Introduction and Definitions The au-theorem Pan's aggregation tables and the au-theorem Software Implementation Conclusion

> Fast Matrix Product Algorithms: From Theory To Practice

> > Thomas Sibut-Pinote Inria, École Polytechnique, France

Éric Schost University of Waterloo, ON,Canada

Specfun Seminar

February 8th, 2015

イロト イポト イヨト イヨト

臣

- Complexity of matrix product \Rightarrow complexity of linear algebra;
- $\omega = \inf \{ \theta \mid \text{ it takes } n^{\theta} \text{ operations to multiply in } \mathcal{M}_n(\mathbb{K}) \} \in [2,3];$
- Strassen '69 : $\omega < 2.81$ (used in practice);
- Le Gall '14 : $\omega < 2.3728639$ (theoretical).
- *"Malgré leurs performances asymptotiques, aucun des algorithmes de cette section ne semble devoir être implémenté sur machine dans un proche avenir"* Abdeljaoued & Lombardi, 2003

- Complexity of matrix product \Rightarrow complexity of linear algebra;
- $\omega = \inf \{ \theta \mid \text{ it takes } n^{\theta} \text{ operations to multiply in } \mathcal{M}_n(\mathbb{K}) \} \in [2,3];$
- Strassen '69 : ω < 2.81 (used in practice);
- Le Gall '14 : $\omega < 2.3728639$ (theoretical).
- *"Malgré leurs performances asymptotiques, aucun des algorithmes de cette section ne semble devoir être implémenté sur machine dans un proche avenir"* Abdeljaoued & Lombardi, 2003
- Can we bridge the gap a little?

Let $\langle m, n, p \rangle$ denote the bilinear map:

$$\mathcal{M}_{m,n}(\mathbb{K}) \times \mathcal{M}_{n,p}(\mathbb{K}) \longrightarrow \mathcal{M}_{m,p}(\mathbb{K})$$

 $(A, B) \mapsto A \cdot B.$

Goal: determine the arithmetic complexity of $\langle m, n, p \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Let $\langle m, n, p \rangle$ denote the bilinear map:

$$\mathcal{M}_{m,n}(\mathbb{K}) \times \mathcal{M}_{n,p}(\mathbb{K}) \longrightarrow \mathcal{M}_{m,p}(\mathbb{K})$$

 $(A, B) \mapsto A \cdot B.$

Goal: determine the arithmetic complexity of $\langle m, n, p \rangle$.

Known: naive algorithm in *mnp* operations:

$$\forall i \in [\![1,m]\!], \forall j \in [\![1,p]\!], [AB]_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○

Let $\langle m, n, p \rangle$ denote the bilinear map:

$$\mathcal{M}_{m,n}(\mathbb{K}) \times \mathcal{M}_{n,p}(\mathbb{K}) \longrightarrow \mathcal{M}_{m,p}(\mathbb{K})$$

 $(A, B) \mapsto A \cdot B.$

Goal: determine the arithmetic complexity of $\langle m, n, p \rangle$.

Known: naive algorithm in *mnp* operations:

$$\forall i \in [\![1,m]\!], \forall j \in [\![1,p]\!], [AB]_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Can we do better?

Strassen's algorithm: (2, 2, 2) in 7 multiplications (instead of $2 \cdot 2 \cdot 2 = 8$):

$$\begin{array}{ll} \alpha_1 = (a_{1,2} - a_{2,2}), & \beta_1 = (b_{2,1} + b_{2,2}), & p_1 = \alpha_1\beta_1 \\ \alpha_2 = (a_{2,1} - a_{1,1}), & \beta_2 = (b_{1,2} + b_{1,1}), & p_2 = \alpha_2\beta_2 \\ \alpha_3 = a_{1,1}, & \beta_3 = (b_{1,2} - b_{2,2}), & p_3 = \alpha_3\beta_3 \\ \alpha_4 = a_{2,2}, & \beta_4 = (b_{2,1} - b_{1,1}), & p_4 = \alpha_4\beta_4 \\ \alpha_5 = (a_{2,1} + a_{2,2}), & \beta_5 = b_{1,1}, & p_5 = \alpha_5\beta_5 \\ \alpha_6 = (a_{1,2} + a_{1,1}), & \beta_6 = b_{2,2}, & p_6 = \alpha_6\beta_6 \\ \alpha_7 = (a_{1,1} + a_{2,2}), & \beta_7 = (b_{1,1} + b_{2,2}), & p_7 = \alpha_7\beta_7 \end{array}$$

