Computational Complexity of the Fisher Information

Ali Eshragh

(Joint work with Nigel Bean and Joshua Ross)

School of Mathematical and Physical Sciences & CARMA The University of Newcastle, Australia

> INRIA, Paris October 6, 2014

Introduction Optimal Observation Time

Motivation

• Epidemiology

Ali Eshragh Computational Complexity of the Fisher Information

・ロト ・回ト ・ヨト ・ヨト

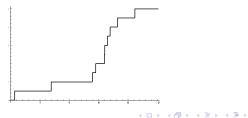
Э

Introduction Optimal Observation Time

Motivation

• Epidemiology

• A Growing Population



æ

Introduction Optimal Observation Time

Definition and Notation

• Let X_t denote the **population size** at time t.

Introduction Optimal Observation Time

Definition and Notation

- Let X_t denote the **population size** at time t.
- $\{X_t : t \in \mathbb{R}^+_0\}$ is a stochastic process .

Introduction Optimal Observation Time

Definition and Notation

- Let X_t denote the **population size** at time t.
- $\{X_t : t \in \mathbb{R}^+_0\}$ is a stochastic process .
- Suppose {X_t : t ∈ R₀⁺} is a simple birth process (SBP) with the birth rate λ. Moreover, X₀^{a.s.}/₌x₀.

Introduction Optimal Observation Time

Definition and Notation

- Let X_t denote the **population size** at time t.
- $\{X_t : t \in \mathbb{R}^+_0\}$ is a stochastic process .
- Suppose {X_t : t ∈ R₀⁺} is a simple birth process (SBP) with the birth rate λ. Moreover, X₀^{a.s.}/₌x₀.
- It is Markovian, that is

 $\Pr(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n, \dots, X_{t_1} = x_1) = \Pr(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n),$

for all possible values of n and t_1, \ldots, t_{n+1} .

Introduction Optimal Observation Time

Definition and Notation

- Let X_t denote the **population size** at time t.
- $\{X_t : t \in \mathbb{R}^+_0\}$ is a stochastic process .
- Suppose {X_t : t ∈ R₀⁺} is a simple birth process (SBP) with the birth rate λ. Moreover, X₀^{a.s.}/₌x₀.
- It is Markovian, that is

 $\Pr(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n, \dots, X_{t_1} = x_1) = \Pr(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n),$

for all possible values of n and t_1, \ldots, t_{n+1} .

• The transition probability is equal to

$$\Pr(X_{s+t} = j | X_s = i) = {j-1 \choose i-1} e^{-\lambda t i} (1 - e^{-\lambda t})^{j-i}.$$

イロト イボト イヨト イヨト 二日

Introduction Optimal Observation Time

Likelihood Function

• Estimating the unknown parameter λ through maximum likelihood method.

Introduction Optimal Observation Time

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations X_{t_1}, \ldots, X_{t_n} at observation times $0 < t_1 \leq \ldots \leq t_n \leq \tau$, respectively.

Introduction Optimal Observation Time

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations X_{t_1}, \ldots, X_{t_n} at observation times $0 < t_1 \leq \ldots \leq t_n \leq \tau$, respectively.
- Construct the likelihood function

$$\mathcal{L}(x_1,\ldots,x_n;\lambda) = \Pr(X_{t_1}=x_1,\ldots,X_{t_n}=x_n|\lambda)$$

Introduction Optimal Observation Time

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations X_{t_1}, \ldots, X_{t_n} at observation times $0 < t_1 \leq \ldots \leq t_n \leq \tau$, respectively.
- Construct the likelihood function

$$\mathcal{L}(x_1, \dots, x_n; \lambda) = \Pr(X_{t_1} = x_1, \dots, X_{t_n} = x_n | \lambda)$$

= $\prod_{i=2}^n \Pr(X_{t_i} = x_i | X_{t_{i-1}} = x_{i-1}, \dots, X_{t_1} = x_1) \Pr(X_{t_1} = x_1)$

Introduction Optimal Observation Time

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations X_{t_1}, \ldots, X_{t_n} at observation times $0 < t_1 \leq \ldots \leq t_n \leq \tau$, respectively.
- Construct the likelihood function

$$\mathcal{L}(x_1, \dots, x_n; \lambda) = \Pr(X_{t_1} = x_1, \dots, X_{t_n} = x_n | \lambda)$$

