Algorithme de Changement d'Ordre de Complexité Sous-Cubique

Jean-Charles Faugère Pierrick Gaudry Louise Huot Guénaël Renault

Motivation: zero-dim PoSSo and applications

PoSSo: Polynomial System Solving

PoSSo Problem: univariate polynomial representation

Input: $\mathcal{I} = \langle f_1, \dots, f_s \rangle \subset \mathbb{K}[x_1, \dots, x_n]$ Assumptions: \mathcal{I} radical and zero-dimensional, \mathbb{K} infinite Output: $\mathcal{I} = \langle x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle$.

Applications

Coding theory, cryptanalysis, computational game theory, optimization, $\it etc$

Example: Point Decomposition Problem (DLP over Elliptic Curves)

$$\mathbf{R}=P_1\oplus\cdots\oplus P_n$$

$$P_i \in \mathcal{F}$$

Faugère, Gaudry, Huot, R. (J. Crypto 13)

State of the art

D = degree of $\mathcal{I} \subset \mathbb{K}[x_1, \dots, x_n] = \#$ solutions of $f_1 = \dots = f_s = 0$.

Particular cases

 \mathbbm{K} field of characteristic zero; $\delta \leq D$ number of real roots.

- (Mourrain, Pan 1998) Approximate all the real roots: $\widetilde{O}(12^nD^2)$ if $\delta=O(\log_2(D));$
- (Bostan, Salvy, Schost 2003) RUR: $\widetilde{O}(n2^nD^{\frac{5}{2}})$ if the multiplicative structure of the quotient ring is known.

General case

Computing Univariate Polynomial Representation: $O(nD^3)$.

Our aim

The first algorithm with sub-cubic complexity to solve this problem.

PoSSo and Gröbner basis

Efficient Computation of 0-dim Gröbner Bases by Change of Ordering (FGLM: Faugère, Gianni, Lazard, Mora 1993)

Univ. Pol. Representation \simeq LEX Gröbner basis in Shape position.

Efficient Computation of a LEX Gröbner basis

Input: $S \subset \mathbb{K}[x_1, \ldots, x_n]$.

Output: The LEX Gröbner basis of $\langle S \rangle$.

- Compute DRL Gröbner basis of $\langle S \rangle$;
- **②** Compute LEX Gröbner basis of $\langle S \rangle$ by change of ordering algorithm.

Gröbner basis and Complexity

 (f_1, \ldots, f_n) regular sequence with $\deg(f_i) \leq d$. $2 \leq \omega < 2.3727$ is the linear algebra constant.

Gröbner basis and Complexity

 (f_1, \ldots, f_n) regular sequence with $\deg(f_i) \leq d$. $2 \leq \omega < 2.3727$ is the linear algebra constant.

So thange of ordering in $\tilde{O}(nD^{\omega}) \Rightarrow \mathsf{PoSSo}$ in $\tilde{O}(d^{\omega n} + nD^{\omega})$

5/24

Change of Ordering Complexity: Contributions

So thange of ordering in $\tilde{O}(nD^{\omega}) \Rightarrow \mathsf{PoSSo}$ in $\tilde{O}(d^{\omega n} + nD^{\omega})$

Contributions

- Consideration of Faugère & Mou in the non sparse case
- Use of the staircases structures for LEX and DRL Gröbner basis

Gröbner basis

Initial ideal

 \mathcal{I} an ideal and > a monomial ordering $\mathsf{in}_{>}(\mathcal{I}) = \{\mathsf{LT}_{>}(f) \mid f \in \mathcal{I}\}.$

Gröbner basis (not unique)

Fix a monomial ordering >, $\{g_1,\ldots,g_s\}$ GB w.r.t. > of ${\mathcal I}$ if

- $\{g_1,\ldots,g_s\} \subset \mathcal{I};$
- $\langle \mathsf{LT}_{>}(g_1), \ldots, \mathsf{LT}_{>}(g_s) \rangle = \mathsf{in}_{>}(\mathcal{I}).$