・ロ ト ・ 日 ト ・ ヨ ト ・ ヨ ・ つ へ へ 4/22

Strassen's algorithm: (2, 2, 2) in 7 multiplications (instead of $2 \cdot 2 \cdot 2 = 8$):

 $\begin{array}{ll} \alpha_{1} = (a_{1,2} - a_{2,2}), & \beta_{1} = (b_{2,1} + b_{2,2}), & p_{1} = \alpha_{1}\beta_{1} & C_{1,1} = p_{1} + p_{4} - p_{6} \\ \alpha_{2} = (a_{2,1} - a_{1,1}), & \beta_{2} = (b_{1,2} + b_{1,1}), & p_{2} = \alpha_{2}\beta_{2} & C_{1,2} = p_{4} + p_{5} \\ \alpha_{3} = a_{1,1}, & \beta_{3} = (b_{1,2} - b_{2,2}), & p_{3} = \alpha_{3}\beta_{3} & C_{2,1} = p_{3} + p_{6} \\ \alpha_{4} = a_{2,2}, & \beta_{4} = (b_{2,1} - b_{1,1}), & p_{4} = \alpha_{4}\beta_{4} & C_{2,2} = p_{2} + p_{3} - p_{5} + p_{7} \\ \alpha_{6} = (a_{1,2} + a_{1,1}), & \beta_{6} = b_{2,2}, & p_{6} = \alpha_{6}\beta_{6} \\ \alpha_{7} = (a_{1,1} + a_{2,2}), & \beta_{7} = (b_{1,1} + b_{2,2}), & p_{7} = \alpha_{7}\beta_{7} & C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix} \end{array}$

Strassen's algorithm: (2, 2, 2) in 7 multiplications (instead of $2 \cdot 2 \cdot 2 = 8$):

 $\begin{array}{ll} \alpha_{1} = (a_{1,2} - a_{2,2}), & \beta_{1} = (b_{2,1} + b_{2,2}), & p_{1} = \alpha_{1}\beta_{1} & C_{1,1} = p_{1} + p_{4} - p_{6} \\ \alpha_{2} = (a_{2,1} - a_{1,1}), & \beta_{2} = (b_{1,2} + b_{1,1}), & p_{2} = \alpha_{2}\beta_{2} & C_{1,2} = p_{4} + p_{5} \\ \alpha_{3} = a_{1,1}, & \beta_{3} = (b_{1,2} - b_{2,2}), & p_{3} = \alpha_{3}\beta_{3} & C_{2,1} = p_{3} + p_{6} \\ \alpha_{4} = a_{2,2}, & \beta_{4} = (b_{2,1} - b_{1,1}), & p_{4} = \alpha_{4}\beta_{4} & C_{2,2} = p_{2} + p_{3} - p_{5} + p_{7} \\ \alpha_{6} = (a_{1,2} + a_{1,1}), & \beta_{6} = b_{2,2}, & p_{6} = \alpha_{6}\beta_{6} \\ \alpha_{7} = (a_{1,1} + a_{2,2}), & \beta_{7} = (b_{1,1} + b_{2,2}), & p_{7} = \alpha_{7}\beta_{7} & C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix} \end{array}$

Observe:

 $C = \mathbf{p}_1\gamma_1 + \mathbf{p}_2\gamma_2 + \mathbf{p}_3\gamma_3 + \mathbf{p}_4\gamma_4 + \mathbf{p}_5\gamma_5 + \mathbf{p}_6\gamma_6 + \mathbf{p}_7\gamma_7.$

where

$$\begin{array}{ll} \gamma_1 = {\it E}_{1,1}, & \gamma_2 = {\it E}_{2,2}, & \gamma_3 = {\it E}_{2,1} + {\it E}_{2,2}, & \gamma_4 = {\it E}_{1,1} + {\it E}_{1,2}, \\ \gamma_5 = {\it E}_{1,2} - {\it E}_{2,2}, & \gamma_6 = {\it E}_{2,1} - {\it E}_{2,2}, & \gamma_7 = {\it E}_{2,2} & {\it E}_{i,j} \text{ canonical basis} \end{array}$$

Strassen's algorithm: (2, 2, 2) in 7 multiplications (instead of $2 \cdot 2 \cdot 2 = 8$):