= $\prod_{i=2}^{n} \Pr(X_{t_i} = x_i | X_{t_{i-1}} = x_{i-1}, \dots, X_{t_1} = x_1) \Pr(X_{t_1} = x_1)$
= $\prod_{i=2}^{n} \Pr(X_{t_i} = x_i | X_{t_{i-1}} = x_{i-1}) \Pr(X_{t_1} = x_1)$

Introduction Optimal Observation Time

Likelihood Function

- Estimating the unknown parameter λ through maximum likelihood method.
- Take the observations X_{t_1}, \ldots, X_{t_n} at observation times $0 < t_1 \leq \ldots \leq t_n \leq \tau$, respectively.
- Construct the likelihood function

$$\begin{aligned} \mathcal{L}(x_1, \dots, x_n; \lambda) &= \Pr(X_{t_1} = x_1, \dots, X_{t_n} = x_n | \lambda) \\ &= \prod_{i=2}^n \Pr(X_{t_i} = x_i | X_{t_{i-1}} = x_{i-1}, \dots, X_{t_1} = x_1) \Pr(X_{t_1} = x_1) \\ &= \prod_{i=2}^n \Pr(X_{t_i} = x_i | X_{t_{i-1}} = x_{i-1}) \Pr(X_{t_1} = x_1) \\ &= \prod_{i=1}^n \binom{x_i - 1}{x_{i-1} - 1} e^{-\lambda(t_i - t_{i-1})x_{i-1}} (1 - e^{-\lambda(t_i - t_{i-1})})^{x_i - x_{i-1}}. \end{aligned}$$

Introduction Optimal Observation Time

Observation Times

• When should we take the observations X_{t_1}, \ldots, X_{t_n} ?

イロン イボン イヨン イヨン 三日

Introduction Optimal Observation Time

Observation Times

- When should we take the observations X_{t_1}, \ldots, X_{t_n} ?
- Presumably, a good choice is finding observation times t₁, ..., t_n such that the expected volume of information obtained from these observations to estimate the unknown parameter λ is maximized.

Introduction Optimal Observation Time

Observation Times

- When should we take the observations X_{t_1}, \ldots, X_{t_n} ?
- Presumably, a good choice is finding observation times t₁, ..., t_n such that the expected volume of information obtained from these observations to estimate the unknown parameter λ is maximized.
- A good tool to measure the expected volume of information gained from a set of observations is the **Fisher Information**.

Introduction Optimal Observation Time

Observation Times

- When should we take the observations X_{t_1}, \ldots, X_{t_n} ?
- Presumably, a good choice is finding observation times t_1, \ldots, t_n such that the **expected volume of information** obtained from these observations to estimate the unknown parameter λ is **maximized**.
- A good tool to measure the expected volume of information gained from a set of observations is the **Fisher Information**.
- It can be shown that

$$\mathcal{FI}_{(X_{t_1},\ldots,X_{t_n})}(\lambda) = E_{\mathcal{L}}\left[\left(\frac{d}{d\lambda}\ln(\mathcal{L}(X_{t_1},\ldots,X_{t_n};\lambda))\right)^2\right].$$

Introduction Optimal Observation Time

Observation Times

- When should we take the observations X_{t_1}, \ldots, X_{t_n} ?
- Presumably, a good choice is finding observation times t_1, \ldots, t_n such that the **expected volume of information** obtained from these observations to estimate the unknown parameter λ is **maximized**.
- A good tool to measure the expected volume of information gained from a set of observations is the **Fisher Information**.
- It can be shown that

$$\mathcal{FI}_{(X_{t_1},\ldots,X_{t_n})}(\lambda) = E_{\mathcal{L}}\left[\left(\frac{d}{d\lambda}\ln(\mathcal{L}(X_{t_1},\ldots,X_{t_n};\lambda))\right)^2\right].$$

• Hence, $(t_1^*, \ldots, t_n^*) \in \operatorname{argmax} \{ \mathcal{FI}_{(X_{t_1}, \ldots, X_{t_n})}(\lambda) \}$.