Reduced Gröbner basis (unique) $G = \{g_1, \dots, g_s\} \text{ GB of } \mathcal{I} \subset \mathbb{K}[x_1, \dots, x_n] \text{ w.r.t.} > \text{s.t.}$ $\mathsf{LT}_{>}(g_i) \text{ does not divide any terms in } g_j \text{ for all } 1 \leq i \neq j \leq s.$ $\Rightarrow g_i = \mathsf{LT}_{>}(g_i) + \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} x^{\alpha} \text{ with } x^{\alpha} \notin \text{in}_{>}(\mathcal{I}).$

Quotient ring

Normal Form

Let $\mathcal{I} \subset \mathbb{K}[x_1, \dots, x_n]$ be an ideal. For any $f \in \mathbb{K}[x_1, \dots, x_n]$ there exists a unique $h \in \mathbb{K}[x_1, \dots, x_n]$ s.t.

• $f - h \in \mathcal{I}$; • $h = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} x^{\alpha}$ with $x^{\alpha} \notin \text{in}_{>}(\mathcal{I})$.

 $h = \mathsf{NF}_{>}(f)$

Quotient ring as \mathbb{K} -vector space of dimension D

 $\mathbb{K}[x_1, \dots, x_n]/\mathcal{I} = \{[f] \mid f \in \mathcal{I}\} \simeq \operatorname{Span}(x^{\alpha} \notin \operatorname{in}_{>}(\mathcal{I}))$ with $[f] = \{h \in \mathbb{K}[x_1, \dots, x_n] \mid f - h \in \mathcal{I}\}.$

 \mathcal{I} dimension zero $\Rightarrow \{x^{\alpha} \notin \mathsf{in}_{>}(\mathcal{I})\} = \{\epsilon_D > \cdots > \epsilon_1 = 1\}$

Change of ordering algorithm: key ideas Coordinate vector ($\mathcal{G}_{>}$ GB of \mathcal{I} w.r.t. >) $v_{\alpha} = (c_1, \dots, c_D)$ s.t. NF_> $(x^{\alpha}) = \sum_{i=1}^{D} c_i \epsilon_i$.

$$\begin{split} f &= \sum_{\alpha \in \mathbb{N}^n} c_\alpha x^\alpha \in \mathcal{I} \Leftrightarrow \ \mathsf{NF}_{>}\left(f\right) = 0 \\ &\Leftrightarrow \ \sum_{\alpha \in \mathbb{N}^n} c_\alpha v_\alpha = 0 \end{split}$$

Multiplication matrices $\mu_{x_1}, \ldots, \mu_{x_n}$

$$\mu_{x_i} = \begin{pmatrix} \mathsf{NF}_{>} \left(\epsilon_1 x_i\right) & \cdots & \mathsf{NF}_{>} \left(\epsilon_D x_i\right) \\ \star & \cdots & \star \\ \vdots & \ddots & \vdots \\ \star & \cdots & \star \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_D \end{pmatrix}$$

Let $1 = (1, 0, \dots, 0) = v_{(0,\dots,0)} \rightsquigarrow v_{\alpha} = \mu_{x_1}^{\alpha_1} \cdots \mu_{x_n}^{\alpha_n} 1$

FGLM in a nutshell

From DRL to LEX with $x_1 > x_2 > \cdots > x_n$ $\mathcal{V} = \mathbb{K}[x_1, \dots, x_n]/\mathcal{I}$ is a *D*-dim K-vector space

- $B_{\mathsf{DRL}} = P \cdot B_{\mathsf{LEX}}$
- $\mu_{x_i}: t \to \mathsf{NF}_{\mathsf{DRL}}(x_i t)$