 $\begin{array}{ll} \alpha_{1} = (a_{1,2} - a_{2,2}), & \beta_{1} = (b_{2,1} + b_{2,2}), & p_{1} = \alpha_{1}\beta_{1} & C_{1,1} = p_{1} + p_{4} - p_{6} \\ \alpha_{2} = (a_{2,1} - a_{1,1}), & \beta_{2} = (b_{1,2} + b_{1,1}), & p_{2} = \alpha_{2}\beta_{2} & C_{1,2} = p_{4} + p_{5} \\ \alpha_{3} = a_{1,1}, & \beta_{3} = (b_{1,2} - b_{2,2}), & p_{3} = \alpha_{3}\beta_{3} \\ \alpha_{4} = a_{2,2}, & \beta_{4} = (b_{2,1} - b_{1,1}), & p_{4} = \alpha_{4}\beta_{4} \\ \alpha_{5} = (a_{2,1} + a_{2,2}), & \beta_{5} = b_{1,1}, & p_{5} = \alpha_{5}\beta_{5} \\ \alpha_{6} = (a_{1,2} + a_{1,1}), & \beta_{6} = b_{2,2}, & p_{6} = \alpha_{6}\beta_{6} \\ \alpha_{7} = (a_{1,1} + a_{2,2}), & \beta_{7} = (b_{1,1} + b_{2,2}), & p_{7} = \alpha_{7}\beta_{7} \end{array}$

Observe:

 $C = \mathbf{p}_1\gamma_1 + \mathbf{p}_2\gamma_2 + \mathbf{p}_3\gamma_3 + \mathbf{p}_4\gamma_4 + \mathbf{p}_5\gamma_5 + \mathbf{p}_6\gamma_6 + \mathbf{p}_7\gamma_7.$

where

$$\gamma_{1} = E_{1,1}, \quad \gamma_{2} = E_{2,2}, \quad \gamma_{3} = E_{2,1} + E_{2,2}, \quad \gamma_{4} = E_{1,1} + E_{1,2},$$

$$\gamma_{5} = E_{1,2} - E_{2,2}, \quad \gamma_{6} = E_{2,1} - E_{2,2}, \quad \gamma_{7} = E_{2,2} \qquad E_{i,j} \text{ canonical basis}$$

Tensor notation:
$$\sum_{i=1}^{7} \alpha_{i} \otimes \beta_{i} \otimes \gamma_{i}.$$

Tensors and algorithms

General tensor notation identified with a bilinear map:

$$\langle m,n,p\rangle = \sum_{i=1}^{m}\sum_{j=1}^{p}\sum_{k=1}^{n}a_{i,k}\otimes b_{k,j}\otimes c_{i,j}.$$

Representing
$$\langle m, n, p \rangle$$
 as $\sum_{i=1}^{r} \alpha_i \otimes \beta_i \otimes \gamma_i$ gives an **algorithm**.

Example: The elementary tensor $(a_{1,2} + a_{3,5}) \otimes b_{2,4} \otimes (c_{1,4} + c_{2,4})$ reads as the algorithm

$$tmp \leftarrow (a_{1,2} + a_{3,5}) \cdot b_{2,4}$$

 $c_{1,4} \leftarrow tmp$
 $c_{2,4} \leftarrow tmp$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ● ≧ ● の � ● 5/22

$t \otimes t'$: computes the composition of two tensors.

To multiply A of size (mm', nn') by B of size (nn', pp'), decompose A and B into blocks:

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix}, \quad B = \begin{bmatrix} B_{1,1} & \cdots & B_{1,p} \\ \vdots & & \vdots \\ B_{n,1} & \cdots & B_{n,p} \end{bmatrix}$$

where $A_{i,j}$ of size (m', n'), $B_{j,k}$ of size (n', p').

If
$$t = \langle m, n, p \rangle$$
 and $t' = \langle m', n', p' \rangle$:
 $t \otimes t' \simeq \langle mm', nn', pp' \rangle$.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ● ≧ ● の � ● 6/22

$t \otimes t'$: computes the composition of two tensors.

To multiply A of size (mm', nn') by B of size (nn', pp'), decompose A and B into blocks:

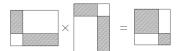
$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix}, \quad B = \begin{bmatrix} B_{1,1} & \cdots & B_{1,p} \\ \vdots & & \vdots \\ B_{n,1} & \cdots & B_{n,p} \end{bmatrix}$$

where $A_{i,j}$ of size (m', n'), $B_{j,k}$ of size (n', p').

