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Definition and Notation

Let Xt denote the population size at time t.

{Xt : t ∈ R+
0 } is a stochastic process .

Suppose {Xt : t ∈ R+
0 } is a simple birth process (SBP) with the

birth rate λ. Moreover, X0
a.s.
= x0 .

It is Markovian, that is

Pr(Xtn+1 = xn+1|Xtn = xn, . . . , ,Xt1 = x1) = Pr(Xtn+1 = xn+1|Xtn = xn) ,

for all possible values of n and t1, . . . , tn+1 .

The transition probability is equal to

Pr(Xs+t = j |Xs = i) =

(
j − 1

i − 1

)
e−λti (1− e−λt)j−i .
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Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1, . . . ,Xt1 = x1) Pr(Xt1 = x1)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1) Pr(Xt1 = x1)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh Computational Complexity of the Fisher Information



Simple Birth Process
Partially-Observable Simple Birth Process

Approximation

Introduction
Optimal Observation Time

Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1, . . . ,Xt1 = x1) Pr(Xt1 = x1)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1) Pr(Xt1 = x1)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh Computational Complexity of the Fisher Information



Simple Birth Process
Partially-Observable Simple Birth Process

Approximation

Introduction
Optimal Observation Time

Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1, . . . ,Xt1 = x1) Pr(Xt1 = x1)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1) Pr(Xt1 = x1)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh Computational Complexity of the Fisher Information



Simple Birth Process
Partially-Observable Simple Birth Process

Approximation

Introduction
Optimal Observation Time

Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1, . . . ,Xt1 = x1) Pr(Xt1 = x1)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1) Pr(Xt1 = x1)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh Computational Complexity of the Fisher Information



Simple Birth Process
Partially-Observable Simple Birth Process

Approximation

Introduction
Optimal Observation Time

Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1, . . . ,Xt1 = x1) Pr(Xt1 = x1)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1) Pr(Xt1 = x1)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh Computational Complexity of the Fisher Information



Simple Birth Process
Partially-Observable Simple Birth Process

Approximation

Introduction
Optimal Observation Time

Likelihood Function

Estimating the unknown parameter λ through maximum
likelihood method.

Take the observations Xt1 , . . . ,Xtn at observation times
0 < t1 ≤ . . . ≤ tn ≤ τ , respectively.

Construct the likelihood function

L(x1, . . . , xn; λ) = Pr(Xt1 = x1, . . . ,Xtn = xn|λ)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1, . . . ,Xt1 = x1) Pr(Xt1 = x1)

=
n∏

i=2

Pr(Xti = xi |Xti−1 = xi−1) Pr(Xt1 = x1)

=
n∏

i=1

(
xi − 1

xi−1 − 1

)
e−λ(ti−ti−1)xi−1(1− e−λ(ti−ti−1))xi−xi−1 .

Ali Eshragh Computational Complexity of the Fisher Information



Simple Birth Process
Partially-Observable Simple Birth Process

Approximation

Introduction
Optimal Observation Time

Observation Times

When should we take the observations Xt1 , . . . ,Xtn?

Presumably, a good choice is finding observation times t1, . . . , tn
such that the expected volume of information obtained from
these observations to estimate the unknown parameter λ is
maximized.

A good tool to measure the expected volume of information gained
from a set of observations is the Fisher Information.

It can be shown that

FI(Xt1
,...,Xtn )

(λ) = EL

[(
d

dλ
ln(L(Xt1 , . . . ,Xtn ;λ))

)2
]
.

Hence, (t∗1 , . . . , t
∗
n ) ∈ argmax{FI(Xt1

,...,Xtn )
(λ)} .
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Fisher Information and Optimal Observation Times

Proposition (Becker and Kersting, 1983)

The Fisher information for a SBP with the parameter λ, the
initial value of x0 and the observation times of (t1, . . . , tn) is as
follows:

FI(Xt1 ,··· ,Xtn )
(λ) = x0

n∑
i=1

(ti − ti−1)2

e−λti−1 − e−λti
.

Optimal Observation Times (Becker and Kersting, 1983)

t∗i ≈
3

λ
log

(
1+

i

n
(e

λτ
3 − 1)

)
for i = 1, . . . ,n
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Definition and Notation

Suppose that at each observation time, we can count the
population, partially.

At each observation time, each individual can be counted
independently with probability p.

