A link between lambda calculus and maps

Noam Zeilberger!
MSR-Inria Joint Centre

SpecFun seminar
29 September 2014

'based on a joint article with Alain Giorgetti: arxiv.org/abs/1408.5028

59

http://arxiv.org/abs/1408.5028

Part 1: Lambda calculus and its refinements

59

A Turing-complete language based on just two operations:

t(u) (function application)
Ax.t (function abstraction)

(“Everything is a function.”)

Consider terms up to renaming of variables, e.g.:

Ax.Ay.Az.z(yx) = Aa.Ab.Ac.c(ba)
AXAy.y = Ay.Ax.x
AXXX = Ay.yy

The main/only rule of computation is g-reduction:
(Ax.t)(u) ~ tlu/x]

where t[u/x] is the “capture-avoiding” substitution of u for x in t.

59

(Ax.xx)(Ay.y) ~ xx[(Ay.y)/X]
= (Ay.y)(Ay-y)
~ y[(Ay.y)/y]
=Ay.y

((Ax.Ay.x)w)(Az.2) ~ (Ay.x[w/x])(Az.2)
= (Ay.w)(Az.2)
~ w((Az.2)/y]
=w

(AX.XX)(Ax.XX) ~> xx[(AX.xX)/X]
= (AX.xx)(AX.xx)

We can use typing to isolate various interesting fragments of
lambda calculus. . .

59

The simply-typed terms

A simple type t is either the atomic type t = o0 or a function
type T =11 — 10.

Let I and A range over ordered lists of assumptions
X1 :11,...,X% : T (all x¢ distinct). Consider the following rules:

Nkt >t TRU:TY X:1q,[Ft:1o

Mx:t,Arx:t M tu): o MNeAxt:t1 = 12

Definition
A term t is simply-typed if there exists a derivation (using the
above rules) of I' + t : 7 for some I and z.

59

AX.Ay.x is simply-typed:

Yy:0,X:0FX:0
X:0FAy.X:0—>0
FAXAy.x:0— (0 — 0)

Ax.xx is not simply-typed:

7

X T{FEX:1T1 >>T2 X:T1FX:Tq

X:T{1FXX T2
FAXXX Ty > T2

59

All terms

Intuitively, the pure lambda calculus is based on a universal
type U= U — U.

This motivates the following type system, here I and A ranging
over lists of assumptions xq : U, ..., x; : U.

ret:U Tru:U x:UTlvrt: U
Nx:UArx:U Met(u): U MNeAx.t: U

Now for any term t with free variables xi, ..., xj there is a
(unique) derivationof x1 : U,...,xj: Ur t: U.

Effectively, this type system defines the “fragment” of pure
lambda calculus including everything.?

2t is not a trivial definition, though, since it relates lambda terms to certain
kinds of trees.

59

Planar terms

But suppose we restrict the variable and application rules:

l+t:P Avru:P X:P,A+t:P
x:Prx:P rAvtu):P ArAxt: P

This defines a much smaller fragment of terms, enforcing the
following discipline: every variable is used exactly once and in
last-in, first-out order.

We refer to such terms as planar.

59

AX.Ay.yx is planar:

y:Pry:P x:Prx:P
y:P,x:Pryx:P
X:PrAyyx:P
FAXAy.yx : P

Ax.Ay.(Az.zy)x is planar:

Z:Prz:P y:Pry:P
z:P,y:Przy:P
y:PrAzzy:P X:Prx:P

y:P,x:Pr(Az.zy)x: P
X:PrAy(Az.zy)x: P
FAXAy.(Az.zy)x : P

10/59

Ax.Ay.y(Az.xz) is not planar:
77
z:P,x:Prxz:P
y:Pry:P x:PrAzxz:P
y:P,x:Pry(Azxz): P
x:PrAyy(Az.xz): P
FAXAy.y(Az.xz) : P

11/59

Planar diagrams for planar lambda terms

A string diagram is a way of representating a morphism in a
monoidal category. One can define string diagrams for linear
lambda terms, built out of two basic connectors

A Y

which intuitively may be annotated like so:

t T t
t(u) u Az.t

In particular, the wire annotated by x is hooked up directly to its
unique occurrence in t.

