
A link between lambda calculus and maps

Noam Zeilberger1

MSR-Inria Joint Centre

SpecFun seminar
29 September 2014

1based on a joint article with Alain Giorgetti: arxiv.org/abs/1408.5028
1 / 59

http://arxiv.org/abs/1408.5028

Part 1: Lambda calculus and its refinements

2 / 59

A Turing-complete language based on just two operations:

t(u) (function application)
λx .t (function abstraction)

(“Everything is a function.”)

Consider terms up to renaming of variables, e.g.:

λx .λy .λz.z(yx) = λa.λb .λc.c(ba)

λx .λy .y = λy .λx .x
λx .xx = λy .yy

The main/only rule of computation is β-reduction:

(λx .t)(u) { t [u/x]

where t [u/x] is the “capture-avoiding” substitution of u for x in t .

3 / 59

(λx .xx)(λy .y) { xx[(λy .y)/x]

= (λy .y)(λy .y)

{ y[(λy .y)/y]

= λy .y

((λx .λy .x)w)(λz.z) { (λy .x[w/x])(λz.z)

= (λy .w)(λz.z)

{ w[(λz.z)/y]

= w

(λx .xx)(λx .xx) { xx[(λx .xx)/x]

= (λx .xx)(λx .xx)

{ . . .

4 / 59

We can use typing to isolate various interesting fragments of
lambda calculus. . .

5 / 59

The simply-typed terms

A simple type τ is either the atomic type τ = o or a function
type τ = τ1 → τ2.

Let Γ and ∆ range over ordered lists of assumptions
x1 : τ1, . . . , xi : τi (all xk distinct). Consider the following rules:

Γ, x : τ,∆ ` x : τ
Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` t(u) : τ2

x : τ1, Γ ` t : τ2
Γ ` λx .t : τ1 → τ2

Definition

A term t is simply-typed if there exists a derivation (using the
above rules) of Γ ` t : τ for some Γ and τ.

6 / 59

λx .λy .x is simply-typed:

y : o, x : o ` x : o
x : o ` λy .x : o → o

` λx .λy .x : o → (o → o)

λx .xx is not simply-typed:

??
x : τ1 ` x : τ1 → τ2 x : τ1 ` x : τ1

x : τ1 ` xx : τ2
` λx .xx : τ1 → τ2

7 / 59

All terms

Intuitively, the pure lambda calculus is based on a universal
type U � U → U.

This motivates the following type system, here Γ and ∆ ranging
over lists of assumptions x1 : U, . . . , xi : U.

Γ, x : U,∆ ` x : U
Γ ` t : U Γ ` u : U

Γ ` t(u) : U
x : U, Γ ` t : U

Γ ` λx .t : U

Now for any term t with free variables x1, . . . , xi there is a
(unique) derivation of x1 : U, . . . , xi : U ` t : U.

Effectively, this type system defines the “fragment” of pure
lambda calculus including everything.2

2It is not a trivial definition, though, since it relates lambda terms to certain
kinds of trees.

8 / 59

Planar terms

But suppose we restrict the variable and application rules:

x : P ` x : P
Γ ` t : P ∆ ` u : P

Γ,∆ ` t(u) : P
x : P,∆ ` t : P

∆ ` λx .t : P

This defines a much smaller fragment of terms, enforcing the
following discipline: every variable is used exactly once and in
last-in, first-out order.

We refer to such terms as planar.

