
Towards verified computer algebra

Towards verified computer algebra

Maxime Dénès
joint work with Cyril Cohen and Anders Mörtberg

Inria Paris-Rocquencourt, Inria Sophia-Antipolis and University of Gothenburg

January 26, 2014

Maxime Dénès 1

Towards verified computer algebra | Introduction

Context

Computers play an increasingly important role in mathematical proofs.

A few examples:
Four color theorem [Appel and Haken 1977; Gonthier 2007]
Robbins conjecture [McCune 1997]
Kepler conjecture [Hales 2005]
Existence of the Lorenz attractor [Tucker 2002]
The odd order theorem [Gonthier et al. 2013]

The motivation for using computers is often (but not always)
computational power. Sometimes, stubbornness is the killing feature.

Maxime Dénès 2

Towards verified computer algebra | Introduction

Context

Computers play an increasingly important role in mathematical proofs.

A few examples:
Four color theorem [Appel and Haken 1977; Gonthier 2007]
Robbins conjecture [McCune 1997]
Kepler conjecture [Hales 2005]
Existence of the Lorenz attractor [Tucker 2002]
The odd order theorem [Gonthier et al. 2013]

The motivation for using computers is often (but not always)
computational power.

Sometimes, stubbornness is the killing feature.

Maxime Dénès 2

Towards verified computer algebra | Introduction

Context

Computers play an increasingly important role in mathematical proofs.

A few examples:
Four color theorem [Appel and Haken 1977; Gonthier 2007]
Robbins conjecture [McCune 1997]
Kepler conjecture [Hales 2005]
Existence of the Lorenz attractor [Tucker 2002]
The odd order theorem [Gonthier et al. 2013]

The motivation for using computers is often (but not always)
computational power. Sometimes, stubbornness is the killing feature.

Maxime Dénès 2

Towards verified computer algebra | Introduction

Software for mathematics

Currently (at least) two families of software for mathematicians:
Computer algebra systems
Theorem provers

Surprisingly different. The first emphasize equational reasoning and
efficiency of computations, the second semantics and logical reasoning.

Analogy: Babylonian and Greek mathematics [Barendregt and Barendsen
2002]

Our goal: teach the Greeks to speak Babylonian

Maxime Dénès 3

Towards verified computer algebra | Introduction

Software for mathematics

Currently (at least) two families of software for mathematicians:
Computer algebra systems
Theorem provers

Surprisingly different. The first emphasize equational reasoning and
efficiency of computations, the second semantics and logical reasoning.

Analogy: Babylonian and Greek mathematics [Barendregt and Barendsen
2002]

Our goal: teach the Greeks to speak Babylonian

Maxime Dénès 3

Towards verified computer algebra | Introduction

Software for mathematics

Currently (at least) two families of software for mathematicians:
Computer algebra systems
Theorem provers

Surprisingly different. The first emphasize equational reasoning and
efficiency of computations, the second semantics and logical reasoning.

Analogy: Babylonian and Greek mathematics [Barendregt and Barendsen
2002]

Our goal: teach the Greeks to speak Babylonian

Maxime Dénès 3

Towards verified computer algebra | Introduction

Software for mathematics

Currently (at least) two families of software for mathematicians:
Computer algebra systems
Theorem provers

Surprisingly different. The first emphasize equational reasoning and
efficiency of computations, the second semantics and logical reasoning.

Analogy: Babylonian and Greek mathematics [Barendregt and Barendsen
2002]

Our goal: teach the Greeks to speak Babylonian

Maxime Dénès 3

Towards verified computer algebra | Introduction

Motivation

Verifiying computer algebra, what for?

Computer algebra algorithms can help automate proofs
Formal proofs bridge the gap between paper correctness proofs and
real-life implementations
Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Maxime Dénès 4

Towards verified computer algebra | Introduction

Computations in formal proofs

Traditionally, three ways to incorporate computations in formal proofs:
Believing
Skeptical
Autarkic

In our context, we consider the last two, with emphasis on the third.