12/59

The term Ay.yx (with one free variable x) corresponds to the
following string diagram:

We can annotate the diagram to see this more clearly:

13/59

The term Av.(Aw.wv)u (with free variable u) corresponds to

Again we can annotate the diagram to see this better:

u

(Aw.wv)u

Av.(Aw.wv)u

14/59

Since terms are always considered up to variable renaming, the
following are also perfectly good annotations of (A) and (B):

a

Ab.(Ac.ch)a

So, by considering the underlying diagrams themselves, we can
represent just the essential structure of lambda terms.

15/59

Similarly, we can represent the essential structure of
substitution by just “plugging” one diagram into another:

e

Av.(Aw.wv)u[(Ay.yx)/u] = Av.(Aw.wv)(Ay.yx)

16/59

Planarity and g-reduction

Observe that planarity (no crossing of wires) enforces the
last-in, first-out (LIFO) discipline on the use of variables.
However, planarity is not preserved by S-reduction:

L X

Av.uv

v

Av.(Aw.wv)u

17/59

One “response” is to restrict to f-normal planar terms.3
Normality can be enforced by a simple coloring discipline:

\\{

Since there is no coercion red = blue,
it is impossible to color a S-redex.

3Another possible response is to switch from a LIFO discipline to a FIFO
discipline, which is preserved under g-reduction. However, even in that case
it is still interesting to isolate the g-normal terms.

18/59

A short catalogue of normal planar terms (with one free variable)*

z(Ay.y) Y-y

“Note all of these diagrams have one blue incoming wire and one red
outgoing wire.
19/59

i Y
Ay.y(z(Az.2)) Ay.y(Az.zz) . Ay.(y(Az.2)):
1 1 1
Ay.(yz)(Az.2) Ay Az.z(yz) Ay Az (zy)z

20/59

Part 2: A curious coincidence

21/59

Let the size of a normal planar lambda term be defined as the
number of purple boxes in its string diagram.

T

(size 3)
N

z(Ay.Az.2y)

Count the normal planar lambda terms® of size n + 1:
1,2,9,54,378,2916, 24057

This coincides with the first seven entries of AO00168, counting
the number of rooted planar maps with n edges!

SWith no free variables, or equivalently with one free variable.

22/59

A rooted planar map is essentially a connected graph
embedded in the plane, with one edge marked and assigned an
orientation:

They were first counted by Tutte in the 1960s. Let’s begin by
proving that the two sequences really coincide, and then go on
to establish a bijection.

23/59

An inductive definition of normal (and neutral) planar terms

The coloring scheme corresponds to a refinement of the type
system for planarity:

r'kt:A Aru:B
X:AFXx:A NAFtHu):A

r,.t;AS x:AArt:B
N-t:B A+ Ax.t:B

¢
A = blue = “neutral”

B =red = normal
size = # of applications of the s rule in a derivation

24/59

Ay-yx 2(\y.y)

y:Ary:A

X:ArFXx:A
— Y |S
y:Ary:A X:AI—X:B y:Al—y:B
y:AXxX:Aryx:A X:Arx:A +Ayy:B
y:A,x:Akyx:B X:Arx(Ayy) A

X:ArAyyx:B ¢ x:A»—x(/\y.y):B

25/59

From typing to generating functions

r'Ft:A Aru:B
X:Arx:A MAFtU):A

r|-t;AS x:AArt:B
N~t: B ArAXx.t:B

t

Define families of generating functions A;(z) and B;(z), counting
neutral and normal planar terms (with i free variables) by size:

Alz) =li=1]+) A(2)Bi(2)

j+k=i
Bi(z) = zAi(2) + Bi1(2)

26/59

A(@)=li=1+) A(2)Bi(2)

jrk=i
Bi(z) = zAi(z) + Bi+1(2)

Next, formally aggregate these families

Az, x)Z Z Ai(z)x B(z,x)Z Z Bi(z)x'

i~0 i~0

to define a single pair of GFs counting terms along both size
and number of free variables.

Unfolding definitions, we derive the following equations:
A(z,x) =x+ A(z,x)B(z,x)
B(z,x) =zA(z,x) + %(B(z, x) — Bo(2))

27/59

A(z,x) =x+A(z,x)B(z,x)
B(z,x) = zA(z,x) + %(B(z, x) — Bo(2))

Proposition

The generating function By(z) satisfies

Bo(2) = _5% (1-182—(1-122)%?)