9 / 59

λx .λy .yx is planar:

y : P ` y : P x : P ` x : P
y : P, x : P ` yx : P

x : P ` λy .yx : P
` λx .λy .yx : P

λx .λy .(λz.zy)x is planar:

z : P ` z : P y : P ` y : P
z : P, y : P ` zy : P

y : P ` λz.zy : P x : P ` x : P
y : P, x : P ` (λz.zy)x : P

x : P ` λy .(λz.zy)x : P
` λx .λy .(λz.zy)x : P

10 / 59

λx .λy .y(λz.xz) is not planar:

y : P ` y : P

??
z : P, x : P ` xz : P

x : P ` λz.xz : P
y : P, x : P ` y(λz.xz) : P

x : P ` λy .y(λz.xz) : P
` λx .λy .y(λz.xz) : P

11 / 59

Planar diagrams for planar lambda terms

A string diagram is a way of representating a morphism in a
monoidal category. One can define string diagrams for linear
lambda terms, built out of two basic connectors

which intuitively may be annotated like so:

x t

λx.t

t

ut(u)

In particular, the wire annotated by x is hooked up directly to its
unique occurrence in t .

12 / 59

The term λy .yx (with one free variable x) corresponds to the
following string diagram:

(A)

We can annotate the diagram to see this more clearly:
x

λy.yx

y

yx

13 / 59

The term λv .(λw.wv)u (with free variable u) corresponds to

(B)

Again we can annotate the diagram to see this better:

u

v

w

wv

λw.wv

(λw.wv)u

λv.(λw.wv)u

14 / 59

Since terms are always considered up to variable renaming, the
following are also perfectly good annotations of (A) and (B):

u

λv.vu

v

vu

a

b

c

cb

λc.cb

(λc.cb)a

λb.(λc.cb)a

So, by considering the underlying diagrams themselves, we can
represent just the essential structure of lambda terms.

15 / 59

Similarly, we can represent the essential structure of
substitution by just “plugging” one diagram into another:

λv .(λw.wv)u[(λy .yx)/u] = λv .(λw.wv)(λy .yx)

16 / 59

Planarity and β-reduction
Observe that planarity (no crossing of wires) enforces the
last-in, first-out (LIFO) discipline on the use of variables.
However, planarity is not preserved by β-reduction:

{

u

v

w

wv

λw.wv

(λw.wv)u

λv.(λw.wv)u

{ v

uv

λv.uv

u

17 / 59

One “response” is to restrict to β-normal planar terms.3

Normality can be enforced by a simple coloring discipline:

Since there is no coercion red⇒ blue,
it is impossible to color a β-redex.

3Another possible response is to switch from a LIFO discipline to a FIFO
discipline, which is preserved under β-reduction. However, even in that case
it is still interesting to isolate the β-normal terms.

18 / 59

A short catalogue of normal planar terms (with one free variable)4

x

x

x(λy.y)

x

λy.yx

x

4Note all of these diagrams have one blue incoming wire and one red
outgoing wire.

19 / 59

x(λy.y(λz.z))

x

x(λy.λz.zy)

x

(x(λy.y))(λz.z)

x

λy.y(x(λz.z))

x

λy.y(λz.zx)

x

λy.(y(λz.z))x

x

λy.(yx)(λz.z)

x

λy.λz.z(yx)

x

λy.λz.(zy)x

x

20 / 59

Part 2: A curious coincidence

21 / 59

Let the size of a normal planar lambda term be defined as the
number of purple boxes in its string diagram.

x(λy.λz.zy)

x

(size 3)

Count the normal planar lambda terms5 of size n + 1:

1,2,9,54,378,2916,24057

This coincides with the first seven entries of A000168, counting
the number of rooted planar maps with n edges!

5With no free variables, or equivalently with one free variable.
22 / 59

A rooted planar map is essentially a connected graph
embedded in the plane, with one edge marked and assigned an
orientation:

They were first counted by Tutte in the 1960s. Let’s begin by
proving that the two sequences really coincide, and then go on
to establish a bijection.

