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p-adic precision, differentials and the example of Gröbner bases.
Introduction : p-adic precision

Motivation for p-adic algorithm

Why should one work with p-adic numbers ?
Going from Fp to Zp and then back to Fp enables more
computation ;

Working in Qp instead of Q, one can handle more efficiently the
coefficients growth ;
Some questions or algorithms are p-adic by nature.

Some examples of essentially p-adic algorithms
Polynomial factorization with Hensel lemma ;
Kedlaya’s counting-point algorithm on hyperelliptic curves with
p-adic cohomology ;
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Introduction : p-adic precision

p-adic algorithms : a first example

Hensel factorization
We would like to factor Q ∈ Z[X ] :

1 Chose a p that is well-suited to the problem ;
2 Factor Q ∈ Z/pZ[X ] ;
3 Lift the factors into Z/pkZ[X ] (with Hensel’s lemma) ;
4 If pk is big enough (Mignotte’s bound), we can obtain a

factorization over Q (up to the recombination of some factors).
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Introduction : p-adic precision

p-adic algorithms : another example

Idea of Kedlaya’s algorithm
Let C be an hyperelliptic curve of genus g over Fp, defined by y2 = P(x)
(with deg(P) = 2g + 1, squarefree). We would like to determine
|Jac(C ,Fp)|.

Let F be the Frobenius of Fp. Then F acts as an endomorphims on
H1

MW (C ,A), the Monsky-Washnitzer cohomology with coefficients in
A.
Let A = Z†p[[x , y ]]/(P). Then |Jac(C ,Fp)| = χF (1).
We want to determine the action of F over A and H1

MW (C ,A) :

F (x) = xp mod p F (y) = yp mod p
P(F (x)) = F (y)2

With Weil’s conjecture, χF ∈ Z[T ], and |ai | 6 22g√qi .
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Introduction : p-adic precision

Definition of the precision

Finite-precision p-adics

Elements of Qp can be written
∑+∞

i=−l aipi , with ai ∈ J0, p − 1K, l ∈ Z
and p a prime number.
While working with a computer, we usually only can consider the
beginning of this power serie expansion: we only consider elements of the
following form

∑d−1
i=l aipi + O(pd ), with l ∈ Z.

Definition

The order, or the absolute precision of
∑d−1

i=k aipi + O(pd ) is d . Its
relative precision corresponds to the number of its significant figures,
and thus, is given by d −min {i ∈ Z, ai 6= 0}.

Example
The order of 3 ∗ 7−1 + 4 ∗ 70 + 5 ∗ 71 + 6 ∗ 72 + O(73) is 3, and its
relative precision is 4 = 3− (−1).
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Introduction : p-adic precision

1 Gröbner bases
Step-by-step analysis
Loss in precision in the row-echelon form computation
The Matrix-F5 algorithm and p-adic computations

2 p-adic precision (with X.Caruso and D.Roe)
The limits of step-by-step analysis
The Main lemma
SOMOS-4
Improvements

3 Applications, Gröbner bases
About implementation
Classical operations
Differential of Gröbner bases
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Step-by-step analysis
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Gröbner bases

Step-by-step analysis

p-adic precion vs real precision
The quintessential idea of the step-by-step analysis is the following :

Proposition (p-adic errors don’t add)
Indeed,

(a + O(p k )) + (b + O(p k )) = a + b + O(p k ).

That is to say, if a and b are known up to precision O(pk), then so is
a + b.

Remark
It is quite the opposite to when dealing with real numbers, because of
Round-off error :

(1 + 5 ∗ 10−2) + (2 + 6 ∗ 10−2) = 3 + 1 ∗ 10−1 + 1 ∗ 10−2.

That is to say, if a and b are known up to precision 10−n, then a + b is

known up to 10(−n +1 )
.
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Gröbner bases

Step-by-step analysis

Precision formulae

Proposition (addition)

(x0 + O(pk0 )) + (x1 + O(pk1 )) = x0 + x1 + O(pmin(k0,k1))

Proposition (multiplication)

(x0 + O(pk0 )) ∗ (x1 + O(pk1 )) = x0 ∗ x1 + O(pmin(k0+vp(x1),k1+vp(x0)))

Proposition (division)

xpa + O(pb)
ypc + O(pd ) = x ∗ y−1pa−c + O(pmin(d+a−2c,b−c))

In particular, 1
pcy + O(pd ) = y−1p−c + O(pd−2c)
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Gröbner bases

Loss in precision in the row-echelon form computation
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Gröbner bases

Loss in precision in the row-echelon form computation

The result for the Gauss method

Theorem
Let M ∈ Mn,m(Zp) such that :

its coefficients are known up to O(pk).
val(∆) < k, with ∆ = det((Mi,j)16i6n,16j6n).