Introduction Optimal Observation Time

Fisher Information and Optimal Observation Times

Proposition (Becker and Kersting, 1983)

The **Fisher information** for a SBP with the parameter λ , the initial value of x_0 and the observation times of (t_1, \ldots, t_n) is as follows:

$$\mathcal{FI}_{(X_{t_1},\cdots,X_{t_n})}(\lambda) = x_0 \sum_{i=1}^n \frac{(t_i - t_{i-1})^2}{e^{-\lambda t_{i-1}} - e^{-\lambda t_i}}$$

- 4 同 6 4 日 6 4 日 6

Introduction Optimal Observation Time

Fisher Information and Optimal Observation Times

Proposition (Becker and Kersting, 1983)

The **Fisher information** for a SBP with the parameter λ , the initial value of x_0 and the observation times of (t_1, \ldots, t_n) is as follows:

$$\mathcal{FI}_{(X_{t_1},\cdots,X_{t_n})}(\lambda) = x_0 \sum_{i=1}^n \frac{(t_i - t_{i-1})^2}{e^{-\lambda t_{i-1}} - e^{-\lambda t_i}}$$

Optimal Observation Times (Becker and Kersting, 1983)

$$t_i^* \approx \frac{3}{\lambda} \text{log}\left(1 + \frac{i}{n}(e^{\frac{\lambda\tau}{3}} - 1)\right) \ \, \text{for $i = 1, \dots, n$}$$

・ロト ・日本 ・モート ・モート

Introduction The Fisher Information Numerical Results

Definition and Notation

• Suppose that at each observation time, we can count the population, **partially**.

・ロン ・回 と ・ 回 と ・ 回 と

Introduction The Fisher Information Numerical Results

Definition and Notation

- Suppose that at each observation time, we can count the population, **partially**.
- At each observation time, each individual can be counted **independently** with probability **p**.

・ロト ・回ト ・ヨト ・ヨト

Introduction The Fisher Information Numerical Results

Definition and Notation

- Suppose that at each observation time, we can count the population, **partially**.
- At each observation time, each individual can be counted **independently** with probability **p**.
- \mathbf{Y}_t is the number of individuals observed at at time t.

・ロト ・回ト ・ヨト ・ヨト

Introduction The Fisher Information Numerical Results

Definition and Notation

- Suppose that at each observation time, we can count the population, **partially**.
- At each observation time, each individual can be counted **independently** with probability **p**.
- \mathbf{Y}_t is the number of individuals observed at at time t.
- $(Y_t|X_t = x) \sim \text{Binomial}(\mathbf{x}, \mathbf{p}).$

Introduction The Fisher Information Numerical Results

Definition and Notation

- Suppose that at each observation time, we can count the population, **partially**.
- At each observation time, each individual can be counted **independently** with probability **p**.
- \mathbf{Y}_t is the number of individuals observed at at time t.
- $(Y_t|X_t = x) \sim \text{Binomial}(\mathbf{x}, \mathbf{p}).$
- We call the stochastic process {Y_t : t ∈ R₀⁺} the partially-observable simple birth process (POSBP) with parameters (λ, p).

Introduction The Fisher Information Numerical Results

Definition and Notation

- Suppose that at each observation time, we can count the population, **partially**.
- At each observation time, each individual can be counted **independently** with probability **p**.
- \mathbf{Y}_t is the number of individuals observed at at time t.
- $(Y_t|X_t = x) \sim \text{Binomial}(\mathbf{x}, \mathbf{p}).$
- We call the stochastic process {Y_t : t ∈ R₀⁺} the partially-observable simple birth process (POSBP) with parameters (λ, p).
- $POSBP(\lambda, 1) \equiv SBP(\lambda)$.

・ロン ・回 と ・ 回 と ・ 回 と

Introduction The Fisher Information Numerical Results

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2014)

The POSBP $\{Y_t : t \in \mathbb{R}^+_0\}$ with parameters (λ, p) is not Markovian.

< □ > < @ > < 注 > < 注 > ... 注

Introduction The Fisher Information Numerical Results

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2014)

The POSBP $\{Y_t : t \in \mathbb{R}^+_0\}$ with parameters (λ, p) is not Markovian.

• However,

$$\Pr(Y_{t_1} = y_{t_1}, \dots, Y_{t_n} = y_{t_n} | X_{t_1} = x_{t_1}, \dots, X_{t_n} = x_{t_n})$$
$$= \prod_{i=1}^n \Pr(Y_{t_i} = y_{t_i} | X_{t_i} = x_{t_i}).$$

<ロ> (四) (四) (三) (三) (三)

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

$$\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda) = \mathsf{Pr}(Y_{t_1}=y_{t_1},\ldots,Y_{t_n}=y_{t_n})$$

Э

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

$$\mathcal{L}(y_{t_1}, \dots, y_{t_n}; \lambda) = \Pr(Y_{t_1} = y_{t_1}, \dots, Y_{t_n} = y_{t_n})$$