Give a man a fish and you feed him for a day. Teach a man to
fish and you feed him for a lifetime.

Maxime Dénès 5

Towards verified computer algebra | Introduction

Computations in formal proofs

Traditionally, three ways to incorporate computations in formal proofs:
Believing
Skeptical
Autarkic

In our context, we consider the last two, with emphasis on the third.

Give a man a fish and you feed him for a day. Teach a man to
fish and you feed him for a lifetime.

Maxime Dénès 5

Towards verified computer algebra | Introduction

How to verify efficient programs?

Specificity of our context: efficiency matters, and programs can have
complex specifications (good proof tools required)

Observation: tension between proof-oriented descriptions and efficient
implementations

Our proposal: a framework for top-down stepwise refinements from
specifications to programs, achieving separation of concerns

Maxime Dénès 6

Towards verified computer algebra | Introduction

How to verify efficient programs?

Specificity of our context: efficiency matters, and programs can have
complex specifications (good proof tools required)

Observation: tension between proof-oriented descriptions and efficient
implementations

Our proposal: a framework for top-down stepwise refinements from
specifications to programs, achieving separation of concerns

Maxime Dénès 6

Towards verified computer algebra | Introduction

How to verify efficient programs?

Specificity of our context: efficiency matters, and programs can have
complex specifications (good proof tools required)

Observation: tension between proof-oriented descriptions and efficient
implementations

Our proposal: a framework for top-down stepwise refinements from
specifications to programs, achieving separation of concerns

Maxime Dénès 6

Towards verified computer algebra | Introduction

How to verify efficient programs?

Specificity of our context: efficiency matters, and programs can have
complex specifications (good proof tools required)

Observation: tension between proof-oriented descriptions and efficient
implementations

Our proposal: a framework for top-down stepwise refinements from
specifications to programs, achieving separation of concerns

Maxime Dénès 6

Towards verified computer algebra | Introduction

Separation of concerns

We know that a program must be correct and we can study it
from that viewpoint only; we also know that it should be
efficient and we can study its efficiency on another day, so to
speak. [. . .] But nothing is gained – on the contrary! – by
tackling these various aspects simultaneously. It is what I
sometimes have called "the separation of concerns"

Dijkstra, Edsger W.
"On the role of scientific thought" (1982)

Maxime Dénès 7

Towards verified computer algebra | Introduction

Outline

1 A refinement framework

2 Case study: Strassen’s algorithm

3 Scaling up: verified homology computations

Maxime Dénès 8

Towards verified computer algebra | A refinement framework

Outline

1 A refinement framework

2 Case study: Strassen’s algorithm

3 Scaling up: verified homology computations

Maxime Dénès 9

Towards verified computer algebra | A refinement framework

Abstraction in COQ

In COQ, abstraction using:
The module system, or
Records (+ typeclass-like inference)

Abstract data is characterized by
Types
Operations signature
Axioms

∀M :


(A : Type),
(∗ : A→ A→ A),
(∗assoc : ∀a b c, a ∗ (b ∗ c) = (a ∗ b) ∗ c)

 , My Theory(M)

Maxime Dénès 10

Towards verified computer algebra | A refinement framework

Example: natural numbers in COQ’s standard lib

In COQ’s standard library:
nat (unary) and N (binary) along with two isomorphisms
N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In COQ’s standard library, proofs are factored using abstraction with the
module system and can be instantiated to any of these two
implementations.

→ The axioms of natural numbers are instantiated twice

Maxime Dénès 11

Towards verified computer algebra | A refinement framework

Problem with traditional abstraction

We often have concrete constructions e.g. N, matrices, polynomials,. . .

Should everything concrete be abstracted?
Many abstractions with only one implementation.
Difficult to find the right set of axioms to delimit an interface.
Lose computational behaviour.

