Transcendence of solutions of Mahler equations

Thomas Dreyfus ¹ Joint work with Charlotte Hardouin ² and Julien Roques ³

¹University Lyon 1, France

²University Toulouse 3, France

³University Grenoble 1, France

October 12, 2015

Abstract

 Generating functions of automatic sequences are solutions of Mahler equations

$$\phi_{\rho}^{n}y+a_{n-1}\phi_{\rho}^{n-1}y+\cdots+a_{0}y=0,$$

where $p \geq 2$, $\phi_p y(z) := y(z^p) a_i \in \mathbb{C}(z), 0 \neq a_0$.

- Many authors are interested about the differential-algebraic properties of such generating functions.
- In this talk we use parametrized differential Galois theory to study this question in a systematic way.

Case n = 1

Proposition (D., Hardouin, Roques)

Let $f \neq 0$ such that $\phi_p(f) = a_0 f$. The following statements are equivalent:

- 1. *f* is hyperalgebraic over $\mathbb{C}(z)^1$;
- 2. there exist $c \in \mathbb{C}^{\times}$, $m \in \mathbb{Z}$ and $u \in \mathbb{C}(z)^{\times}$ such that $a_0 = cz^{m\frac{\phi_p(u)}{u}}$.

¹We say that *f* is hyperalgebraic over $\mathbb{C}(z)$ if there is an algebraic relation over $\mathbb{C}(z)$ between *f* and its derivatives.

Theorem (D., Hardouin, Roques) Let $f(z) \in \mathbb{C}((z))$ be a nonzero solution of

$$\phi_{\rho}^{2}y + a_{1}\phi_{\rho}y + a_{0}y = 0.$$
 (1)

Assume that (1) can not be reduced into an order one equation². Then, f is hypertranscendental over $\mathbb{C}(z)$.

²More formally, we assume that the difference Galois group contains $SL_2(\mathbb{C})$.

The Baum-Sweet sequence

Example

The generating function of the Baum-Sweet sequence satisfies

$$\phi_2^2 y + z \phi_2 y - y = 0.$$

It is hypertranscendental.

The Rudin-Shapiro sequence

Example

The generating function of the Rudin-Shapiro sequence satisfies

$$\phi_2^2 y + \frac{1}{2z} \phi_2 y - \frac{1}{2z} y = 0.$$

It is hypertranscendental.

Difference Galois theory

Parametrized difference Galois theory

Hypertranscendence of solutions of Mahler equations

Consider the field

$$\mathbf{K}:=\bigcup_{j\geq 1}\mathbb{C}\left(z^{1/j}\right),$$

we equip with the automorphism ϕ_p . Let

$$\phi_{p}Y = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix} Y = AY,$$
(2)

<ロ>< 回>< 回>< 回>< 目>< 目>< 目>< 目>< 目>< 目>ののの 8/23

which is equivalent to

$$\phi_p^2 y + a \phi_p y + b y = 0,$$

with $a, b \in \mathbb{C}(z)$, $b \neq 0$.

A Picard-Vessiot ring for (2) over **K** is a difference ring extension $R|\mathbf{K}$ such that

- 1) there exists $U \in GL_2(R)$ such that $\phi_p(U) = AU$;
- 2) *R* is generated, as a **K**-algebra, by the entries of *U* and $det(U)^{-1}$;

<ロ > < 回 > < 臣 > < 臣 > 王 の Q () 9/23

3) the only ϕ_p -ideals of *R* are $\{0\}$ and *R*.

Difference Galois group

Let $R|\mathbf{K}$ be a Picard-Vessiot ring for (2). The difference Galois group $\operatorname{Gal}(R/\mathbf{K})$ of R over \mathbf{K} is the group of \mathbf{K} -automorphisms of R commuting with ϕ_p :

$$\operatorname{Gal}(\boldsymbol{R}/\mathbf{K}) := \{ \sigma \in \operatorname{Aut}(\boldsymbol{R}/\mathbf{K}) \mid \phi_{\boldsymbol{p}} \circ \sigma = \sigma \circ \phi_{\boldsymbol{p}} \}.$$

The image

$$\operatorname{Gal}(R/\mathbf{K}) \rightarrow \operatorname{GL}_2(\mathbb{C})$$

 $\sigma \mapsto U^{-1}\sigma(U)$

<ロ>< 回>< 回>< 回>< 目>< 目>< 目>< 目>< 目>< 目>< 10/23

is an algebraic subgroup of $GL_2(\mathbb{C})$.