= $\sum_{x_{t_1}, \dots, x_{t_n}} \Pr(Y_{t_1} = y_{t_1}, \dots, Y_{t_n} = y_{t_n} | X_{t_1} = x_{t_1}, \dots, X_{t_n} = x_{t_n})$
 $\Pr(X_{t_1} = x_{t_1}, \dots, X_{t_n} = x_{t_n})$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

$$\mathcal{L}(y_{t_1}, \dots, y_{t_n}; \lambda) = \Pr(Y_{t_1} = y_{t_1}, \dots, Y_{t_n} = y_{t_n})$$

$$= \sum_{x_{t_1}, \dots, x_{t_n}} \Pr(Y_{t_1} = y_{t_1}, \dots, Y_{t_n} = y_{t_n} | X_{t_1} = x_{t_1}, \dots, X_{t_n} = x_{t_n})$$

$$\Pr(X_{t_1} = x_{t_1}, \dots, X_{t_n} = x_{t_n})$$

$$= \sum_{x_{t_1}, \dots, x_{t_n}} \prod_{i=1}^n \Pr(Y_{t_i} = y_{t_i} | X_{t_i} = x_{t_i}) \Pr(X_{t_i} = x_{t_i} | X_{t_{i-1}} = x_{t_{i-1}})$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

▲□ → ▲圖 → ▲ 国 → ▲ 国 → →

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

<ロ> (四) (四) (三) (三) (三)

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

・ロン ・回と ・ヨン ・ヨン

Introduction The Fisher Information Numerical Results

Likelihood Function

• The likelihood function:

where q := 1 - p and $v_{i-1,i} := e^{-\lambda(t_i - t_{i-1})}$.

< □ > < @ > < 注 > < 注 > ... 注

Introduction The Fisher Information Numerical Results

Fisher Information

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},...,Y_{t_n})}(\lambda) = E_{\mathcal{L}}\left[\left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2\right]$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction The Fisher Information Numerical Results

Fisher Information

• The Fisher Information:

$$\begin{split} \mathcal{FI}_{(Y_{t_1},...,Y_{t_n})}(\lambda) &= E_{\mathcal{L}}\left[\left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2\right] \\ &= \sum_{y_{t_1},...,y_{t_n}}\left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2 \mathcal{L} \end{split}$$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Introduction The Fisher Information Numerical Results

Fisher Information

• The Fisher Information:

$$\begin{split} \mathcal{FI}_{(Y_{t_1},...,Y_{t_n})}(\lambda) &= E_{\mathcal{L}}\left[\left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2\right] \\ &= \sum_{y_{t_1},...,y_{t_n}} \left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2 \mathcal{L} \\ &= \sum_{y_{t_1},...,y_{t_n}} \left(\frac{\frac{d\mathcal{L}}{d\lambda}}{\mathcal{L}}\right)^2 \mathcal{L} \end{split}$$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Introduction The Fisher Information Numerical Results

Fisher Information

• The Fisher Information:

$$\begin{split} \mathcal{FI}_{(Y_{t_1},\ldots,Y_{t_n})}(\lambda) &= E_{\mathcal{L}}\left[\left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2\right] \\ &= \sum_{y_{t_1},\ldots,y_{t_n}} \left(\frac{d\log(\mathcal{L})}{d\lambda}\right)^2 \mathcal{L} \\ &= \sum_{y_{t_1},\ldots,y_{t_n}} \left(\frac{\frac{d\mathcal{L}}{d\lambda}}{\mathcal{L}}\right)^2 \mathcal{L} \\ &= \sum_{y_{t_1},\ldots,y_{t_n}} \frac{\left(\frac{d\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda)}{\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda)}\right)^2}{\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda)} \,. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Introduction The Fisher Information Numerical Results

Theoretical Result

Proposition (Bean, Eshragh and Ross; 2014)

For a POSBP with n observations and time horizon τ , the FI is an **increasing** function of t_n . Hence, the **optimal observation time** for the last observation, that is t_n^* , is equal to τ .

イロン イヨン イヨン イヨン

Introduction The Fisher Information Numerical Results

Theoretical Result

Proposition (Bean, Eshragh and Ross; 2014)

For a POSBP with n observations and time horizon τ , the FI is an **increasing** function of t_n . Hence, the **optimal observation time** for the last observation, that is t_n^* , is equal to τ .