Then the loss of precision to compute a row-echelon form of M is
≤ val(∆).
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Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss’ method

M = m1,1 + O(pk) m1,2 + O(pk) m1,m + O(pk)

m2,1 + O(pk) m2,2 + O(pk) m2,m + O(pk)



We assume that,

det
([

m1,1 + O(pk) m1,2 + O(pk)
m2,1 + O(pk) m2,2 + O(pk)

])
6= O(pk).
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Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss’ method

M ' pa1 + O(pk ) m1,2 + O(pk ) m1,m + O(pk )

pa2 + O(pk ) m2,2 + O(pk ) m2,m + O(pk )

][
L2 ← L2 −

M(n−1)
2,1

M(n−1)
1,1

L1
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Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss’ method

M '
pa1 + O(pk ) m1,2 + O(pk ) m1,m + O(pk )

0 m(2)
2,2 + O(pk−a1 ) m(2)

2,m + O(pk−a1 )

][
L2 ← L2 −

M(n−1)
2,1

M(n−1)
1,1

L1

Indeed, M(n−1)
2,1 −

M(n−1)
2,1

M(n−1)
1,1

∗ M(n−1)
1,1 = 0 (formally).

In addition,
M(n−1)

2,1

M(n−1)
1,1

= pa2 +O(pk )
pa1 +O(pk )

= pa2−a1 + O(pk−a1 ), therefore

L2 −
M(n−1)

2,1

M(n−1)
1,1

L1 = L2 + (pa2−a1 + O(pk−a1 ))L1 .
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Gröbner bases

Loss in precision in the row-echelon form computation

Proof of the theorem

Gauss’ method
In the end, we get :

M = pa1 + O(pk) m1,2 + O(pk) m1,m + O(pk)

0 pa2 + O(pk−a1 ) m2,m + O(pk−a1 )



The loss of precision on the second row is a1 .
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Proof of the theorem

Gauss’ method
In the end, we get :

M = pa1 + O(pk) m1,2 + O(pk) m1,m + O(pk)

0 pa2 + O(pk−a1 ) m2,m + O(pk−a1 )


val(det

([
m1,1 + O(pk) m1,2 + O(pk)
m2,1 + O(pk) m2,2 + O(pk)

])
) = a1 + a2, with ai > 0.

The loss in precision is upper-bounded by
val(det((Mi,j)16i62,16j62))
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The Matrix-F5 algorithm and p-adic computations

Table of contents

1 Gröbner bases
Step-by-step analysis
Loss in precision in the row-echelon form computation
The Matrix-F5 algorithm and p-adic computations

2 p-adic precision (with X.Caruso and D.Roe)
The limits of step-by-step analysis
The Main lemma
SOMOS-4
Improvements

3 Applications, Gröbner bases
About implementation
Classical operations
Differential of Gröbner bases

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Gröbner bases

The Matrix-F5 algorithm and p-adic computations

The Macaulay matrix

Notations
From now on, k is a field, n, s ∈ N, and R = k[X1, . . . ,Xn]. We denote
by Rd the homogeneous polynomials of degree d of R.
Let ω be a monomial order on R.

Proposition (D. Lazard 83)
For an homogeneous ideal I = (f1, . . . , fs) ⊂ R (f1, . . . , fs being
homogeneous), d ∈ N, I ∩ Rd =< xαfi , |α|+ deg(fi ) = d >, as k-vector
spaces .
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The Matrix-F5 algorithm and p-adic computations

The Macaulay matrix

Definition (Macaulay’s matrix)
We denote by Macd (f1, . . . , fs) the matrix :

xd1 > . . . > . . . > x
d(n+d−1

n−1 )

xα1,1 f1
...

x
α

1,(n+d−d1−1
n−1 ) f1

xα2,1 f2
...

x
α

s,(n+d−ds−1
n−1 ) fs

 xαfi written in the basis of the xdi

 .