FGLM in a nutshell From DRL to LEX with $x_1 > x_2 > \cdots > x_n$ $\mathcal{V} = \mathbb{K}[x_1, \ldots, x_n]/\mathcal{I}$ is a *D*-dim \mathbb{K} -vector space $\mathsf{GB}\;\mathsf{DRL}\;\mathsf{of}\;\mathcal{I}$ GB LEX of $\mathcal I$ Multip. repr. of \mathcal{V} Deduction $B_{\mathsf{DRL}} = \{1 = \epsilon_1 < \dots < \epsilon_D\} \qquad P \qquad B_{\mathsf{LEX}} = \{1 = w_1 < \dots < w_D\}$ Multiplication matrices μ_{x_i} Assume the μ_{x_i} known x_{1} $t = x_i t' = \mu_{x_i}(Pt')$ • $B_{\text{DRL}} = P \cdot B_{\text{LEX}}$ х • $\mu_{x_i}: t \to \mathsf{NF}_{\mathsf{DRL}}(x_i t)$

 x_2

FGLM in a nutshell

From DRL to LEX with $x_1 > x_2 > \cdots > x_n$ $\mathcal{V} = \mathbb{K}[x_1, \dots, x_n]/\mathcal{I}$ is a *D*-dim K-vector space

 $\begin{array}{c|c} \hline \mathsf{GB} \ \mathsf{DRL} \ \mathsf{of} \ \mathcal{I} \\ \\ \mathsf{Multip. repr. of} \ \mathcal{V} & \mathcal{O}(nD^3) \\ \hline B_{\mathsf{DRL}} = \{1 = \epsilon_1 < \cdots < \epsilon_D\} \\ \\ \mathsf{Multiplication matrices} \ \mu_{x_i} \\ \hline \mathcal{O}(nD^3) \\ \hline \end{array} \begin{array}{c} \hline \mathsf{GB} \ \mathsf{LEX} \ \mathsf{of} \ \mathcal{I} \\ \\ \\ \mathsf{Deduction} \\ \hline \\ \mathsf{B}_{\mathsf{LEX}} = \{1 = w_1 < \cdots < w_D\} \\ \hline \end{array} \right)$

- $B_{\mathsf{DRL}} = P \cdot B_{\mathsf{LEX}}$
- $\mu_{x_i}: t \to \mathsf{NF}_{\mathsf{DRL}}(x_i t)$

Use structures of GB LEX

Faugère & Mou Sparse FGLM framework

Assumption: GB LEX of \mathcal{I} is in *shape position*

$$\mathcal{I} = \langle x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), \underline{h_n(x_n)} \rangle$$

Faugère & Mou Sparse FGLM framework

Assumption: GB LEX of \mathcal{I} is in *shape position*

$$\mathcal{I} = \langle x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle$$

Faugère & Mou reconstruction of h_i : deterministic Wiedemann

•
$$\mu_{x_n}^j \cdot \mathbf{1}, \mu_{x_n}^j(\mu_{x_1} \cdot \mathbf{1}), \dots, \mu_{x_n}^j(\mu_{x_n-1} \cdot \mathbf{1}), \ j \in \{0, \dots, 2D-1\}$$

• *n* Hankel linear systems to solve $\tilde{O}(nD^2)$

Faugère & Mou Sparse FGLM framework $h_n: S = [(\mathbf{r}, \mu_{x_n}^j \mathbf{1}) \mid j = 0, \dots, 2D - 1]$ with $(\mathbf{r}, \mu_{x_n}^j \mathbf{1}) = ({}^t \mu_{x_n}^j \mathbf{r}, \mathbf{1})$ Compute h_1, \ldots, h_{n-1} $h_i(x_n) = \sum_{k=0}^{D-1} c_{i,k} x_n^k$ $x_i - h_i(x_n) \in \mathcal{I} \quad \Leftrightarrow \quad \mu_{x_i} \mathbf{1} - \sum_{k=0}^{k-1} c_{i,k} \mu_{x_n}^k \mathbf{1} = \mathbf{0}$ $imes \mu_{x_n}^j$ for $j=0,\ldots,D-1$ and $(r,\cdot) \rightsquigarrow$ Hankel linear systems