(Proof by quadratic method.)

28/59

Bo(z) = _51_2(1 — 18z — (1 - 122)32)

Corollary

The number of rooted planar maps with n edges is equal to the
number of closed normal planar lambda terms of size n + 1,
and to the number of normal planar lambda terms with one free
variable of size n + 1.

29/59

Number of normal planar terms of size n with i free variables.

—

4 5 6 7 8

54 378 2916 24057 208494
40 295 2346 19739 173426
20 175 1526 13587 123978
5 70 756 7602 74964
0 14 252 3234 36828
0 0 42 924 13728

ook WD =
OO OO O =
OO OO =N N
OO OMNO W W

(Row i =1 is A000168.)

30/59

https://oeis.org/A000168

Number of neutral planar terms of size n with i free variables.

i 01 2 3 4 5 6 7
1 11 3 14 83 570 4318 35068
2 0 1 4 20 120 820 6152 49448
3 0 0 2 15 105 770 5985 49014
4 0 0 0 5 ©56 504 4368 38136
5 0 0 0 0 14 210 2310 23100
6 0 0 0 O 0 42 792 10296

(Row i = 1 is A220910.)

31/59

https://oeis.org/A220910

Part 3: Tutte decomposition

32/59

Definition
A (topological) map is an embedding of a connected graph

(possibly with loops and multiple edges) on a compact oriented
surface X. A map is planar if X = sphere.

Definition

A dart is an edge together with an orientation. A rooting of a
map is a choice of dart, but the vertex map (with no edges) is
also considered rooted by convention. A rooted planar map is
a planar map equipped with a rooting, treated up to
root-preserving homeomorphism.

Trichotomy
Any rooted planar map M falls in one of three possible classes:
1. M is the vertex map
2. M has an isthmic root:

(9}

3. M has a non-isthmic root:
. A

e

34/59

The isthmic case

Removing A yields two RPMs My and M, (with roots B and C).
Moreover, this operation is reversible: there is a binary
operation ¢/(—, —), which given two RPMs M; and Mo,

constructs M = ¢;(My, Mz).

35/59

The non-isthmic case

Removing A yields a RPM M; (with root B). Conversely, there
is a family of operations c,(\,k)(—) which given a RPM M; of outer
face degree > k, constructs a RPM by starting at the root
vertex x of My, walking k darts along the outer face, and adding
a root pointing back to x.

(Above, M. = ¢\P(My) and Mg = ¢V (My).)

36/59

Theorem (Tutte 1968)

Let M be a rooted planar map with e(M) edges and outer face

degree o(M). Then exactly one of the following cases must
hold:

(i) M is the vertex map and e(M) = o(M) = 0.
(ii) M = c¢/(My, My) for some My and My such that
e(M) =1+e(Mi)+ e(Mz) and o(M) = 2+ o(M;) + o(Mp).

(iii) M = c,(vk)(M1) for some My and 0 < k < o(M;) such that
e(M)=1+e(M;)ando(M) =k + 1.

Part 4: Replaying Tutte in lambda calculus

38/59

Most natural to consider normal planar lambda terms with one
free variable (NPTVs).

Definition
Let t be a NPTV with free variable x. We say that t is the
variable term if t = x, that it is function-open if x is applied to

some (normal) subterm of t, and that it is argument-open if x
is passed as an argument to some (neutral) subterm of t.

Proposition (Trichotomy)

Every NPTV is either the variable term, function-open, or
argument-open (mutually exclusively).

39/59

It's easiest to see this on the string diagram f of a NPTV t:
1. tis the variable term iff f is the basic diagram s.

2. tis function-open iff the incoming wire of f runs directly to
an a-node.

3. tis argument-open iff the incoming wire of f runs directly to
an s-node, which then connects directly to an a-node.

40/59

(M) Ay-yz

41/59

i Y
Ay.y(z(Az.2)) Ay.y(Az.zz) . Ay.(y(Az.2)):
1 1 1
Ay.(yz)(Az.2) Ay Az.z(yz) Ay Az (zy)z

42/59

Now let’s further decompose the function-open and
argument-open cases...

43/59

The function-open case

Proposition

The diagram f of any function-open NPTV factors as

for some g and h.