Maxime Dénès 12

Towards verified computer algebra | A refinement framework

Traditional refinements (e.g. B method)

Successive and progressive refinements

P1 → P2 → . . .→ Pn

where P1 is an abstract version of the program
and Pn a concrete version of the program.

Key invariant: Pn+1 must be correct with regard to Pn.

Maxime Dénès 13

Towards verified computer algebra | A refinement framework

Our refinements

Successive and progressive refinements

P1 → P2 → . . .→ Pn

where P1 is an proof-oriented version of the program
and Pn a computation-oriented version of the program.

Key invariant: Pn+1 must be correct with regard to Pn.

Maxime Dénès 14

Towards verified computer algebra | A refinement framework

Program and data refinements
Our methodology consists in refining in two steps

1 Program refinement: improving the algorithms
without changing the data structures.

2 Data refinement: switching to more efficient data representations,
using the same algorithm.

Specification

Efficient algorithms

Efficient implementation

Program refinement

Data refinement

Maxime Dénès 15

Towards verified computer algebra | A refinement framework

Context: Libraries, Conventions, Examples

Proof-oriented types.
E.g.: nat, int, rat, {poly R},
(matrix R). . .

Computation-oriented types.
E.g.: N, Z, Q, sparse_poly,
seqmatrix. . .

Proof-oriented programs.
E.g.: O, S, addn, addz, . . . , 0%R,
1%R, (_+_)%R. . .

Computation-oriented
programs.
E.g.: xH, xI, xO, addN, addQ,
. . . , 0%C, 1%C, (_+_)%C. . .

Rich theory, geared towards
interactive proving

Reduced theory, more
efficient data-structures and
more efficient algorithms

Maxime Dénès 16

Towards verified computer algebra | A refinement framework

Example: matrices

Proof-oriented matrices over a ring M[R].
Computation-oriented matrices M ′[R]

A ∗M[R] B→ A ∗Strassen(M[R]) B→ A ∗Strassen(M ′[R]) B

→ Compositionality

Maxime Dénès 17

Towards verified computer algebra | A refinement framework

Example: rational numbers

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime |valq.1| |valq.2|

}.

The proof-oriented rat enforces that fractions are reduced
Allows to use Leibniz equality in proofs
This invariant is costly to maintain during computations

We would like to express that rat is isomorphic to a quotient of a subset
of pairs of integers.

→ refinement relation

Maxime Dénès 18

Towards verified computer algebra | A refinement framework

Example: matrices

Proof-oriented matrices over a ring M[R].
Computation-oriented matrices M ′[R]

A ∗M[R] B→ A ∗Strassen(M[R]) B→ A ∗Strassen(M ′[R]) B

→ Compositionality

Maxime Dénès 19

Towards verified computer algebra | A refinement framework

Example: matrices

Proof-oriented matrices over a ring M[R].
Computation-oriented matrices M ′[R ′]

A ∗M[R] B→ A ∗Strassen(M[R]) B→ A ∗Strassen(M ′[R ′]) B

→ Compositionality

Maxime Dénès 19

Towards verified computer algebra | A refinement framework

Example: matrices

Proof-oriented matrices over a ring M[R].
Computation-oriented matrices M ′[R ′]

A∗M[R]B→ A∗Strassen(M[R])B→ A∗Strassen(M ′[R])B→ A∗Strassen(M ′[R ′])B

→ Compositionality

Maxime Dénès 19

Towards verified computer algebra | A refinement framework

Example with rationals

Proof-oriented rationals rat,
based on unary integers int.
Computation-oriented rationals Q Z,
based on any implementation on integers Z.

a+rat b→ a+Q int b→ a+Q Z b

Maxime Dénès 20

Towards verified computer algebra | A refinement framework

Generic programming: addition over rationals

Generic datatype

Definition Q Z := (Z * Z).