Its rows xαfi are written in the basis xd1 , . . . , x
d(n+d−1

n−1 ), with
|α|+ deg(fi ) = d . Also, xαi,j < xαi,j+1 .
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

An algorithm

The idea of the Matrix-F5 algorithm
The idea is to successively row-echelon the matrices Macd (f1, . . . , fi )
iteratively with d and i .
If you know the profile of Macd (f1, . . . , fi ), then you know what are the
leading terms in LT ((f1, . . . , fi )d ) and so, you can remove useless rows in
Macd′(f1, . . . , fi′) with d ′ > d and i ′ > i .
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The Matrix-F5 algorithm and p-adic computations

An algorithm

The Matrix-F5 algorithm

Algorithm 1 Matrix-F5 algorithm
Let F = (f1, . . . , fs) ∈ Rs , of degree d1, . . . , ds , and D ∈ N.
G ← F
for d ∈ J0,DK do
for i ∈ J1, sK do
Build Macd f1, . . . , fi ;
Remove the rows xαfi such that xα is the leading term of a row
of ˜Macd−di ,i−1;
Compute the row-echelon form M̃acd,i ;
Add to G the rows with a new leading monomial.

end for
end for
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

The position of the leading terms ideals

Problem with testing nullity
A major issue can happen when dealing with finite-precision numbers :
not being able to decide whether there is no non-zero pivot on a column
or whether the precision is not enough.

Being able to compute the leading terms ideals

1 + O(pk) 1 + O(pk) 1 + O(pk) 0

1 + O(pk) 1 + O(pk) 0 1 + O(pk)

 L2 ← L2 −
M2,1
M1,1

L1
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The Matrix-F5 algorithm and p-adic computations

The position of the leading terms ideals

Problem with testing nullity
A major issue can happen when dealing with finite-precision numbers :
not being able to decide whether there is no non-zero pivot on a column
or whether the precision is not enough.

Being able to compute the leading terms ideals

1 + O(pk) 1 + O(pk) 1 + O(pk) 0

0 O(pk) −1 + O(pk) 1 + O(pk)


L2 ← L2 − (1 + O(pk))L1
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

The position of the leading terms ideals

Problem with testing nullity
A major issue can happen when dealing with finite-precision numbers :
not being able to decide whether there is no non-zero pivot on a column
or whether the precision is not enough.

Being able to compute the leading terms ideals

1 + O(pk) 1 + O(pk) 1 + O(pk) 0

0 O(pk) −1 + O(pk) 1 + O(pk)


L2 ← L2 − (1 + O(pk))L1

What is the leading term for the second row ?
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

Moreno-Socias conjecture

Definition (weakly-w -ideal)
I is said to be a weakly-w -ideal if :

for all xα a leading monomial according to w of the reduced
Gröbner basis of I,
for all xβ such that |α| = |β| and xβ > xα,

we have xβ ∈ LM(I).

Conjecture (Moreno-Socias)
If k is an infinite field, s ∈ N, d1, . . . , ds ∈ N, then there is a non-empty
Zariski-open subset U in Rd1 × · · · × Rds such that for all (f1, . . . , fs) ∈ U,
I = (f1, . . . , fs) is a weakly-grevlex ideal.

Remark
If the conjecture holds, then regular sequences generating a weakly
grevlex ideal are generic.
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

An algorithm suited for weakly-w -ideal

Proposition ("weak" F5M algorithm)
We assume :

(f1, . . . , fs) is a regular,

the < f1, . . . , fl > are weakly-w-ideals,
precision on the fi ’s is enough.

Then, we can proceed :
At first, we proceed like in the normal F5M algorithm ;
But, as soon as a column with no non-zero pivot is encountered, we
halt the row-echelon computation. Instead, we replace the
non-reduced rows by (already reduced) multiples of the rows of
M̃acd−1,i , so as to get a matrix under row-echelon form.
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

3 quadrics in 6 variables

An example
With 3 generic quadrics in 6 variables, what we get after reducing the
Macauly matrix in degree 3 is the following :

a 9x9 invertible block (loss in precision : determinant of the 9x9 matrix)
0 9 rows, multiples of rows of the matrix in degree 2


.
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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

About strongly stable ideals

Strongly stable ideal is not enough
In Qp[x , y , z ],let us take f1 = x3 + xy2, f2 = x2y , and f3 = x2z . They
generate a strongly stable initial ideal regarding to grevlex.