$$\begin{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mu_{x_i}\mathbf{1})\\ {}^{(t}\mu_{x_n}^{1}\mathbf{r},\mu_{x_i}\mathbf{1})\\ \vdots\\ {}^{(t}\mu_{x_n}^{D-1}\mathbf{r},\mu_{x_i}\mathbf{1})\\ \hline \mathbf{b}_{\mathbf{i}} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{1}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{1}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{1}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{1}\mathbf{r},\mu_{x_i}\mathbf{1}) & {}^{(t}\mu_{x_n}^{1}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{D-1}\mathbf{r},\mu_{x_i}\mathbf{1}) & {}^{(t}\mu_{x_n}^{D-1}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{D}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ \hline \mathbf{b}_{\mathbf{i}} & & & & \\ \end{pmatrix} = \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ \hline \mathbf{b}_{\mathbf{i}} & & & \\ \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ \hline \mathbf{b}_{\mathbf{i}} & & \\ \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{2}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \hline \mathbf{b}_{\mathbf{i}} & & \\ \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \hline \\ \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \hline \\ \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \hline \\ \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \hline \end{pmatrix} \end{pmatrix} \begin{pmatrix} {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) & {}^{(t}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1} & {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1} & {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1} \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1} & {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1}) \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} {}^{(t)}\mu_{x_n}^{0}\mathbf{r},\mathbf{1} & {}^{(t)}\mu$$

Faugère & Mou Sparse FGLM framework Assumption: GB LEX of \mathcal{I} is in *shape position*

$$\mathcal{I} = \langle x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle$$

Faugère & Mou reconstruction of h_i : deterministic Wiedemann μ_{x_n} dense

- $\mu_{x_n}^j \cdot \mathbf{1}, \mu_{x_n}^j(\mu_{x_1} \cdot \mathbf{1}), \dots, \mu_{x_n}^j(\mu_{x_n-1} \cdot \mathbf{1}), \ j \in \{0, \dots, 2D-1\} \ O(nD^3)$
- n Hankel linear systems to solve $\tilde{O}(nD^2)$

 $\bowtie \mu_{x_i} \cdot \mathbf{1} = x_1$ is known with no cost $\Rightarrow \mu_{x_n}$ is sufficient!

Faugère & Mou Sparse FGLM framework Assumption: GB LEX of \mathcal{I} is in *shape position*

$$\mathcal{I} = \langle x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle$$

Contribution: use of Keller-Gehrig $O(n \log(D) D^{\omega})$

$$\mu_{x_n}^2 \left(\mu_{x_n} \mathbf{r} \mid \mathbf{r} \right) = \left(\mu_{x_n}^3 \mathbf{r} \mid \mu_{x_n}^2 \mathbf{r} \right)$$

:
$$\mu_{x_n}^{2^{\lceil \log_2(D) \rceil}}(\mu_{x_n}^{2^{\lceil \log_2(D) \rceil}-1}\mathbf{r}|\dots|\mathbf{r}) = (\mu_{x_n}^{2D-1}\mathbf{r}|\mu_{x_n}^{2D-2}\mathbf{r}|\dots|\mu_{x_n}^{2^{\lceil \log_2(D) \rceil}}\mathbf{r})$$

Faugère & Mou Sparse FGLM framework Assumption: GB LEX of \mathcal{I} is in *shape position*

$$\mathcal{I} = \langle x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle$$

Contribution: use of Keller-Gehrig $O(n \log(D)D^{\omega})$

$$\mu_{x_n}^2\left(\mu_{x_n}\mathbf{r} \mid \mathbf{r}\right) = \left(\mu_{x_n}^3\mathbf{r} \mid \mu_{x_n}^2\mathbf{r}\right)$$

$$\mu_{x_n}^{2^{\lceil \log_2(D) \rceil}}(\mu_{x_n}^{2^{\lceil \log_2(D) \rceil}-1}\mathbf{r}|\dots|\mathbf{r}) = (\mu_{x_n}^{2D-1}\mathbf{r}|\mu_{x_n}^{2D-2}\mathbf{r}|\dots|\mu_{x_n}^{2^{\lceil \log_2(D) \rceil}}\mathbf{r})$$