Yt is the number of individuals observed at at time t.

(Yt |Xt = x) ∼ Binomial(x,p).

We call the stochastic process {Yt : t ∈ R+
0 } the

partially-observable simple birth process (POSBP) with
parameters (λ, p).

POSBP(λ, 1) ≡ SBP(λ) .

Ali Eshragh Computational Complexity of the Fisher Information
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Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2014)

The POSBP {Yt : t ∈ R+
0 } with parameters (λ, p) is not

Markovian.

However,

Pr(Yt1 = yt1 , . . . ,Ytn = ytn |Xt1 = xt1 , . . . ,Xtn = xtn)

=
n∏

i=1

Pr(Yti = yti |Xti = xti ) .
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Likelihood Function

The likelihood function:

L(yt1 , . . . , ytn ; λ) = Pr(Yt1 = yt1 , . . . ,Ytn = ytn)

=
∑

xt1 ,...,xtn

Pr(Yt1 = yt1 , . . . ,Ytn = ytn |Xt1 = xt1 , . . . ,Xtn = xtn)

Pr(Xt1 = xt1 , . . . ,Xtn = xtn)

=
∑

xt1 ,...,xtn

n∏
i=1

Pr(Yti = yti |Xti = xti ) Pr(Xti = xti |Xti−1 = xti−1)

=
∑

xt1 ,...,xtn

n∏
i=1

(
xti
yti

)
pyi qxti−yti

(
xti − 1

xti−1 − 1

)
υ
xti−1

i−1,i (1− υi−1,i )xti−xti−1 ,

where q := 1− p and υi−1,i := e−λ(ti−ti−1) .
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FI(Yt1
,...,Ytn )

(λ) = EL

[(
d log(L)

dλ

)2
]
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∑

yt1 ,...,ytn

(
d log(L)

dλ

)2

L

=
∑
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(
dL
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L

)2

L
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(
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dλ )2
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Theoretical Result

Proposition (Bean, Eshragh and Ross; 2014)

For a POSBP with n observations and time horizon τ , the FI is an
increasing function of tn. Hence, the optimal observation time
for the last observation, that is t∗n , is equal to τ .

Proposition (Bean, Eshragh and Ross; 2014)

If t∗1 , . . . , t
∗
n are optimal observation times for a POSBP with

parameters (λ, p) and time-horizon τ , then
t∗1
τ
, . . . , t

∗
n
τ

are optimal
observation times for a POSBP with parameters (λτ , p) and
time-horizon 1.
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Truncated Summation

The Fisher Information:

FI(Yt1
,...,Ytn )

(λ) =
∑

yt1 ,...,ytn

(
dL(yt1 ,...,ytn ;λ)

dλ )2

L(yt1 , . . . , ytn ; λ)
.

Here, the likelihood function L(yt1 , . . . , ytn ; λ) is equal to∑
xt1 ,...,xtn

n∏
i=1

(
xti
yti

)
pyi (1− p)xti−yti

(
xti − 1

xti−1 − 1

)
υ
xti−1

i−1,i (1− υi−1,i )xti−xti−1 ,

where υi−1,i := e−λ(ti−ti−1) .

By exploiting Chebyshev’s inequality, we have

Pr
(

E [Z ]− 12
√

Var(Z ) ≤ Z ≤ E [Z ] + 12
√

Var(Z )
)
≥ 1− 1

122

= 99.3% .
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Conditional Expectations

Motivating from Chebyshev’s inequality:

0 ≤ yti ≤ E [Yti ] + 12
√

Var(Yti )

max{1, yt1 , . . . , ytn} ≤ xtn ≤ E [Xtn |Ytn = ytn ] + 12
√

Var(Xtn |Ytn = ytn)

Lemma (Eshragh, Bean and Ross; 2014)

If {Xt} is a SBP with parameter λ and {Yt} is the corresponding
POSBP with parameters (λ, p), then we have

E [Yt ] = peλt , Var(Yt) = p(pe2λt + (1− 2p)eλt)

E [Xt |Yt = yt ] =
yte

λt + (1− p)(eλt − 1)

peλt + 1− p

Var(Xt |Yt = yt) =
(yt + 1)(1− p)eλt(eλt − 1)

(peλt + 1− p)2
.
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Results for λ = 2, n = 2 and t∗2 = τ = 1

Fisher Information vs. t1 and p
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Optimal observation time t∗1 vs. p
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The Chain Rule

The likelihood function

L(yt1 , yt2 |λ)= Pr(Yt2 = yt2 |Yt1 = yt1 , λ) Pr(Yt1 = yt1 |λ) .