23 / 59

An inductive definition of normal (and neutral) planar terms

The coloring scheme corresponds to a refinement of the type
system for planarity:

x : A ` x : A
Γ ` t : A ∆ ` u : B

Γ,∆ ` t(u) : A
a

Γ ` t : A
Γ ` t : B

s
x : A ,∆ ` t : B

∆ ` λx .t : B `

A = blue = “neutral”
B = red = normal
size = # of applications of the s rule in a derivation

24 / 59

λy.yx

x

x(λy.y)

x

y : A ` y : A
x : A ` x : A
x : A ` x : B

s

y : A , x : A ` yx : A
a

y : A , x : A ` yx : B
s

x : A ` λy .yx : B `

x : A ` x : A

y : A ` y : A
y : A ` y : B

s

` λy .y : B `

x : A ` x(λy .y) : A
a

x : A ` x(λy .y) : B
s

25 / 59

From typing to generating functions

x : A ` x : A
Γ ` t : A ∆ ` u : B

Γ,∆ ` t(u) : A
a

Γ ` t : A
Γ ` t : B

s
x : A ,∆ ` t : B

∆ ` λx .t : B `

Define families of generating functions Ai(z) and Bi(z), counting
neutral and normal planar terms (with i free variables) by size:

Ai(z) = [i = 1] +
∑

j+k=i

Aj(z)Bk (z)

Bi(z) = zAi(z) + Bi+1(z)

26 / 59

Ai(z) = [i = 1] +
∑

j+k=i

Aj(z)Bk (z)

Bi(z) = zAi(z) + Bi+1(z)

Next, formally aggregate these families

A(z, x)
def
=

∑
i≥0

Ai(z)x i B(z, x)
def
=

∑
i≥0

Bi(z)x i

to define a single pair of GFs counting terms along both size
and number of free variables.

Unfolding definitions, we derive the following equations:

A(z, x) = x + A(z, x)B(z, x)

B(z, x) = zA(z, x) +
1
x

(B(z, x) − B0(z))

27 / 59

A(z, x) = x + A(z, x)B(z, x)

B(z, x) = zA(z, x) +
1
x

(B(z, x) − B0(z))

Proposition

The generating function B0(z) satisfies

B0(z) = −
1

54z

(
1 − 18z − (1 − 12z)3/2

)
(Proof by quadratic method.)

28 / 59

B0(z) = −
1

54z

(
1 − 18z − (1 − 12z)3/2

)
B1(z) = B0(z)

Corollary

The number of rooted planar maps with n edges is equal to the
number of closed normal planar lambda terms of size n + 1,
and to the number of normal planar lambda terms with one free
variable of size n + 1.

29 / 59

Number of normal planar terms of size n with i free variables.

i
n

1 2 3 4 5 6 7 8

1 1 2 9 54 378 2916 24057 208494
2 0 1 6 40 295 2346 19739 173426
3 0 0 2 20 175 1526 13587 123978
4 0 0 0 5 70 756 7602 74964
5 0 0 0 0 14 252 3234 36828
6 0 0 0 0 0 42 924 13728

(Row i = 1 is A000168.)

30 / 59

https://oeis.org/A000168

Number of neutral planar terms of size n with i free variables.

i
n

0 1 2 3 4 5 6 7

1 1 1 3 14 83 570 4318 35068
2 0 1 4 20 120 820 6152 49448
3 0 0 2 15 105 770 5985 49014
4 0 0 0 5 56 504 4368 38136
5 0 0 0 0 14 210 2310 23100
6 0 0 0 0 0 42 792 10296

(Row i = 1 is A220910.)

31 / 59

https://oeis.org/A220910

Part 3: Tutte decomposition

32 / 59

Definition

A (topological) map is an embedding of a connected graph
(possibly with loops and multiple edges) on a compact oriented
surface X . A map is planar if X = sphere.

Definition

A dart is an edge together with an orientation. A rooting of a
map is a choice of dart, but the vertex map (with no edges) is
also considered rooted by convention. A rooted planar map is
a planar map equipped with a rooting, treated up to
root-preserving homeomorphism.

33 / 59

Trichotomy
Any rooted planar map M falls in one of three possible classes:

1. M is the vertex map
2. M has an isthmic root:

A

B

C

3. M has a non-isthmic root:

A
B

34 / 59

The isthmic case

A

B

C

Removing A yields two RPMs M1 and M2 (with roots B and C).
Moreover, this operation is reversible: there is a binary
operation cI(−,−), which given two RPMs M1 and M2,
constructs M = cI(M1,M2).