Computing $\mu_{x_n} \Leftrightarrow \text{computing NF}_{drl}(\epsilon_i x_n) \ i \in \{1, \dots, D\}.$

Computing $\mu_{x_n} \Leftrightarrow \text{computing } \mathsf{NF}_{drl}(\epsilon_i x_n) \ i \in \{1, \ldots, D\}.$

Computing $\mu_{x_n} \Leftrightarrow \text{computing } \mathsf{NF}_{drl}(\epsilon_i x_n) \ i \in \{1, \ldots, D\}.$

Computing $\mu_{x_n} \Leftrightarrow$ computing $\mathsf{NF}_{drl}(\epsilon_i x_n)$ $i \in \{1, \ldots, D\}$.

$$F = \{\epsilon_i x_j \mid i = 1, \dots, D \text{ and } j = 1, \dots, n\} \setminus B$$
: border

Computing $\mu_{x_n} \Leftrightarrow \text{computing } \mathsf{NF}_{drl}(\epsilon_i x_n) \ i \in \{1, \ldots, D\}.$

FGLM Lemma – Only three cases to consider

 ${f w}$ Only the Case (3) is costly - can a structure avoid it?

The (1, 2)-staircases position: Generic Ideals Moreno-Socias 1992 For a generic ideal \mathcal{I} , its DRL GB verifies $\epsilon x_n \in B \cup E(I)$ for $\epsilon \in B$.

A generic ideal is in (1, 2)-staircases position.

FGLM Lemma: the no cost situation

For any instantiation of \deg_{x_i} for $j \in \{1, \ldots, n-1\} \setminus \{i\}$

Faugère & Mou Sparse FGLM framework

Assumptions: LEX GB of \mathcal{I} is in *shape position* DRL GB of \mathcal{I} is in (1, 2)-staircases position (Generic Ideals)

Non generic ideals?

$\left(1,2\right)\text{-staircases}$ and shape position

Galligo, Bayer and Stillman, Pardue (1970's - 2000's)

 \mathcal{I} an homogeneous ideal. There exists a Zariski open subset $U \subset GL(\mathbb{K}, n)$ s.t. $\forall g \in U, g \cdot I$ is in (1,2)-staircases position.

Shape Lemma, Gianni and Mora (1989)

 \mathcal{I} a radical ideal. There exists a Zariski open subset $U' \subset GL(\mathbb{K}, n)$ s.t. $\forall g \in U', g \cdot I$ is in *Shape position*.

Main theorem

 \blacksquare The (1,2)-staircases and shape position is generic!

 \mathcal{I} regular affine 0-dim and radical and $g \in U \cap U' (\neq \emptyset)$. The change of ordering from DRL to LEX of $g \cdot \mathcal{I}$ can be done in

 $\tilde{O}(nD^{\omega} + nD^2)$

 $\ensuremath{\,^{\mbox{\tiny SM}}}$ " Randomization" on the choice of g

New algorithm for PoSSo

Let d such that $\deg(f_i) \leq d$.

Algorithm 1: Another algorithm for PoSSo. **Input** : $S = \{f_1, \ldots, f_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ s.t. $\langle S \rangle$ is radical and regular. **Output**: q in $GL(\mathbb{K}, n)$ and the LEX Gröbner basis of $\langle q \cdot S \rangle$ or *fail*. "Randomly" choose g in $GL(\mathbb{K}, n)$; Compute \mathcal{G}_{drl} the DRL GB $q \cdot S$; $O(d^{\omega n})$ if μ_{x_n} can be read from \mathcal{G}_{drl} then Extract μ_{x_n} from \mathcal{G}_{drl} ; No cost if $\langle q \cdot S \rangle$ is in Shape Position then From μ_{x_n} and \mathcal{G}_{drl} compute $\mathcal{G}_{\mathsf{lex}};$ $O(\log_2(D)(nD^{\omega} + n\log_2(D)D^2))$ **return** g and $\mathcal{G}_{\mathsf{lex}}$;

return fail;

Total complexity: $\tilde{O}(d^{\omega n} + nD^{\omega})$ arithmetic operations.