Generic operations

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

To prove correctness of addQ, abstracted operators (+ : add Z) and
(* : mul Z) are instantiated by proof-oriented definitions
(addz : add int) and (mulz : mul int).
When computing, these operators are instantiated to more efficient ones.

Maxime Dénès 21

Towards verified computer algebra | A refinement framework

Generic programming: addition over rationals

Generic datatype

Definition Q Z := (Z * Z).

Generic operations

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

To prove correctness of addQ, abstracted operators (+ : add Z) and
(* : mul Z) are instantiated by proof-oriented definitions
(addz : add int) and (mulz : mul int).
When computing, these operators are instantiated to more efficient ones.

Maxime Dénès 21

Towards verified computer algebra | A refinement framework

Generic programming: addition over rationals

Generic datatype

Definition Q Z := (Z * Z).

Generic operations

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

To prove correctness of addQ, abstracted operators (+ : add Z) and
(* : mul Z) are instantiated by proof-oriented definitions
(addz : add int) and (mulz : mul int).

When computing, these operators are instantiated to more efficient ones.

Maxime Dénès 21

Towards verified computer algebra | A refinement framework

Generic programming: addition over rationals

Generic datatype

Definition Q Z := (Z * Z).

Generic operations

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

To prove correctness of addQ, abstracted operators (+ : add Z) and
(* : mul Z) are instantiated by proof-oriented definitions
(addz : add int) and (mulz : mul int).
When computing, these operators are instantiated to more efficient ones.

Maxime Dénès 21

Towards verified computer algebra | A refinement framework

Proof-oriented correctness

The type int is the proof-oriented version of integers.
The type rat is the proof-oriented version of rationals.

Correctness of addQ int

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Definition RQint : rat -> Q int -> Prop :=
fun r q => Qint_to_rat q = r.

Lemma RQint_add :
forall (x : rat) (u : Q int), RQint x u ->
forall (y : rat) (v : Q int), RQint y v ->
RQint (add_rat x y) (addQ u v).

Maxime Dénès 22

Towards verified computer algebra | A refinement framework

Correctness of addQ

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (RZ : int -> Z -> Prop).
Definition RQint : rat -> Q int -> Prop := ...
Definition RQ := (RQint \o (RZ * RZ))%rel.

Lemma RQ_add (+) (*) : [...] ->
forall (x : rat) (u : Q Z), RQ x u ->
forall (y : rat) (v : Q Z), RQ y v ->
RQ (add_rat x y) (addQ u v).

The proof of RQint_add is interesting, but the one of param_addQ is boring.
The lemma param_addQ is in fact a “theorem for free!”

Maxime Dénès 23

Towards verified computer algebra | A refinement framework

Correctness of addQ

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (RZ : int -> Z -> Prop).
Definition RQint : rat -> Q int -> Prop := ...
Definition RQ := (RQint \o (RZ * RZ))%rel.

Lemma RQ_add (+) (*) : [...] ->
(RQ ==> RQ ==> RQ) add_rat (addQ (+) (*))

The proof of RQint_add is interesting, but the one of param_addQ is boring.
The lemma param_addQ is in fact a “theorem for free!”

Maxime Dénès 23

Towards verified computer algebra | A refinement framework

Correctness of addQ

Definition addQ Z (+) (*) : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (RZ : int -> Z -> Prop).
Definition RQint : rat -> Q int -> Prop := ...
Definition RQ := (RQint \o (RZ * RZ))%rel.

Lemma RQ_add (+) (*) :
(RZ ==> RZ ==> RZ) addz (+) ->
(RZ ==> RZ ==> RZ) mulz (*) ->
(RQ ==> RQ ==> RQ) add_rat (addQ (+) (*))

The proof of RQint_add is interesting, but the one of param_addQ is boring.
The lemma param_addQ is in fact a “theorem for free!”