Yet, one can not recover the initial ideal from approximations of
f1, f2, f1 + f3.

Mac3(f1, f2, f1 + f3) '

x3 > x2y > xy 2 > y 3 > x2z > . . .

1 0 1 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 1 0 . . .



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Gröbner bases

The Matrix-F5 algorithm and p-adic computations

To sum up in one result

Proposition
We assume :

Structure : regular sequence, and weakly-ω ideals < f1, . . . , fi > .

Precision : bigger than the valuation of the biggest principal minors.
Then we can compute, by an F5M algorithm, an approximate Gröbner
basis of I for ω, with the right leading monomials.

Remark
Moreno-Socias conjecture implies that Structure is generic for grevlex.
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p-adic precision (with X.Caruso and D.Roe)

The limits of step-by-step analysis

Optimality

Step-by-step analysis is not optimal.

Let f : Q2
p → Q2

p
(x , y) 7→ (x + y , x − y).

We would like to compute f ◦ f (x , y) with
(x , y) = (1 + O(p10) , 1 + O(p)).

If we apply f two times, we get :

f ◦ f (x , y) = (2 + O(p) , 2 + O(p)).

If we remark that f ◦ f = 2Id , we get :

f ◦ f (x , y) = (2 + O(p10) , 2 + O(p)).
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The limits of step-by-step analysis

Non intrinsic

X.Caruso (12) : Step-by-step analysis is algorithm-dependent.
Let M ∈ Md (Zp) be a random matrix whose all entries are known up to
precision O(pN).

We would like to compute M = LU the LU factorization of M. Then :
If we apply Gaussian elimination, the average precision on L is
O(pn− 2d

p−1 ).
If we study Cramer-style formulae, the intrinsic precision determined
for L is O(pn−2 logp(d)).
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The Main lemma

The Main lemma of p-adic differential precision

Lemma
Let f : Qn

p → Qm
p be a differentiable mapping.

Let x ∈ Qn
p. We assume that f ′(x) is surjective.

Then for any ball B = B(0, r) small enough,

f (x + B) = f (x) + f ′(x) · B.
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The Main lemma

Geometrical meaning

Interpretation

x

B

f (x)
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SOMOS-4

Introduction to the Somos-4 sequence

Definition
We define the Somos-4 sequence by recursion, with :

x0, x1, x2, x3 ∈ Z×p ,

xn+4 =
xn+1xn+3 + x2

n+2
xn

.

Remark
This formula comes from the Z -coordinate of [m]P + Q for some P,Q
points on the elliptic curve y2 + y = x3 + x .

Proposition
For all n, xn ∈ Zp, i.e. vp(xn) ≥ 0.
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SOMOS-4

The Laurent phenomenon

Remark
If x0, x1, x2, x3 are known up to O(pm), then because of the division by
xn, a naive step-by-step analysis show that xn+4 is known up to
O(pm−

∑n
k=0

vp(xk )).

Theorem (Fomin, Zelevinsky)
Let Pn be the rational fraction defined by the recursion formula defining
Somos-4 :

xn = Pn(x0, x1, x2, x3).

Then Pn ∈ Z[x±1
0 , x±1

1 , x±1
2 , x±1

3 ].
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SOMOS-4

Consequence

Theorem
Pn ∈ Z[x±1

0 , x±1
1 , x±1

2 , x±1
3 ].

Remark
If m is big enough,

Pn(x0 + O(pm), x1 + O(pm), x2 + O(pm), x3 + O(pm))
= xn + P ′n(x0, x1, x2, x3) · (O(pm),O(pm),O(pm),O(pm))t .

Coefficients of P ′n(x0, x1, x2, x3) are in Zp.

Corollary
There is no intrinsic loss of precision : xn is determined up to O(pm).
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Improvements

Lattices

Lemma
Let f : Qn

p → Qm
p be a differentiable mapping.

Let x ∈ Qn
p. We assume that f ′(x) is surjective.

Then for any ball B = B(0, r) small enough,

f (x + ) = f (x) + f ′(x) · .