Proposition (Bean, Eshragh and Ross; 2014)

If t_1^*, \ldots, t_n^* are optimal observation times for a POSBP with parameters (λ, p) and time-horizon τ , then $\frac{t_1^*}{\tau}, \ldots, \frac{t_n^*}{\tau}$ are optimal observation times for a POSBP with parameters $(\lambda \tau, p)$ and time-horizon 1.

イロン イ部ン イヨン イヨン 三日

Introduction The Fisher Information Numerical Results

 $d((y, y, \cdot))$

Truncated Summation

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},...,Y_{t_n})}(\lambda) = \sum_{y_{t_1},...,y_{t_n}} rac{\left(rac{d\mathcal{L}(y_{t_1},...,y_{t_n},\lambda)}{d\lambda}
ight)^2}{\mathcal{L}(y_{t_1},...,y_{t_n};\lambda)}.$$

<ロ> (四) (四) (三) (三) (三)

Introduction The Fisher Information Numerical Results

101

Truncated Summation

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},...,Y_{t_n})}(\lambda) = \sum_{y_{t_1},...,y_{t_n}} rac{\left(rac{d\mathcal{L}(y_{t_1},...,y_{t_n};\lambda)}{d\lambda}
ight)^2}{\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda)}.$$

• Here, the likelihood function $\mathcal{L}(y_{t_1}, \ldots, y_{t_n}; \lambda)$ is equal to

$$\sum_{\mathsf{x}_{t_1},...,\mathsf{x}_{t_n}} \prod_{i=1}^n \binom{x_{t_i}}{y_{t_i}} p^{\mathsf{y}_i} (1-p)^{\mathsf{x}_{t_i}-\mathsf{y}_{t_i}} \binom{x_{t_i}-1}{x_{t_{i-1}}-1} v_{i-1,i}^{\mathsf{x}_{t_{i-1}}} (1-v_{i-1,i})^{\mathsf{x}_{t_i}-\mathsf{x}_{t_{i-1}}} \,,$$

where $v_{i-1,i} := e^{-\lambda(t_i - t_{i-1})}$.

(日) (同) (E) (E) (E)

Introduction The Fisher Information Numerical Results

101

• •

Truncated Summation

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},\ldots,Y_{t_n})}(\lambda) \hspace{0.1cm} = \hspace{0.1cm} \sum_{y_{t_1},\ldots,y_{t_n}} rac{\left(rac{d\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda)}{d\lambda}
ight)^2}{\mathcal{L}(y_{t_1},\ldots,y_{t_n};\lambda)}.$$

• Here, the likelihood function $\mathcal{L}(y_{t_1}, \ldots, y_{t_n}; \lambda)$ is equal to

$$\sum_{x_{t_1},...,x_{t_n}} \prod_{i=1}^n \binom{x_{t_i}}{y_{t_i}} p^{y_i} (1-p)^{x_{t_i}-y_{t_i}} \binom{x_{t_i}-1}{x_{t_{i-1}}-1} v_{i-1,i}^{x_{t_{i-1}}} (1-v_{i-1,i})^{x_{t_i}-x_{t_{i-1}}},$$

where $v_{i-1,i} := e^{-\lambda(t_i - t_{i-1})}$.

• By exploiting Chebyshev's inequality, we have

$$\Pr\left(E[Z] - 12\sqrt{Var(Z)} \le Z \le E[Z] + 12\sqrt{Var(Z)}\right) \ge 1 - \frac{1}{12^2}$$
$$= 99.3\%.$$

Introduction The Fisher Information Numerical Results

Conditional Expectations

• Motivating from Chebyshev's inequality:

 $0 \leq y_{t_i} \leq E[Y_{t_i}] + 12\sqrt{Var(Y_{t_i})}$

 $\max\{1, y_{t_1}, \dots, y_{t_n}\} \leq x_{t_n} \leq E[X_{t_n}|Y_{t_n} = y_{t_n}] + 12\sqrt{Var(X_{t_n}|Y_{t_n} = y_{t_n})}$

イロト イポト イヨト イヨト

Introduction The Fisher Information Numerical Results

Conditional Expectations

• Motivating from Chebyshev's inequality:

 $0 \leq y_{t_i} \leq E[Y_{t_i}] + 12\sqrt{Var(Y_{t_i})}$

 $\max\{1, y_{t_1}, \dots, y_{t_n}\} \leq x_{t_n} \leq E[X_{t_n}|Y_{t_n} = y_{t_n}] + 12\sqrt{Var(X_{t_n}|Y_{t_n} = y_{t_n})}$