Maxime Dénès 23

Towards verified computer algebra | A refinement framework

Correctness of addQ

Variables (Z : Type) (RZ : int -> Z -> Prop).
Definition RQint : rat -> Q int -> Prop := ...
Definition RQ := (RQint \o (RZ * RZ))%rel.

Lemma RQint_add :
(RQint ==> RQint ==> RQint) add_rat (addQ addz mulz)

Lemma param_addQ (+) (*) :
(RZ ==> RZ ==> RZ) addz (+) ->
(RZ ==> RZ ==> RZ) mulz (*) ->
(RZ * RZ ==> RZ * RZ ==> RZ * RZ)
(addQ addz mulz) (addQ (+) (*))

The proof of RQint_add is interesting, but the one of param_addQ is boring.
The lemma param_addQ is in fact a “theorem for free!”

Maxime Dénès 23

Towards verified computer algebra | A refinement framework

Correctness of addQ

Variables (Z : Type) (RZ : int -> Z -> Prop).
Definition RQint : rat -> Q int -> Prop := ...
Definition RQ := (RQint \o (RZ * RZ))%rel.

Lemma RQint_add :
(RQint ==> RQint ==> RQint) add_rat (addQ addz mulz)

Lemma param_addQ (+) (*) :
(RZ ==> RZ ==> RZ) addz (+) ->
(RZ ==> RZ ==> RZ) mulz (*) ->
(RZ * RZ ==> RZ * RZ ==> RZ * RZ)
(addQ addz mulz) (addQ (+) (*))

The proof of RQint_add is interesting, but the one of param_addQ is boring.

The lemma param_addQ is in fact a “theorem for free!”

Maxime Dénès 23

Towards verified computer algebra | A refinement framework

Correctness of addQ

Variables (Z : Type) (RZ : int -> Z -> Prop).
Definition RQint : rat -> Q int -> Prop := ...
Definition RQ := (RQint \o (RZ * RZ))%rel.

Lemma RQint_add :
(RQint ==> RQint ==> RQint) add_rat (addQ addz mulz)

Lemma param_addQ (+) (*) :
(RZ ==> RZ ==> RZ) addz (+) ->
(RZ ==> RZ ==> RZ) mulz (*) ->
(RZ * RZ ==> RZ * RZ ==> RZ * RZ)
(addQ addz mulz) (addQ (+) (*))

The proof of RQint_add is interesting, but the one of param_addQ is boring.
The lemma param_addQ is in fact a “theorem for free!”

Maxime Dénès 23

Towards verified computer algebra | A refinement framework

Parametricity

Parametricity for closed terms
There is a translation operator : [·], such that for a closed type T and a
closed term x : T , we get [x] : [T] x x.

(Reynolds, Wadler in system F, Keller and Lasson for COQ)

Proof of param_addQ

[∀Z, (Z→ Z→ Z) → (Z→ Z→ Z) → (Z2 → Z2 → Z2)] addQ addQ

Maxime Dénès 24

Towards verified computer algebra | A refinement framework

Automating proof transport

COQ’s formalism does not admit parametricity internally, but we use it
externally, to define a meta-program transporting proofs of correctness.

We implement this meta-program by logic programming with type classes.

We obtain a refinement framework where:
The refinement interface is flexible (heterogeneous relations)
Correctness proofs are done in a proof-oriented context (reusing tools
provided by SSREFLECT).
Transporting these proofs to computation-oriented instance is mostly
automated thanks to parametricity.

Maxime Dénès 25

Towards verified computer algebra | A refinement framework

Automating proof transport

COQ’s formalism does not admit parametricity internally, but we use it
externally, to define a meta-program transporting proofs of correctness.

We implement this meta-program by logic programming with type classes.

We obtain a refinement framework where:
The refinement interface is flexible (heterogeneous relations)
Correctness proofs are done in a proof-oriented context (reusing tools
provided by SSREFLECT).
Transporting these proofs to computation-oriented instance is mostly
automated thanks to parametricity.

