta Q + \delta R.$$

Therefore, δQ and δR are determined by the division of $\delta A - Q \delta B$ by B.

Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

úeì

Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

M = LU

úeì

Dac

Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

M = LU $M + \delta M = (L + \delta L)(U + \delta U)$

úei

Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

$$M = LU$$

$$M + \delta M = (L + \delta L)(U + \delta U)$$

$$M + \delta M = LU + \delta L \times U + L \times \delta U$$

úeì

Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

$$M = LU$$

$$M + \delta M = (L + \delta L)(U + \delta U)$$

$$M + \delta M = LU + \delta L \times U + L \times \delta U$$

$$\delta M = \delta L \times U + L \times \delta U$$

úeì

Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

$$M = LU$$

$$M + \delta M = (L + \delta L)(U + \delta U)$$

$$M + \delta M = LU + \delta L \times U + L \times \delta U$$

$$\delta M = \delta L \times U + L \times \delta U$$

$$L^{-1} \times \delta M \times U^{-1} = L^{-1} \times \delta L + \delta U \times U^{-1}$$

úeì

Dac
Applications, Gröbner bases

Classical operations

About matrices

Differential of the LU factorization

We would like to differentiate $M \mapsto (L, U)$.

$$M = LU$$

$$M + \delta M = (L + \delta L)(U + \delta U)$$

$$M + \delta M = LU + \delta L \times U + L \times \delta U$$

$$\delta M = \delta L \times U + L \times \delta U$$

$$L^{-1} \times \delta M \times U^{-1} = L^{-1} \times \delta L + \delta U \times U^{-1}$$

Therefore,

$$\delta L = L \times (L^{-1} \times \delta M \times U^{-1})_{\text{Low}}$$

$$\delta U = (L^{-1} \times \delta M \times U^{-1})_{\text{Up}} \times U$$

úeì

- Applications, Gröbner bases

Differential of Gröbner bases

Table of contents

Gröbner bases

- Step-by-step analysis
- Loss in precision in the row-echelon form computation
- The Matrix-F5 algorithm and p-adic computations

2 *p*-adic precision (with X.Caruso and D.Roe)

- The limits of step-by-step analysis
- The Main lemma
- SOMOS-4
- Improvements

3 Applications, Gröbner bases

- About implementation
- Classical operation:
- Differential of Gröbner bases

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

Applications, Gröbner bases

Differential of Gröbner bases

Multivariate polynomials

Differential of polynomial division

Like for euclidean division, it is possible to differentiate the division of f by a Gröbner basis (f_1, \ldots, f_s) .

Applications, Gröbner bases

Differential of Gröbner bases

Multivariate polynomials

Differential of polynomial division

Like for euclidean division, it is possible to differentiate the division of f by a Gröbner basis (f_1, \ldots, f_s) . If we write

$$f=q_1f_1+\ldots q_sf_s+r,$$

Applications, Gröbner bases

Differential of Gröbner bases

Multivariate polynomials

Differential of polynomial division

Like for euclidean division, it is possible to differentiate the division of f by a Gröbner basis (f_1, \ldots, f_s) . If we write

$$f = q_1 f_1 + \ldots q_s f_s + r,$$

then δr is the remainder of the division of $f - (\delta q_1 \times f_1 + ... \delta q_s \times f_s)$ by $(f_1, ..., f_s)$.

Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB

Let (f_1, \ldots, f_s) satisfying **Structure**.

Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB

Let (f_1, \ldots, f_s) satisfying **Structure**. Let (g_1, \ldots, g_t) be the corresponding reduced Gröbner bases.

Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB

Let (f_1, \ldots, f_s) satisfying **Structure**. Let (g_1, \ldots, g_t) be the corresponding reduced Gröbner bases. We may write

$$(g_1,\ldots,g_t)=(f_1,\ldots,f_s)\times A.$$

Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB

Let (f_1, \ldots, f_s) satisfying **Structure**. Let (g_1, \ldots, g_t) be the corresponding reduced Gröbner bases. We may write

$$(g_1,\ldots,g_t)=(f_1,\ldots,f_s)\times A.$$

We can diffentiate,

 $(\delta g_1,\ldots,\delta g_t) = (f_1,\ldots,f_s) \times \delta A + (\delta f_1,\ldots,\delta f_s) \times A.$

Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB

Let (f_1, \ldots, f_s) satisfying **Structure**. Let (g_1, \ldots, g_t) be the corresponding reduced Gröbner bases. We may write

$$(g_1,\ldots,g_t)=(f_1,\ldots,f_s)\times A.$$

We can diffentiate,

 $(\delta g_1,\ldots,\delta g_t) = (\delta f_1,\ldots,\delta f_s) \times A \mod (g_1,\ldots,g_t).$

Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB

Let (f_1, \ldots, f_s) satisfying **Structure**. Let (g_1, \ldots, g_t) be the corresponding reduced Gröbner bases. We may write

$$(g_1,\ldots,g_t)=(f_1,\ldots,f_s)\times A.$$

We can diffentiate,

$$(\delta g_1,\ldots,\delta g_t)=(\delta f_1,\ldots,\delta f_s)\times A \mod (g_1,\ldots,g_t).$$

 $(\delta g_1, \ldots, \delta g_t)$ is the remainder of the divisions of $(\delta f_1, \ldots, \delta f_s) \times A$ by (g_1, \ldots, g_t) .

úeì

- Conclusion

On Gröbner bases

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

- Conclusion

On Gröbner bases

• With **Structure**, can be computed over \mathbb{Q}_p .

Tristan Vaccon *p*-adic precision, differentials and the example of Gröbner bases.

- Conclusion

On Gröbner bases

- With **Structure**, can be computed over \mathbb{Q}_p .
- The step-by-step analysis show the differentiability.

- With **Structure**, can be computed over \mathbb{Q}_p .
- The step-by-step analysis show the differentiability.

On *p*-adic precision

- With **Structure**, can be computed over \mathbb{Q}_p .
- The step-by-step analysis show the differentiability.

On *p*-adic precision

Step-by-step analysis : as a first step.

- With **Structure**, can be computed over \mathbb{Q}_p .
- The step-by-step analysis show the differentiability.

On *p*-adic precision

- Step-by-step analysis : as a first step.
- Differential calculus : intrinsic and can handle both gain and loss.

- With **Structure**, can be computed over \mathbb{Q}_p .
- The step-by-step analysis show the differentiability.

On *p*-adic precision

- Step-by-step analysis : as a first step.
- Differential calculus : intrinsic and can handle both gain and loss.
- New framework : differentials and lattices.

- References

References

Over *p*-adic precision

• XAVIER CARUSO Random matrix over a DVR and LU factorization, preprint.

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON Tracking *p*-adic precision, preprint.

Over Gröbner bases

- TRISTAN VACCON Matrix-F5 algorithm over finite-precision complete discrete-valuation fields, preprint.
- TRISTAN VACCON Matrix-F5 algorithms and tropical Gröbner bases computation, preprint.

UNIVERSILE

úеь