44/59

The function-open case

Surgery on a function-open NPTV extracts a pair of NPTVs:

45/59

The function-open case

With annotations:

S
<

46/59

For example, consider combining x(Ay.y) and Ay.yx in either
order...

47/59

z(Ay.y)

AY.yx

48/59

z(Aw.w) Az.zy

48/59

z(Aw.w) Az.zy

(x(A\y.Az.zy)) (Aw.w)

48/59

Ay.yz z(Ay.y)

49/59

Ay.yx z(Aw.w)

49/59

Ay.yx z(Aw.w)

Ay-y(x(Az.2(Aw.w)))

49/59

The argument-open case

Proposition

The diagram f of any argument-open NPTV factors as

for some g.

The argument-open case

Surgery on an argument-open NPTV recovers a NPTV:

~o e {
I
=]

For example, here is a demonstration of surgery on the diagram
of an argument-open NPTV of size 6 (yielding a function-open
NPTV of size 5)...

51/59

oo d

N

+ (y(Az.2)) (Aw.AuAv.v(uw))
Ay (y(Az.2)) Aw.Aw . (v(uw))x)

52/59

Argument-open surgery is only reversible given extra
information: we have to factor h along a valence wire...

S0

The valence wires of a diagram are the blue wires reachable
from the East:

53/59

(uw))

AW.AUAV.V

~—
—~
—~~
N
N
~
~—
>
~

—~~
—~

~—

~—
—~
—~

~—

~—

~ N N/~
—_ N~ /S

SRR
222232
S S S TS
> > > > >
SIS S S
S5 3 3 S S
S 33 <SS
= = = 2 3
)RR < <
=== ==
N N N|INN
N N N| N N
WL B
>

~— — ~— ~— —

3
4
5.
6
7

(y(Az.2)) Aw.Au v (uw))

54/59

Performing reverse surgery while focused on any of these
subterms yields a different argument-open NPTV:

)
X))
)

)
)
)
)

(y(Az.2))(Aw.AuAv.v(uw)) ~ Ay.((y(Az.2))(Aw.Au.Av.v(uw)))x
(y(Az.2))(Aw.AuAv.v(uw)) ~ Ay.(y(Az.2))(Aw.AuAv.(v(uw))x
(y(Az.2))(Aw.Au.Av.v(uw)) ~ Ay.(y(Az.2))(Aw.Au.Av.v((uw)x
(y(Az.2))(Aw.AuAv.v(uw)) ~ Ay.(y(Az.2))(Aw.Au.Av.v(u(w.
(y(Az.2))(Aw.AuAv.v(uw)) ~ Ay.((y(Az.2))x)(Aw.AuAv.v(uw
(y(Az.2))(Aw.AuAv.v(uw)) ~ Ay.(y(Az.zx))(Aw.Au.Av.v(uw))
(y(Az.z))(Aw.AuAv.v(uw)) ~ Ay.((yx)(Az.2))(Aw.Au.Av.v(uw))

55/59

Bijection

Theorem

Lett be a NPTV of size || and valence v(mt). Then exactly one
of the following cases must hold:

(i) t is the variable term and || = v(n) = 1.

(ii) t = cr(4, ko) for some t; and tp (and 11 and mp) such that
|7t = |4 + |12 @and v(wt) = 1 4+ v(mt1) + v(m2).

(iii) t = cﬁ\k)(h) for some t; (and 1) and 1 < k < v(m¢) such
that |l =1+ |m4| and v(mt) = k + 1.

Verify size and valence constraints by inspection...

56/59

|| = |mq| + |m2l and v(m) =1+ v(my) + v(m2)

Il =1+|m¢] and v(m)=k+ 1

57/59

Corollary

There is a bijection between rooted planar maps with n edges
and outer face degree d, and NPTVs of size n+ 1 and valence
d+1.

Corollary

The following sets are all in one-to-one correspondence:
» rooted planar maps
» normal planar lambda terms with one free variable
» closed normal planar lambda terms

{
/e
¢ o
S @/l
- — CF, / [

i@ : /e

Yl dAe (o)

(v M) (o A X))

(@) 60
cylcy

A (yhe Ak k2)) (v A Ao (v(u))

59/59

	Lambda calculus and its refinements
	A curious coincidence
	Tutte decomposition
	Replaying Tutte in lambda calculus