35 / 59

The non-isthmic case

A
B

A
B

Removing A yields a RPM M1 (with root B). Conversely, there
is a family of operations c(k)

N (−) which given a RPM M1 of outer
face degree ≥ k , constructs a RPM by starting at the root
vertex x of M1, walking k darts along the outer face, and adding
a root pointing back to x.
(Above, ML = c(8)

N (M1) and MR = c(0)
N (M1).)

36 / 59

Theorem (Tutte 1968)

Let M be a rooted planar map with e(M) edges and outer face
degree o(M). Then exactly one of the following cases must
hold:

(i) M is the vertex map and e(M) = o(M) = 0.
(ii) M = cI(M1,M2) for some M1 and M2 such that

e(M) = 1 + e(M1) + e(M2) and o(M) = 2 + o(M1) + o(M2).

(iii) M = c(k)
N (M1) for some M1 and 0 ≤ k ≤ o(M1) such that

e(M) = 1 + e(M1) and o(M) = k + 1.

37 / 59

Part 4: Replaying Tutte in lambda calculus

38 / 59

Most natural to consider normal planar lambda terms with one
free variable (NPTVs).

Definition

Let t be a NPTV with free variable x. We say that t is the
variable term if t = x, that it is function-open if x is applied to
some (normal) subterm of t , and that it is argument-open if x
is passed as an argument to some (neutral) subterm of t .

Proposition (Trichotomy)

Every NPTV is either the variable term, function-open, or
argument-open (mutually exclusively).

39 / 59

It’s easiest to see this on the string diagram f of a NPTV t :
1. t is the variable term iff f is the basic diagram s.
2. t is function-open iff the incoming wire of f runs directly to

an a-node.
3. t is argument-open iff the incoming wire of f runs directly to

an s-node, which then connects directly to an a-node.

40 / 59

x

x

x(λy.y)

x

λy.yx

x

41 / 59

x(λy.y(λz.z))

x

x(λy.λz.zy)

x

(x(λy.y))(λz.z)

x

λy.y(x(λz.z))

x

λy.y(λz.zx)

x

λy.(y(λz.z))x

x

λy.(yx)(λz.z)

x

λy.λz.z(yx)

x

λy.λz.(zy)x

x

42 / 59

Now let’s further decompose the function-open and
argument-open cases...

43 / 59

The function-open case

Proposition

The diagram f of any function-open NPTV factors as

f =
g

h

for some g and h.

44 / 59

The function-open case

Surgery on a function-open NPTV extracts a pair of NPTVs:

g

h

{
g + h

Moreover this surgery is reversible:

g

+

h =
g

h

45 / 59

The function-open case

With annotations:

t

g

x

+

u

h

y

=

x

g

t[x(λy.u)/x]

h

46 / 59

For example, consider combining x(λy .y) and λy .yx in either
order...

47 / 59

x(λy.y)

x

+

λy.yx

x

=

(x(λy.λz.zy))(λw.w)

x

48 / 59

x(λw.w)

x

+

λz.zy

y

=

(x(λy.λz.zy))(λw.w)

x

48 / 59

x(λw.w)

x

+

λz.zy

y

=

(x(λy.λz.zy))(λw.w)

x

48 / 59

λy.yx

x

+

x(λy.y)

x

=

λy.y(x(λz.z(λw.w)))

x

49 / 59

λy.yx

x

+

z(λw.w)

z

=

λy.y(x(λz.z(λw.w)))

x

49 / 59

λy.yx

x

+

z(λw.w)

z

=

λy.y(x(λz.z(λw.w)))

x

49 / 59

The argument-open case

Proposition

The diagram f of any argument-open NPTV factors as

f = g

for some g.