Remark
This allows more models of precision, like

(x , y) = (1 + O(p10), 1 + O(p)).
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Improvements

Higher differentials

What is small enough
How can we determine when the lemma applies ?
When f is locally analytic, it corresponds to

+∞∑
k=2

1
k! f

(k)(x) · Hk ⊂ f ′(x) · H.

This can be determined with Newton-polygon techniques.

Remark
Concerning the Somos-4 sequence, since Pn ∈ Z[X±1

0 ,X±1
1 ,X±1

2 ,X±1
3 ],

all the coefficients of 1
k! f

(k)(x) are in Z.
As a consequence,

1
k! f

(k)(x) · (pmZp)k ⊂ pmZp.
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About implementation

Computation in SOMOS-4

Loss in precision in SOMOS-4 with Sage ?!

x0 = 1 + O(520)
x1 = 1 + O(520)
x2 = 1 + O(520)
x3 = −1 + 5 + O(520)

x4 = 4 ∗ 5 + · · ·+ O(520)
x8 = 4 + · · ·+ O(519)
x40 = 4 + · · ·+ O(513)

An explanation
The gain in precision in x8 is invisible.
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Some calculus

Differential of the euclidean division
Let A,B ∈ Qp[X ]. We would like to differentiate A = BQ + R.

We can write A + δA = (B + δB)(Q + δQ) + R + δR.
Then,

δA− QδB = BδQ + δR.

Therefore, δQ and δR are determined by the division of δA− QδB by B.
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Differential of Gröbner bases

Multivariate polynomials

Differential of polynomial division
Like for euclidean division, it is possible to differentiate the division of f
by a Gröbner basis (f1, . . . , , fs).

If we write

f = q1f1 + . . . qs fs + r ,

then δr is the remainder of the division of f − (δq1 × f1 + . . . δqs × fs) by
(f1, . . . , fs).
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Let (g1, . . . , gt) be the
corresponding reduced Gröbner bases.
We may write

(g1, . . . , gt) = (f1, . . . , fs)× A.

We can diffentiate,
(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)× A by
(g1, . . . , gt).

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB
Let (f1, . . . , fs) satisfying Structure. Let (g1, . . . , gt) be the
corresponding reduced Gröbner bases.

We may write
(g1, . . . , gt) = (f1, . . . , fs)× A.

We can diffentiate,
(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)× A by
(g1, . . . , gt).

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB
Let (f1, . . . , fs) satisfying Structure. Let (g1, . . . , gt) be the
corresponding reduced Gröbner bases.
We may write

(g1, . . . , gt) = (f1, . . . , fs)× A.

We can diffentiate,
(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)× A by
(g1, . . . , gt).

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB
Let (f1, . . . , fs) satisfying Structure. Let (g1, . . . , gt) be the
corresponding reduced Gröbner bases.
We may write

(g1, . . . , gt) = (f1, . . . , fs)× A.

We can diffentiate,

(δg1, . . . , δgt) = (f1, . . . , fs)× δA + (δf1, . . . , δfs)× A.

(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)× A by
(g1, . . . , gt).

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB
Let (f1, . . . , fs) satisfying Structure. Let (g1, . . . , gt) be the
corresponding reduced Gröbner bases.
We may write

(g1, . . . , gt) = (f1, . . . , fs)× A.

We can diffentiate,

(δg1, . . . , δgt) = (δf1, . . . , δfs)× A mod (g1, . . . , gt) .

(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)× A by
(g1, . . . , gt).

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Applications, Gröbner bases

Differential of Gröbner bases

Back to GB

Differential of reduced GB
Let (f1, . . . , fs) satisfying Structure. Let (g1, . . . , gt) be the
corresponding reduced Gröbner bases.
We may write

(g1, . . . , gt) = (f1, . . . , fs)× A.

We can diffentiate,

(δg1, . . . , δgt) = (δf1, . . . , δfs)× A mod (g1, . . . , gt) .

(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)× A by
(g1, . . . , gt).

Tristan Vaccon p-adic precision, differentials and the example of Gröbner bases.



p-adic precision, differentials and the example of Gröbner bases.
Conclusion

On Gröbner bases

With Structure, can be computed over Qp.

The step-by-step analysis show the differentiability.

On p-adic precision
Step-by-step analysis : as a first step.
Differential calculus : intrinsic and can handle both gain and loss.
New framework : differentials and lattices.
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