Proposition

The algebraic dimension of R|K equals to the dimension of $Gal(R/K) \subset GL_2(\mathbb{C})$.

<ロ>< 団> < 団> < 臣> < 臣> < 臣 > 臣 の(の) 11/29

Theorem (Roques)

One of the three following cases occurs.

- Gal(*R*/**K**) is conjugated to a group on upper triangular matrices. This happens if and only if there exists a solution *u* ∈ **K** of the Riccati equation (φ_p(*u*) + a)*u* = −*b*.
- 2. The first case does not occur and Gal(R/K) is conjugated to a subgroup of

$$\left\{ \begin{pmatrix} \alpha & \mathbf{0} \\ \mathbf{0} & \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbb{C}^{\times} \right\} \cup \left\{ \begin{pmatrix} \mathbf{0} & \gamma \\ \varepsilon & \mathbf{0} \end{pmatrix} \middle| \gamma, \varepsilon \in \mathbb{C}^{\times} \right\}.$$
 This happens if and only if the first case does not occur and there exists a solution $u \in \mathbf{K}$ of the Riccati equation

$$\left(\phi_p^2(u) + \left(\phi_p^2\left(\frac{b}{a}\right) - \phi_p(a) + \frac{\phi_p(b)}{a}\right)\right)u = -\frac{\phi_p(b)b}{a^2}$$

<ロ> (四) (四) (三) (三) (三) (三)

3. Gal(R/K) contains SL₂(\mathbb{C}).

Differentially closed field

Definition

Let **C** be a field equipped with a derivation δ . We say that (**C**, δ) is differentially closed if, for every (finite) set of δ -polynomials \mathcal{F} in coefficients in **C**, if the system of differential equations $\mathcal{F} = 0$ has a solution with entries in some δ -field extension **L**, then it has a solution with entries in **C**. Any δ -field **C** has a differential closure $\widetilde{\mathbf{C}}$. Consider the derivation

 $\delta := z \log(z) \partial_z$, such that $\delta \circ \phi_p = \phi_p \circ \delta$.

Let $(\widetilde{\mathbb{C}}, \delta)$ be a differential closure of (\mathbb{C}, δ) . Let

$$\mathsf{L} := \operatorname{Frac}\left(\widetilde{\mathbb{C}} \otimes_{\mathbb{C}} \mathsf{K}(\mathsf{log})\right).$$

<ロ>< 団> < 団> < 臣> < 臣> < 臣 > 臣 の(の) 14/23 A parametrized Picard-Vessiot ring for (2) over L is a differential-difference ring extension S|L such that

- 1) there exists $U \in GL_2(S)$ such that $\phi_p(U) = AU$;
- 2) *S* is generated, as a δ -L-algebra, by the entries of *U*, and det(*U*)⁻¹;

3) the only (δ, ϕ_p) -ideals of *S* are $\{0\}$ and *S*.

Parametrized difference Galois group

Let S|L be a parametrized Picard-Vessiot ring for (2). The parametrized difference Galois group PGal(S/L) of S over L is the group of L-automorphisms of S commuting with ϕ_p and δ :

$$\operatorname{PGal}(S/\mathsf{L}) := \{ \sigma \in \operatorname{Aut}(S/\mathsf{L}) \mid \phi_{\rho} \circ \sigma = \sigma \circ \phi_{\rho}, \delta \circ \sigma = \sigma \circ \delta \}.$$