Maxime Dénès 25

Towards verified computer algebra | A refinement framework

Automating proof transport

COQ’s formalism does not admit parametricity internally, but we use it
externally, to define a meta-program transporting proofs of correctness.

We implement this meta-program by logic programming with type classes.

We obtain a refinement framework where:
The refinement interface is flexible (heterogeneous relations)
Correctness proofs are done in a proof-oriented context (reusing tools
provided by SSREFLECT).
Transporting these proofs to computation-oriented instance is mostly
automated thanks to parametricity.

Maxime Dénès 25

Towards verified computer algebra | A refinement framework

COQEAL

In collaboration with C. Cohen and A. Mörtberg, we used refinements to
design a library of effective algebra (COQEAL). It provides verified
effective implementations for integers, rational numbers, polynomials,
matrices. [Dénès et al. 2012; Cohen et al. 2013]

The library covers:
Basic matrix algebra, rank computation, PLU decomposition
Strassen’s matrix product
Fast triangular matrix inversion
Smith normal form
Existence proofs for canonical forms: Frobenius, Jordan
Karatsuba’s product of polynomials
Sasaki-Murao algorithm for determinant over a (commutative) ring

Maxime Dénès 26

Towards verified computer algebra | Case study: Strassen’s algorithm

Outline

1 A refinement framework

2 Case study: Strassen’s algorithm

3 Scaling up: verified homology computations

Maxime Dénès 27

Towards verified computer algebra | Case study: Strassen’s algorithm

Strassen’s algorithm (Winograd variant)

(
A1,1 A1,2
A2,1 A2,2

)
×
(
B1,1 B1,2
B2,1 B2,2

)
=

(
C1,1 C1,2
C2,1 C2,2

)

Maxime Dénès 28

Towards verified computer algebra | Case study: Strassen’s algorithm

Strassen’s algorithm (Winograd variant)

(
A1,1 A1,2
A2,1 A2,2

)
×
(
B1,1 B1,2
B2,1 B2,2

)
=

(
C1,1 C1,2
C2,1 C2,2

)
S1 = A2,1 +A2,2 P1 = A1,1 × B1,1 U1 = P1 + P6
S2 = S1 −A1,1 P2 = A1,2 × B2,1 U2 = U1 + P7
S3 = A1,1 −A2,1 P3 = S4 × B2,2 U3 = U1 + P5
S4 = A1,2 − S2 P4 = A2,2 × T4 C1,1 = P1 + P2
T1 = B1,2 − B1,1 P5 = S1 × T1 C1,2 = U3 + P3
T2 = B2,2 − T1 P6 = S2 × T2 C2,1 = U2 − P4
T3 = B2,2 − B1,2 P7 = S3 × T3 C2,2 = U2 + P5
T4 = T2 − B2,1

Maxime Dénès 28

Towards verified computer algebra | Case study: Strassen’s algorithm

Strassen’s algorithm (Winograd variant)

(
A1,1 A1,2
A2,1 A2,2

)
×
(
B1,1 B1,2
B2,1 B2,2

)
=

(
C1,1 C1,2
C2,1 C2,2

)

T(2k+1) = 7T(2k) + 15× 22k

T(n) = O(nlog 7)

Maxime Dénès 28

Towards verified computer algebra | Case study: Strassen’s algorithm

Definition Strassen_step p (A B : ’M_(p + p)) f :=
let A11 := ulsubmx A in let A12 := ursubmx A in
let A21 := dlsubmx A in let A22 := drsubmx A in
let B11 := ulsubmx B in let B12 := ursubmx B in
let B21 := dlsubmx B in let B22 := drsubmx B in
let X := A11 - A21 in let Y := B22 - B12 in
let C21 := f X Y in let X := A21 + A22 in
let Y := B12 - B11 in let C22 := f X Y in
let X := X - A11 in let Y := B22 - Y in
let C12 := f X Y in let X := A12 - X in
let C11 := f X B22 in let X := f A11 B11 in
let C12 := X + C12 in let C21 := C12 + C21 in
let C12 := C12 + C22 in let C22 := C21 + C22 in
let C12 := C12 + C11 in let Y := Y - B21 in
let C11 := f A22 Y in let C21 := C21 - C11 in
let C11 := f A12 B21 in let C11 := X + C11 in
block_mx C11 C12 C21 C22.