50 / 59

The argument-open case

Surgery on an argument-open NPTV recovers a NPTV:

g

{

∗ g = h

For example, here is a demonstration of surgery on the diagram
of an argument-open NPTV of size 6 (yielding a function-open
NPTV of size 5)...

51 / 59

λy.(y(λz.z))(λw.λu.λv.(v(uw))x)

x

{

∗

(y(λz.z))(λw.λu.λv.v(uw))

y

52 / 59

Argument-open surgery is only reversible given extra
information: we have to factor h along a valence wire...

h = g

The valence wires of a diagram are the blue wires reachable
from the East:

gW E

53 / 59

7

1

5

4

6
2

3

(y(λz.z))(λw.λu.λv.v(uw))

y

1. (y(λz.z))(λw.λu.λv .v(uw))

2. (y(λz.z))(λw.λu.λv .v(uw))

3. (y(λz.z))(λw.λu.λv .v(uw))

4. (y(λz.z))(λw.λu.λv .v(uw))

5. (y(λz.z))(λw.λu.λv .v(uw))

6. (y(λz.z))(λw.λu.λv .v(uw))

7. (y(λz.z))(λw.λu.λv .v(uw))

54 / 59

Performing reverse surgery while focused on any of these
subterms yields a different argument-open NPTV:

(y(λz.z))(λw.λu.λv .v(uw)) { λy .((y(λz.z))(λw.λu.λv .v(uw)))x

(y(λz.z))(λw.λu.λv .v(uw)) { λy .(y(λz.z))(λw.λu.λv .(v(uw))x)

(y(λz.z))(λw.λu.λv .v(uw)) { λy .(y(λz.z))(λw.λu.λv .v((uw)x))

(y(λz.z))(λw.λu.λv .v(uw)) { λy .(y(λz.z))(λw.λu.λv .v(u(wx)))

(y(λz.z))(λw.λu.λv .v(uw)) { λy .((y(λz.z))x)(λw.λu.λv .v(uw))

(y(λz.z))(λw.λu.λv .v(uw)) { λy .(y(λz.zx))(λw.λu.λv .v(uw))

(y(λz.z))(λw.λu.λv .v(uw)) { λy .((yx)(λz.z))(λw.λu.λv .v(uw))

55 / 59

Bijection

Theorem

Let t be a NPTV of size |π| and valence v(π). Then exactly one
of the following cases must hold:

(i) t is the variable term and |π| = v(π) = 1.
(ii) t = cF (t1, t2) for some t1 and t2 (and π1 and π2) such that
|π| = |π1|+ |π2| and v(π) = 1 + v(π1) + v(π2).

(iii) t = c(k)
A (t1) for some t1 (and π1) and 1 ≤ k ≤ v(π1) such

that |π| = 1 + |π1| and v(π) = k + 1.

Verify size and valence constraints by inspection...

56 / 59

g

+

h =
g

h

|π| = |π1|+ |π2| and v(π) = 1 + v(π1) + v(π2)

h =

k

g
⇒ ∗ (k) h = g

|π| = 1 + |π1| and v(π) = k + 1

57 / 59

Corollary

There is a bijection between rooted planar maps with n edges
and outer face degree d, and NPTVs of size n + 1 and valence
d + 1.

Corollary

The following sets are all in one-to-one correspondence:
I rooted planar maps
I normal planar lambda terms with one free variable
I closed normal planar lambda terms

58 / 59

y

y

v

v

λv.vu

u c(1)
A /c(0)

N

λu.λv.v(uw)

w
c(2)

A /c(1)
N

y(λw.λu.λv.v(uw))

y

cF/cI

k

k

λk.kz

z
c(1)

A /c(0)
N

(y(λz.λk.kz))(λw.λu.λv.v(uw))

y

cF/cI

λy.(y(λz.λk.kz))(λw.λu.λv.(v(uw))x)

x

c(2)
A /c(1)

N

59 / 59

	Lambda calculus and its refinements
	A curious coincidence
	Tutte decomposition
	Replaying Tutte in lambda calculus