Accordingly,

log (L(yt1 , yt2 |λ))= log (Pr(Yt2 = yt2 |Yt1 = yt1 , λ))

+ log (Pr(Yt1 = yt1 |λ)) .

The Fisher Information:

FI(Yt1
,Yt2

)(λ) = FI(Yt2
|Yt1

)(λ) + FI(Yt1
)(λ) .
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Two-Parameter Geometric Distribution

Definition

A discrete random variable V has the “Two-Parameter
Geometric” distribution with parameters α ∈ [0, 1) and
β ∈ (0, 1), denoted by TPG(α,β), if its probability mass
function (p.m.f.) is

PV (v) =

{
α for v = 0

(1− α)β(1− β)v−1 for v = 1, 2, . . . .
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Three-Parameter Negative Binomial Distribution

Definition

Suppose V1, . . . ,Vr are i.i.d. random variables with common
TPG(α, β) distribution. If W :=

∑∑∑r
i=1Vi, then W has

“Three-Parameter Negative Binomial” distribution with
parameters r, α and β, denoted by TPNB(r, α, β).

Proposition (Bean, Eshragh and Ross; 2014)

If W follows the TPNB(r , α, β) distribution, then its p.m.f. is

PW (w) =


αr for w = 0
min{r ,w}∑
ξ=1

(
w − 1

ξ − 1

)
βξ(1− β)w−ξ

(
r

ξ

)
(1− α)ξαr−ξ for w ≥ 1
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The Distribution of Yt

Theorem (Bean, Eshragh and Ross; 2014)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p) and the
initial population size x0 ≥ 1. For any real value t > 0, the
random variable Yt follows the TPNB(x0, (1− p)βt, βt)
distribution where

βt:=
e−λt

p + (1− p)e−λt
.
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The Fisher Information for a Single Observation

Proposition (Bean, Eshragh and Ross; 2014)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p). The
Fisher Information of a single observation Yt1 for parameter λ is
equal to

FIY1(λ)=
pt21
(
p + (1− p)(1− e−λt1)e−λt1

)
(1− e−λt1)(p + (1− p)e−λt1)2

.
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The Distribution of (Y 2|Y 1 = yt1)

Theorem (Bean, Eshragh and Ross; 2014)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p). Then

W
d
= (Yt2|Yt1 = yt1) + V

where (Yt2 |Yt1 = yt1) and V are mutually independent and

W ∼TPNB(yt1 + 1, (1− p)β◦, β◦)

and
V ∼TPG((1− p)βt2−t1, βt2−t1).
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Bounds for the General Form of the Fisher Information

Theorem

If Z1, . . . ,Zn are independent random variables from distributions
with common unknown parameter γ and g : Rn→ R is a
real-value function, then

FIg(Z1,...,Zn)(γ)≤
n∑∑∑

i=1

FIZi(γ) .

Furthermore, equality occurs if and only if g is a sufficient
estimator for γ.
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Results for λ = 2, n = 2 and t∗2 = τ = 1

The Fisher Information (blue) and its Approximation (red) vs.
t1
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Results for λ = 2, n = 2 and t∗2 = τ = 1

Optimal observation time t∗1 vs. p
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Bounds for the Fisher Information

By exploiting the last two theorems, we found a lower and an
upper bounds for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2014)

The approximation function for the Fisher Information lies within
the lower and upper bounds found for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2014)

The lower and upper bounds for the Fisher Information approach
together as λ tends to infinity.
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Results for λ = 6, n = 2 and t∗2 = 1

Lower (brown) and Upper (green) Bounds for The Fisher
Information and its Approximation (red) vs. t1
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Results for λ = 10, n = 2 and t∗2 = 1

Lower (brown) and Upper (green) Bounds for The Fisher
Information and its Approximation (red) vs. t1
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Further Developments

Developing analogous approximation for higher values of n .

Investigating the quality of the approximation

FIx0(λ) ≈ x0FI1(λ)

for x0 > 1 .

Finding the Fisher Information to estimate parameter p along
with λ, both together.
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End

Thank you · · · Questions?
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