If
$$t = \langle m, n, p \rangle$$
 and $t' = \langle m', n', p' \rangle$:
 $t \otimes t' \simeq \langle mm', nn', pp' \rangle$.
Also set $t^{\otimes k} = \underbrace{t \otimes t \otimes \cdots \otimes t}_{k \text{ times}} \simeq \langle m^k, n^k, p^k \rangle$.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ● ≧ ● の � ● 6/22

$t \oplus t'$: computes two independent matrix products in parallel.



We will denote $s \odot t$ for $\underbrace{t \oplus t \oplus \cdots \oplus t}_{s \text{ times}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$R(t) := \min \left\{ r \mid t ext{ can be written as } \sum_{i=1}^r x_i \otimes y_i \otimes z_i
ight\}$$

< □ ▶ < @ ▶ < \ > ▲ \ > \ \ = \ \ ○ \ \ \ 22

$$R(t) := \min \left\{ r \mid t ext{ can be written as } \sum_{i=1}^r x_i \otimes y_i \otimes z_i
ight\}$$

 $R(\langle m, n, p \rangle)$ is the minimal number of multiplications for $\langle m, n, p \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

8/22

$$R(t) := \min \left\{ r \mid t \text{ can be written as } \sum_{i=1}^r x_i \otimes y_i \otimes z_i
ight\}$$

 $R(\langle m, n, p \rangle)$ is the minimal number of multiplications for $\langle m, n, p \rangle$.

Definition (Linear Algebra Exponent)

 $\omega := \inf\{\tau \mid \text{ There exists an algorithm to multiply } n \times n \text{ matrices in } \mathcal{O}(n^{\tau}) \text{ additions and multiplications}\} (\in [2, 3])$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで、

$$R(t) := \min \left\{ r \mid t \text{ can be written as } \sum_{i=1}^r x_i \otimes y_i \otimes z_i
ight\}$$

 $R(\langle m, n, p \rangle)$ is the minimal number of multiplications for $\langle m, n, p \rangle$.

Definition (Linear Algebra Exponent)

 $\omega := \inf\{\tau \mid \text{ There exists an algorithm to multiply } n \times n \text{ matrices in } \mathcal{O}(n^{\tau}) \text{ additions and multiplications}\} (\in [2, 3])$

Theorem

$$\inf\{\tau \mid R(\langle n, n, n \rangle) = \mathcal{O}(n^{\tau})\} = \omega$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで、

8/22

Back to Strassen's Algorithm

Theorem (Strassen '69)

 $R(\langle 2,2,2 \rangle) \leq 7$, hence $\omega \leq \log_2(7) \simeq 2.81$.

Idea: $R(\langle 2^k, 2^k, 2^k \rangle) \leq 7^k$ by induction on k. Cut into blocks of size 2^{k-1} and proceed recursively.

Back to Strassen's Algorithm

Theorem (Strassen '69)

 $R(\langle 2,2,2 \rangle) \leq 7$, hence $\omega \leq \log_2(7) \simeq 2.81$.

Idea: $R(\langle 2^k, 2^k, 2^k \rangle) \leq 7^k$ by induction on k. Cut into blocks of size 2^{k-1} and proceed recursively.

Lemma

$$R(\langle m, n, p \rangle) \leq r \Rightarrow R(\langle mnp, mnp, mnp \rangle) \leq r^3.$$

Idea: If we can do $\langle m, n, p \rangle$ in *r* operations, then we can obtain $\langle n, p, m \rangle$ and $\langle p, m, n \rangle$ in *r* operations. Then we compose them.

4 ロ ト 4 即 ト 4 臣 ト 4 臣 ト 臣 の Q (g/22

Back to Strassen's Algorithm

Theorem (Strassen '69)

 $R(\langle 2,2,2
angle)\leq 7,$ hence $\omega\leq \log_2(7)\simeq 2.81.$

Idea: $R(\langle 2^k, 2^k, 2^k \rangle) \leq 7^k$ by induction on k. Cut into blocks of size 2^{k-1} and proceed recursively.

Lemma

$$R(\langle m, n, p \rangle) \leq r \Rightarrow R(\langle mnp, mnp, mnp \rangle) \leq r^3.$$

Idea: If we can do $\langle m, n, p \rangle$ in *r* operations, then we can obtain $\langle n, p, m \rangle$ and $\langle p, m, n \rangle$ in *r* operations. Then we compose them.

Theorem

$$R(\langle m, n, p \rangle) \leq r \Rightarrow \omega \leq \frac{3\log(r)}{\log(mnp)}.$$

- $R(\langle mnp, mnp, mnp \rangle) \leq r^3;$
- Proceed recursively for $\langle (mnp)^k, (mnp)^k, (mnp)^k \rangle$ just like for the $\langle 2, 2, 2 \rangle$ case.