Maxime Dénès 29

Towards verified computer algebra | Case study: Strassen’s algorithm

Correctness of Strassen_step

We prove the correctness of Strassen_step relatively to the matrix
product *m defined in SSREFLECT.

Lemma Strassen_stepP p (A B : ’M[R]_(p + p)) f :
f =2 mulmx -> Strassen_step A B f = A *m B.

Then we define a function Strassen which, if applied to an even-sized
matrix, cuts it in two submatrices A and B and calls recursively
Strassen_step A B Strassen.

What about odd-sized matrices?

Maxime Dénès 30

Towards verified computer algebra | Case study: Strassen’s algorithm

Correctness of Strassen_step

We prove the correctness of Strassen_step relatively to the matrix
product *m defined in SSREFLECT.

Lemma Strassen_stepP p (A B : ’M[R]_(p + p)) f :
f =2 mulmx -> Strassen_step A B f = A *m B.

Then we define a function Strassen which, if applied to an even-sized
matrix, cuts it in two submatrices A and B and calls recursively
Strassen_step A B Strassen.

What about odd-sized matrices?

Maxime Dénès 30

Towards verified computer algebra | Case study: Strassen’s algorithm

Correctness of Strassen_step

We prove the correctness of Strassen_step relatively to the matrix
product *m defined in SSREFLECT.

Lemma Strassen_stepP p (A B : ’M[R]_(p + p)) f :
f =2 mulmx -> Strassen_step A B f = A *m B.

Then we define a function Strassen which, if applied to an even-sized
matrix, cuts it in two submatrices A and B and calls recursively
Strassen_step A B Strassen.

What about odd-sized matrices?

Maxime Dénès 30

Towards verified computer algebra | Case study: Strassen’s algorithm

The case of odd sizes

 A1,1 A1,2

A2,1 a

×
 B1,1 B1,2

B2,1 b

 =

 A1,1B1,1 +A1,2B2,1 R1,2

R2,1 R2,2


with:

R1,2 = A1,1B1,2 +A1,2b

R2,1 = A2,1B1,1 + aB2,1

R2,2 = A2,1B1,2 + ab

Maxime Dénès 31

Towards verified computer algebra | Case study: Strassen’s algorithm

Final function

We obtain a function Strassen which we prove correct:

Lemma StrassenP (n : positive) (M N : ’M[R]_n) :
Strassen M N = M *m N.

In fact, Strassen_step and Strassen were generic (we used
overloading)!

So we get for free an instance on seqmatrix C, for any C refining a ring.
The correctness is derived from the parametricity lemma:

Variable (A : ringType) (mxC : nat -> nat -> Type).
Variable (RmxA : forall {m n}, ’M[A]_(m, n) -> mxC m n ->

Prop).
Instance param_Strassen p :
param (RmxA ==> RmxA ==> RmxA) (Strassen (matrix A) p)

(Strassen mxC p).

Maxime Dénès 32

Towards verified computer algebra | Case study: Strassen’s algorithm

Final function

We obtain a function Strassen which we prove correct:

Lemma StrassenP (n : positive) (M N : ’M[R]_n) :
Strassen M N = M *m N.

In fact, Strassen_step and Strassen were generic (we used
overloading)!

So we get for free an instance on seqmatrix C, for any C refining a ring.
The correctness is derived from the parametricity lemma:

Variable (A : ringType) (mxC : nat -> nat -> Type).
Variable (RmxA : forall {m n}, ’M[A]_(m, n) -> mxC m n ->

Prop).
Instance param_Strassen p :
param (RmxA ==> RmxA ==> RmxA) (Strassen (matrix A) p)

(Strassen mxC p).