Practical implications

System	n	D	Algorithm	\mathcal{G}_{drl}	μ_{x_n}	#NF	\mathcal{G}_{lex}	Total
Random	15	32 768	usual	1 580s	41.5s	0	1 330s	2 950s
d = 2			This work	1 580s	41.5s	0	1 330s	2 950s
Random	6	46 656	usual	632s	20.3s	0	1700s	2 350s
d = 6			This work	632s	20.3s	0	1700s	2 350s
Random	2	27 000	usual	48.7s	0.9s	0	95.6s	145s
d = 30	5		This work	48.7s	0.9s	0	95.6s	145s
Eco	13	2 048	usual	28.2s	36.5s	1 1 5 3	0.43s	65.1s
			This work	12.0s	0.18s	0	0.23s	12.4s
	14	4 096	usual	176s	1100s	2 353	1.47s	1 280s
			This work	57.0s	0.74s	0	1.23s	59.0s
	15	8 192	usual	1 030s	> 2 days	4 853		> 2 days
			This work	348s	3.47s	0	30.6s	382s
Edwards	5	65 536	usual	12300s	> 2 days			> 2 days
			This work	12 300s	40.8s	0	7 820s	20 200s
Edwards	6	65 526	usual	566s	15.1s	0	2 150s	2730s
weights	5	00 000	This work	566s	15.1s	0	2 150s	2730s
Pathological	9	512	usual	0s	12.8s	255	0.01s	12.8s
			This work	< 0.01s	< 0.01s	0	< 0.01s	< 0.01s
	11	2 048	usual	0s	7 520s	1 0 2 3	23.0s	7 540s
			This work	5.02s	0.15s	0	0.13s	5.28s
	16	65 536	usual	0s	> 2 days	32767		> 2 days
	10	03 3 3 0	This work	38 100s	195s	0	14 300s	52 600s

19/24

First conclusion

New probabilistic algorithm for solving PoSSo

- Complexity $\tilde{O}(d^{\omega n} + nD^{\omega})$ arithmetic operations
- Real impacts in practice intractable \rightarrow 20k seconds

Deterministic computation of μ_{x_i} ?

 \mathbb{R} All the NF of same degree terms are computed at the same time! $_{20/24}$

Computing $\mu_{x_1}, \ldots, \mu_{x_n}$

Computing $\mu_{x_1}, \ldots, \mu_{x_n} \Leftrightarrow$ computing $\mathsf{NF}_{DRL}(\epsilon_i x_j)$ $i = 1, \ldots, D$ and $j = 1, \ldots, D$

Computing $\mu_{x_1}, \ldots, \mu_{x_n}$

Computing $\mu_{x_1}, \ldots, \mu_{x_n} \Leftrightarrow \text{computing NF}_{DRL}(\epsilon_i x_j) \ i = 1, \ldots, D \text{ and } j = 1, \ldots, D$

Computing $\mu_{x_1}, \ldots, \mu_{x_n}$

Computing $\mu_{x_1}, \ldots, \mu_{x_n} \Leftrightarrow \text{computing NF}_{DRL}(\epsilon_i x_j) \ i = 1, \ldots, D \text{ and } j = 1, \ldots, D$

Iterative algorithm: loop on the $\ensuremath{\operatorname{\textbf{degree}}}\xspace d$