Bini's Approximate Algorithms ('79)

Idea: $K \rightsquigarrow K[\varepsilon]$

Definition (degenerate rank of a tensor t)

$$\underline{R}(t) := \min\{r \mid \exists \underline{t}(\varepsilon), \quad \underline{t}(\varepsilon) = \sum_{i=1}^{r} u_i(\varepsilon) \otimes v_i(\varepsilon) \otimes w_i(\varepsilon)$$

with $\underline{t}(\varepsilon) = \varepsilon^{q-1}t + \varepsilon^q t_1(\varepsilon)$ and $q > 0\}.$

Algorithmically, one can obtain t by computing $t(\varepsilon)$ modulo ε^q .

Bini's Approximate Algorithms ('79)

Idea: $K \rightsquigarrow K[\varepsilon]$

Definition (degenerate rank of a tensor t)

$$\underline{R}(t) := \min\{r \mid \exists \underline{t}(\varepsilon), \quad \underline{t}(\varepsilon) = \sum_{i=1}^{r} u_i(\varepsilon) \otimes v_i(\varepsilon) \otimes w_i(\varepsilon)$$

with $\underline{t}(\varepsilon) = \varepsilon^{q-1}t + \varepsilon^q t_1(\varepsilon)$ and $q > 0\}.$

Algorithmically, one can obtain t by computing $t(\varepsilon)$ modulo ε^q .

Theorem (Bini '79)

$$\underline{R}(\langle m, n, p \rangle) \leq r \Rightarrow \omega \leq \frac{3\log(r)}{\log(mnp)}$$

Consequence: $\omega < 2.79$.

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ - 釣�� 10/22

lf

Theorem (τ -theorem, Schönhage '81)

and $\underline{R}\left(\bigoplus_{i=1}^{s}\langle m_i,n_i,p_i
ight) \leq r,$ $\sum_{i=1}^{s}(m_i\,n_i\,p_i)^{eta}=r,$

 $\omega \leq \mathbf{3}\,\beta.$

Consequence (Schönhage again): $\omega < 2.55$.

Crucial for recent records (including Le Gall '14: $\omega < 2.37287$)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theoretical Obstacles

- The *τ*-theorem gives great bounds on *ω* but it is not seen as a way to build 'concrete' matrix product algorithms (non-effective proofs).
- 'Degenerate rank \Leftrightarrow rank' relies on the fact that computing with polynomials is asymptotically negligible compared with scalars.

Theoretical Contributions

- More constructive proof of the τ -theorem (an algorithm).
- Get rid of ε and use the τ -theorem constructively! (for specific kinds of tensors)

 $\left(\bigoplus_{i=1}^{s} \langle m_i, n_i, p_i \rangle\right)^{\otimes k}$

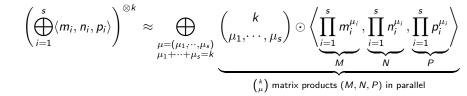
T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⁰ → ^{13/22}

$$\left(\bigoplus_{i=1}^{s} \langle m_{i}, n_{i}, p_{i} \rangle\right)^{\otimes k} \approx \bigoplus_{\substack{\mu = (\mu_{1}, \cdots, \mu_{s}) \\ \mu_{1} + \cdots + \mu_{s} = k}} (\text{several matrix products } (M, N, P))$$

イロト イ部ト イヨト イヨト 三臣

୬**୯**୧ _{13/22}



∽ **へ** ペ 13/22

▶ ★ 문 ▶ ★ 문 ▶ ... 문

$$\left(\bigoplus_{i=1}^{s} \langle m_{i}, n_{i}, p_{i} \rangle\right)^{\otimes k} \approx \bigoplus_{\substack{\mu = (\mu_{1}, \cdots, \mu_{s}) \\ \mu_{1} + \cdots + \mu_{s} = k}} \underbrace{\binom{k}{\mu_{1}, \cdots, \mu_{s}} \odot \left\langle \prod_{i=1}^{s} m_{i}^{\mu_{i}}, \prod_{i=1}^{s} n_{i}^{\mu_{i}}, \prod_{i=1}^{s} p_{i}^{\mu_{i}} \right\rangle}_{\binom{k}{\mu} \text{ matrix products } (M, N, P) \text{ in parallel}}$$

Suppose
$$t(\varepsilon)$$
 is a degeneration of $\bigoplus_{i=1}^{s} \langle m_i, n_i, p_i \rangle$. In the same way,
 $t(\varepsilon)^{\otimes k} \simeq \bigoplus_{\mu} t_{\mu}(\varepsilon)$.