Lemma (Eshragh, Bean and Ross; 2014)

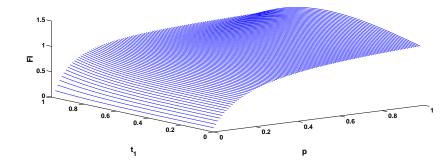
If $\{X_t\}$ is a **SBP** with parameter λ and $\{Y_t\}$ is the corresponding **POSBP** with parameters (λ, p) , then we have

$$\begin{split} \mathsf{E}[Y_t] &= p e^{\lambda t}, \quad Var(Y_t) &= p(p e^{2\lambda t} + (1-2p) e^{\lambda t}) \\ \mathsf{E}[X_t|Y_t = y_t] &= \frac{y_t e^{\lambda t} + (1-p)(e^{\lambda t} - 1)}{p e^{\lambda t} + 1 - p} \\ Var(X_t|Y_t = y_t) &= \frac{(y_t + 1)(1-p) e^{\lambda t}(e^{\lambda t} - 1)}{(p e^{\lambda t} + 1 - p)^2}. \end{split}$$

Introduction The Fisher Information Numerical Results

Results for $\lambda = 2$, n = 2 and $t_2^* = \tau = 1$

• Fisher Information vs. t_1 and p



(ロ) (同) (注) (注)

Introduction The Fisher Information Numerical Results

Results for $\lambda = 2$, n = 2 and $t_2^* = \tau = 1$

• The Fisher Information vs. t_1



Ali Eshragh Computational Complexity of the Fisher Information

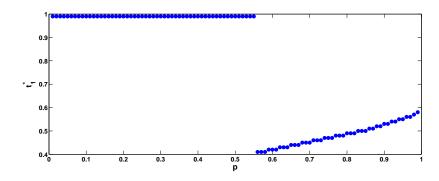
イロン イヨン イヨン イヨン

æ

Simple Birth Process Partially-Observable Simple Birth Process Approximation Numerical Results

Results for $\lambda = 2$, n = 2 and $t_2^* = \tau = 1$

• Optimal observation time t_1^* vs. p



Ali Eshragh Computational Complexity of the Fisher Information

イロン イヨン イヨン イヨン

æ

The Chain Rule

The likelihood function

 $\mathcal{L}(y_{t_1}, y_{t_2}|\lambda) = \Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda) \Pr(Y_{t_1} = y_{t_1}|\lambda).$

イロン イボン イヨン イヨン 三日

The Chain Rule

• The likelihood function

$$\mathcal{L}(y_{t_1}, y_{t_2}|\lambda) = \Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda) \Pr(Y_{t_1} = y_{t_1}|\lambda).$$

Accordingly,

$$\log (\mathcal{L}(y_{t_1}, y_{t_2}|\lambda)) = \log (\Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda)) + \log (\Pr(Y_{t_1} = y_{t_1}|\lambda)).$$

(日) (同) (E) (E) (E)

The Chain Rule

• The likelihood function

$$\mathcal{L}(y_{t_1}, y_{t_2}|\lambda) = \Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda) \Pr(Y_{t_1} = y_{t_1}|\lambda).$$

• Accordingly,

$$\log (\mathcal{L}(y_{t_1}, y_{t_2}|\lambda)) = \log (\Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda)) + \log (\Pr(Y_{t_1} = y_{t_1}|\lambda)).$$

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},Y_{t_2})}(\lambda) = \mathcal{FI}_{(Y_{t_2}|Y_{t_1})}(\lambda) + \mathcal{FI}_{(Y_{t_1})}(\lambda).$$

・ロト ・回ト ・ヨト ・ヨト

The Conditional Fisher Information Distributions Convergence

Two-Parameter Geometric Distribution

Definition

A discrete random variable V has the "**Two-Parameter Geometric**" distribution with parameters $\alpha \in [0, 1)$ and $\beta \in (0, 1)$, denoted by **TPG** (α, β) , if its **probability mass function** (**p.m.f.**) is

$$P_V(v) = \begin{cases} \alpha & \text{for } v = 0\\ (1 - \alpha)\beta(1 - \beta)^{\nu - 1} & \text{for } \nu = 1, 2, \dots \end{cases}$$

(本間) (本語) (本語)

The Conditional Fisher Information Distributions Convergence

Three-Parameter Negative Binomial Distribution

Definition

Suppose V_1, \ldots, V_r are **i.i.d.** random variables with common TPG (α, β) distribution. If $W := \sum_{i=1}^{r} V_i$, then W has "**Three-Parameter Negative Binomial**" distribution with parameters **r**, α and β , denoted by **TPNB** $(\mathbf{r}, \alpha, \beta)$.