<ロト</th>
・< 書>< 書>< 書</th>
うのの

16/23

Linear differential algebraic group

Definition

We say that a subgroup G of $\operatorname{GL}_2(\widetilde{\mathbb{C}})$ is a differential algebraic group if there exist P_1, \ldots, P_k , δ -polynomials in 4 variables and in coefficients in $\widetilde{\mathbb{C}}$ such that for $A = (a_{i,j}) \in \operatorname{GL}_2(\widetilde{\mathbb{C}})$,

$$A \in G \iff P_1(a_{i,j}) = \cdots = P_k(a_{i,j}) = 0.$$

The image

$$\begin{array}{rcl} \operatorname{PGal}(S/\mathsf{L}) & \to & \operatorname{GL}_2(\widetilde{\mathbb{C}}) \\ \sigma & \mapsto & U^{-1}\sigma(U) \end{array}$$

is a differential algebraic subgroup of $\operatorname{GL}_2(\widetilde{\mathbb{C}})$.

Proposition (Hardouin-Singer)

The differential dimension of S|L equals to the dimension of $PGal(S/L) \subset GL_2(\widetilde{\mathbb{C}})$.

Case n = 1

Proposition (D., Hardouin, Roques)

Let $f \neq 0$ such that $\phi_p(f) = af$ with $a \neq 0$. We have the following alternative:

- f is hypertranscendental over C(z). In this case PGal(S/L) = C̃[×];
- 2. *f* is hyperalgebraic over $\mathbb{C}(z)$. In this case $\operatorname{PGal}(S/L)$ is conjugated to a subgroup of \mathbb{C}^{\times} .

<ロ > < 合 > < 言 > < 言 > 言 の Q () 19/23

Furthermore, the last case occurs if and only if there exist $c \in \mathbb{C}^{\times}$, $m \in \mathbb{Z}$ and $u \in \mathbb{C}(z)^{\times}$ such that $a = cz^{m} \frac{\phi_{p}(u)}{u}$.

From now, we consider

$$\phi_{p}Y = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix} Y = AY,$$
(2)

and assume that Gal(R/K) contains $SL_2(\mathbb{C})$. This implies that PGal(S/L) contains $SL_2(\mathbb{C})$.

Let $U \in GL_2(S)$ be a fundamental solution. det(U) is solution of

$$\phi_{p} \det(U) = \det(A) \det(U) = b \det(U).$$

det(U) is hypertranscendental

Assume that det(U) is hypertranscendental over $\mathbb{C}(z)$. We have the following alternative:

- 1. PGal(S/L) is conjugated to $\widetilde{\mathbb{C}}^{\times}SL_2(\mathbb{C})$;
- 2. PGal(S/L) is equal to a $GL_2(\widetilde{\mathbb{C}})$.

Moreover, the first case holds if and only if there exists $B \in \mathbf{K}^{2 \times 2}$ such that

$$p\phi_p(B) = ABA^{-1} + z\partial_z(A)A^{-1} - \frac{1}{2}z\partial_z(b)b^{-1}I_2.$$

det(U) is hypertranscendental

Theorem (D., Hardouin, Roques)

Assume that det(U) is hypertranscendental over $\mathbb{C}(z)$. Assume that $\phi_p^2 y + a\phi_p y + by = 0$ admits a nonzero solution $f \in \mathbb{C}((z))$. Then, f is hypertranscendental over $\mathbb{C}(z)$.

< ロ > < 回 > < 臣 > < 臣 > 三 の

det(U) is hyperalgebraic

Theorem (D., Hardouin, Roques)

Assume that det(U) is hyperalgebraic over $\mathbb{C}(z)$. Then, the parametrized difference Galois group $\operatorname{PGal}(S/L)$ is a subgroup of $\mathbb{C}^{\times}\operatorname{SL}_2(\widetilde{\mathbb{C}})$ containing $\operatorname{SL}_2(\widetilde{\mathbb{C}})$. Furthermore, if $\phi_p^2 y + a\phi_p y + by = 0$ admits a nonzero solution $f \in \mathbb{C}((z))$, then f is hypertranscendental over $\mathbb{C}(z)$.