	$t_\ell \in F$	$t_j \in F$	$\epsilon_i \in B$
	$\deg(t_\ell) = d$	$\deg(t_j) < d$	Read NF
$+ \mathbf{N} \mathbf{\Gamma} (4)$	$\overline{0}$	$1 \cdots 0$	* *
$ l_j = N\Gamma(l_j) $: : •. :	·.	: C :
$\forall t_j \in F$, $\deg(t_j) < a$	$\dot{0}$ $\dot{0}$ \cdots $\dot{0}$	$0 \cdots 1$	· · · · *

Iterative algorithm: loop on the degree \boldsymbol{d}

• If $t_{\ell} \in E(>_1)\mathcal{I}$ then $f_{\ell} = g$ with $g \in \mathcal{G}_{>_1}$ st $\mathsf{LT}_{>_1}(g) = t_{\ell}$;

• Else $t_{\ell} \in F \setminus E(>_1) \mathcal{I} \Rightarrow t_{\ell} = x_k t_j$ and $f_{\ell} = x_k (t_j - \mathsf{NF}_{>_1}(t_j)) = t_{\ell} + \sum_{i=1}^D \alpha_i x_k \epsilon_i.$

Iterative algorithm: loop on the degree d

$$\begin{array}{c|cccc} \mathsf{Reduced Row}_{\mathsf{Form}} \\ \mathsf{Echelon Form} \end{array} \stackrel{t_{\ell} \in F}{\overset{}} & t_{j} \in F & \epsilon_{i} \in B \\ \underline{\deg}(t_{\ell}) = d \ \underline{\deg}(t_{j}) < d \ \mathbf{Read NF} \\ \hline 1 & 0 & \cdots & 0 & 0 & \ddots & \ddots & \star \\ 0 & 1 & \vdots & 0 & \cdots & 0 & \star & \cdots & \star \\ 0 & 1 & \vdots & 0 & \cdots & 0 & \star & \cdots & \star & t_{\ell} - \mathsf{NF}(t_{\ell}) \\ \vdots & \ddots & 0 & \vdots & \ddots & \ddots & \star & \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 & \star & \cdots & \star \\ 0 & 0 & \cdots & 0 & 1 & \cdots & 0 & \star & \cdots & \star & \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \star & \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 1 & \star & \cdots & \star & \\ \hline t_{j} - \mathsf{NF}(t_{j}) & \\ \forall t_{j} \in F, \ \deg(t_{j}) < d & \forall t_{j} \in F, \ \deg(t_{j}) < d & \forall t_{j} \in F, \ \deg(t_{j}) < d & \forall t_{j} \in F, \ \deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}) < d & \forall t_{j} \in F, \ deg(t_{j}$$

The normal forms of all the monomials of same degree can be computed simultaneously.

Size of M at most $(nD \times (n+1)D)$.

Theorem

Given \mathcal{G}_{DRL} , the computation can be done in

 $O(d_{\max}n^{\omega}D^{\omega})$ arithmetic operations

where $d_{\max} = \max\{\deg(t) \mid t \in F\} = \max\{\deg(g) \mid g \in \mathcal{G}_{DRL}\}$.

Regular System

Let $S = \{f_1, \ldots, f_n\}$ with $\deg(f_i) \le d$ and (f_1, \ldots, f_n) is a regular sequence. For the DRL ordering

- Macaulay's bound $\Rightarrow d_{\max} \le n(d-1) + 1$;
- Bézout's bound $\Rightarrow D \leq d^n$.

 $d \text{ fixed integer} \Rightarrow O(d_{\max}n^{\omega}D^{\omega}) = O(n^{\omega+1}D^{\omega}) = O(\log_2(D)^{\omega+1}D^{\omega}).$

Final conclusion

- New probabilistic algo for solving PoSSo with omplexity $\tilde{O}(d^{\omega n} + nD^{\omega})$ arithmetic operations
- Sub-cubic deterministic algo for the computations of the μ_{x_i} 's \rightsquigarrow triangular sets (see Louise's PhD, extended version)

Thank you!