Maxime Dénès 32

Towards verified computer algebra | Case study: Strassen’s algorithm

Final function

We obtain a function Strassen which we prove correct:

Lemma StrassenP (n : positive) (M N : ’M[R]_n) :
Strassen M N = M *m N.

In fact, Strassen_step and Strassen were generic (we used
overloading)!

So we get for free an instance on seqmatrix C, for any C refining a ring.

The correctness is derived from the parametricity lemma:

Variable (A : ringType) (mxC : nat -> nat -> Type).
Variable (RmxA : forall {m n}, ’M[A]_(m, n) -> mxC m n ->

Prop).
Instance param_Strassen p :
param (RmxA ==> RmxA ==> RmxA) (Strassen (matrix A) p)

(Strassen mxC p).

Maxime Dénès 32

Towards verified computer algebra | Case study: Strassen’s algorithm

Final function

We obtain a function Strassen which we prove correct:

Lemma StrassenP (n : positive) (M N : ’M[R]_n) :
Strassen M N = M *m N.

In fact, Strassen_step and Strassen were generic (we used
overloading)!

So we get for free an instance on seqmatrix C, for any C refining a ring.
The correctness is derived from the parametricity lemma:

Variable (A : ringType) (mxC : nat -> nat -> Type).
Variable (RmxA : forall {m n}, ’M[A]_(m, n) -> mxC m n ->

Prop).
Instance param_Strassen p :
param (RmxA ==> RmxA ==> RmxA) (Strassen (matrix A) p)

(Strassen mxC p).

Maxime Dénès 32

Towards verified computer algebra | Case study: Strassen’s algorithm

Benchmarks

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(s

)

Size

Naive
Strassen

Maxime Dénès 33

Towards verified computer algebra | Scaling up: verified homology computations

Outline

1 A refinement framework

2 Case study: Strassen’s algorithm

3 Scaling up: verified homology computations

Maxime Dénès 34

Towards verified computer algebra | Scaling up: verified homology computations

Homology of digital images

Digital
image

Simplicial
complex Reduction Homology

0 1

0

1

(1,2)

(2,1)

(2,2)

(0,0)

(0,1)

(1,0)

(1,1)

Hn =
Zn

Bn

βn = dimHn

β0: number of connected components ; β1: number of holes

In our context, the computation of βn is reduced to rank computations,
for which we reuse an algorithm we verified. [Heras, Poza, et al. 2011;
Heras, Dénès, et al. 2012]
Maxime Dénès 35

Towards verified computer algebra | Conclusion

Related work

(Refinements for free!, (Cohen Dénès Mörtberg, CPP’13))
(A refinement-based approach to computational algebra in Coq
(Dénès Mörtberg Siles, ITP’12))
A New Look at Generalized Rewriting in Type Theory (Sozeau,
JFR’09)
Automatic data refinements in Isabelle/HOL (Lammich, ITP’13)
Univalence: Isomorphism is equality (Coquand Danielsson, ’13)
Parametricity in an Impredicative Sort (Keller Lasson, CSL’12)

Maxime Dénès 36

Towards verified computer algebra | Conclusion

Conclusion and future work

Lessons learned:
Separation of concerns is critical
Refinements are a convenient way of abstracting in type theory
Significant examples were required to make sure the framework
scaled up
Used in the recent formal proof of the irrationality of zeta(3) (Chyzak,
Mahboubi et al.)

Future work:
Other representations (e.g. sparse matrices)
Better way to get parametricity than typeclasses
Try on algorithms outside algebra
Scale up to dependent types

Maxime Dénès 37

Towards verified computer algebra | Conclusion

Thank you!

Maxime Dénès 38

	A refinement framework
	Case study: Strassen's algorithm
	Scaling up: verified homology computations