イロン イヨン イヨン イヨン

The Conditional Fisher Information Distributions Convergence

Three-Parameter Negative Binomial Distribution

Definition

Suppose V_1, \ldots, V_r are **i.i.d.** random variables with common TPG (α, β) distribution. If $W := \sum_{i=1}^{r} V_i$, then W has "**Three-Parameter Negative Binomial**" distribution with parameters **r**, α and β , denoted by **TPNB** $(\mathbf{r}, \alpha, \beta)$.

Proposition (Bean, Eshragh and Ross; 2014)

If W follows the TPNB (r, α, β) distribution, then its **p.m.f.** is

$$P_{W}(w) = \begin{cases} \alpha^{r} \quad \text{for } w = 0\\ \sum_{\xi=1}^{\min\{r,w\}} {w-1 \choose \xi-1} \beta^{\xi} (1-\beta)^{w-\xi} {r \choose \xi} (1-\alpha)^{\xi} \alpha^{r-\xi} \quad \text{for } w \ge 1 \end{cases}$$

・ロン ・回と ・ヨン ・ヨン

э

The Conditional Fisher Information Distributions Convergence

The Distribution of Y_t

Theorem (Bean, Eshragh and Ross; 2014)

Consider the **POSBP** { Y_t , $t \ge 0$ } with **parameters** (λ , p) and the **initial population size** $x_0 \ge 1$. For any real value t > 0, the random variable Y_t follows the **TPNB**(x_0 , $(1 - p)\beta_t$, β_t) distribution where

$$\beta_{\mathbf{t}} := \frac{\mathbf{e}^{-\lambda \mathbf{t}}}{\mathbf{p} + (\mathbf{1} - \mathbf{p})\mathbf{e}^{-\lambda \mathbf{t}}}$$

イロト イポト イヨト イヨト

The Conditional Fisher Information Distributions Convergence

The Fisher Information for a Single Observation

Proposition (Bean, Eshragh and Ross; 2014)

Consider the **POSBP** { Y_t , $t \ge 0$ } with **parameters** (λ , p). The Fisher Information of a single observation Y_{t_1} for parameter λ is equal to

$$\mathcal{FI}_{\mathbf{Y}_{1}}(\lambda) = \frac{pt_{1}^{2}\left(p + (1-p)(1-e^{-\lambda t_{1}})e^{-\lambda t_{1}}\right)}{(1-e^{-\lambda t_{1}})(p + (1-p)e^{-\lambda t_{1}})^{2}}$$

イロト イポト イヨト イヨト

The Conditional Fisher Information Distributions Convergence

The Distribution of $(Y2|Y1 = y_{t_1})$

Theorem (Bean, Eshragh and Ross; 2014)

Consider the **POSBP** $\{Y_t, t \ge 0\}$ with parameters (λ, p) . Then

 $\boldsymbol{\mathsf{W}} {\stackrel{d}{=}} \left(\boldsymbol{\mathsf{Y}}_{t_2} | \boldsymbol{\mathsf{Y}}_{t_1} = \boldsymbol{\mathsf{y}}_{t_1}\right) + \boldsymbol{\mathsf{V}}$

where $(Y_{t_2}|Y_{t_1} = y_{t_1})$ and V are mutually independent and

 $W \sim TPNB(y_{t_1} + 1, (1 - p)\beta^\circ, \beta^\circ)$

and

$$V \sim TPG((1-p)\beta_{t2-t1}, \beta_{t2-t1}).$$

イロン イ部ン イヨン イヨン 三日

The Conditional Fisher Information Distributions Convergence

Bounds for the General Form of the Fisher Information

Theorem

If Z_1, \ldots, Z_n are independent random variables from distributions with common unknown parameter γ and $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}$ is a real-value function, then

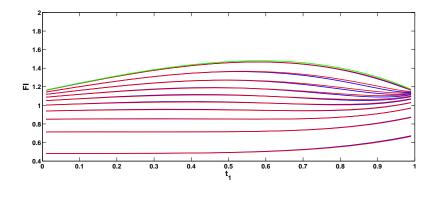
$$\mathcal{FI}_{g(Z_1,...,Z_n)}(\gamma) \leq \sum_{i=1}^n \mathcal{FI}_{Z_i}(\gamma)$$
 .

Furthermore, equality occurs if and only if g is a sufficient estimator for γ .

イロト イポト イヨト イヨト

Results for $\lambda = 2$, n = 2 and $t_2^* = \tau = 1$

The Fisher Information (blue) and its Approximation (red) vs.
 t₁



イロト イヨト イヨト イヨト

æ

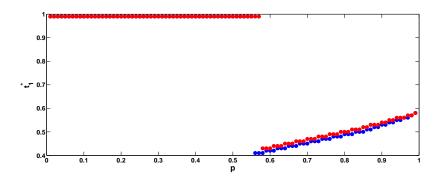
 Simple Birth Process
 The Conditional Fisher Information

 Partially-Observable Simple Birth Process
 Distributions

 Approximation
 Convergence

Results for $\lambda = 2$, n = 2 and $t_2^* = \tau = 1$

• Optimal observation time t_1^* vs. p



イロト イヨト イヨト イヨト

æ

Bounds for the Fisher Information

• By exploiting the last two theorems, we found a **lower** and an **upper** bounds for the Fisher Information.

<ロ> (日) (日) (日) (日) (日)

Bounds for the Fisher Information

• By exploiting the last two theorems, we found a **lower** and an **upper** bounds for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2014)

The approximation function for the Fisher Information **lies within** the lower and upper bounds found for the Fisher Information.

▲圖▶ ▲屋▶ ▲屋▶

Simple Birth Process The Conditional Fisher Information Partially-Observable Simple Birth Process Distributions Approximation Convergence

Bounds for the Fisher Information

• By exploiting the last two theorems, we found a **lower** and an **upper** bounds for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2014)

The approximation function for the Fisher Information **lies within** the lower and upper bounds found for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2014)

The lower and upper bounds for the Fisher Information **approach** together as λ tends to infinity.

イロン イヨン イヨン イヨン

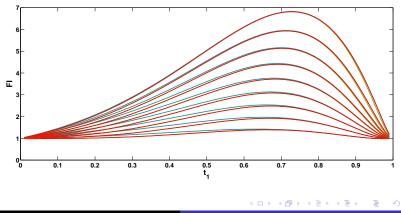
 Simple Birth Process
 The Conditional Fisher Information

 Partially-Observable Simple Birth Process
 Distributions

 Approximation
 Convergence

Results for $\lambda = 6$, n = 2 and $t_2^* = 1$

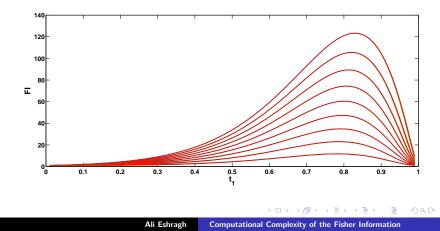
• Lower (brown) and Upper (green) Bounds for The Fisher Information and its Approximation (red) vs. *t*₁



Ali Eshragh Computational Complexity of the Fisher Information

Results for $\lambda = 10$, n = 2 and $t_2^* = 1$

• Lower (brown) and Upper (green) Bounds for The Fisher Information and its Approximation (red) vs. *t*₁



Further Developments

• Developing analogous approximation for higher values of n.

イロト イヨト イヨト イヨト

æ

Further Developments

- Developing analogous approximation for higher values of n.
- Investigating the quality of the approximation

 $\mathcal{FI}^{\mathsf{x}_0}(\lambda) \approx \mathsf{x}_0 \mathcal{FI}^1(\lambda)$

for $x_0 > 1$.

・ロト ・回ト ・ヨト ・ヨト

Further Developments

- Developing analogous approximation for higher values of n.
- Investigating the quality of the approximation

 $\mathcal{FI}^{\mathsf{x}_0}(\lambda) \approx \mathsf{x}_0 \mathcal{FI}^1(\lambda)$

for $x_0 > 1$.

 Finding the Fisher Information to estimate parameter p along with λ, both together.

소리가 소문가 소문가 소문가

Simple Birth Process	The Conditional Fisher Information
Partially-Observable Simple Birth Process	Distributions
Approximation	Convergence

Thank you ··· Questions?

<ロ> (四) (四) (三) (三) (三)