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⁰ → ^{13/22}

$$\left(\bigoplus_{i=1}^{s} \langle m_{i}, n_{i}, p_{i} \rangle\right)^{\otimes k} \approx \bigoplus_{\substack{\mu = (\mu_{1}, \cdots, \mu_{s}) \\ \mu_{1} + \cdots + \mu_{s} = k}} \underbrace{\binom{k}{\mu_{1}, \cdots, \mu_{s}} \odot \left\langle \prod_{i=1}^{s} m_{i}^{\mu_{i}}, \prod_{i=1}^{s} n_{i}^{\mu_{i}}, \prod_{i=1}^{s} p_{i}^{\mu_{i}} \right\rangle}_{\binom{k}{\mu} \text{ matrix products } (M, N, P) \text{ in parallel}}$$

Suppose
$$t(\varepsilon)$$
 is a degeneration of $\bigoplus_{i=1}^{s} \langle m_i, n_i, p_i \rangle$. In the same way,
 $t(\varepsilon)^{\otimes k} \simeq \bigoplus_{\mu} t_{\mu}(\varepsilon)$.

- Ochoose one specific t_μ(ε) ⇒ we can do (^k_μ) ⟨M, N, P⟩ matrix products in parallel effectively (with ε's).
- ② Compute ⟨M^I, N^I, P^I⟩ = ⟨M^{I-1}, N^{I-1}, P^{I-1}⟩ ⊗ ⟨M, N, P⟩ recursively like previously, using t_µ to gain operations at each stage.

$$(\langle 2,1,2\rangle \ \oplus \ \langle 1,3,1\rangle)^{\otimes 2} = \langle 4,1,4\rangle \ \oplus \ 2 \odot \langle 2,3,2\rangle \ \oplus \ \langle 1,9,1\rangle$$

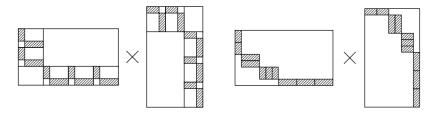


Figure : Direct Sum, iterated once, of two matrix products $\langle 2,1,2\rangle$ and $\langle 1,3,1\rangle$

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice

Builds a family of tensors computing independent matrix products to improve $\omega:$

• Input: table with various tensors. Example:

$$\sum_{i=0}^{m-1} \sum_{k=0}^{p-1} x_{i,0} \otimes y_{0,k} \otimes \varepsilon^2 z_{k,i} \qquad \langle m,1,p \rangle$$
$$\sum_{i=0}^{m-1} \sum_{k=0}^{p-1} \varepsilon u_{0,k,i} \otimes \varepsilon v_{k,i,0} \otimes w_{0,0} \qquad \langle 1, (m-1)(p-1), 1 \rangle$$

- Every row gives a matrix product (actually, some variables to adjust);
- Aggregate terms by summing over columns,

here:
$$t = \sum_{i=0}^{m-1} \sum_{k=0}^{p-1} (x_{i,0} + \varepsilon u_{0,k,i}) \otimes (y_{0,k} + \varepsilon v_{k,i,0}) \otimes (\varepsilon^2 z_{k,i} + w_{0,0}).$$

 $t = \varepsilon^2 \left(\langle m, 1, p \rangle \oplus \langle 1, (m-1)(p-1), 1 \rangle \right) + t_2$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ ��� 15/22

$$t = \sum_{i=0}^{m-1} \sum_{k=0}^{p-1} (x_{i,0} + \varepsilon u_{0,k,i}) \otimes (y_{0,k} + \varepsilon v_{k,i,0}) \otimes (\varepsilon^2 z_{k,i} + w_{0,0})$$

To apply the τ -theorem we want:

 $t \; = \; \varepsilon^2 \left(\langle {\it m}, 1, {\it p} \rangle \oplus \langle 1, ({\it m}-1)({\it p}-1), 1 \rangle \right) + {\rm terms} \; {\rm of} \; {\rm higher} \; {\rm degree} \; {\rm in} \; \varepsilon$

Let us remove terms of degree 0 and 1, hence the corrected term:

$$t_1 = t - \left(\sum_{i=0}^{m-1} x_{i,0}\right) \otimes \left(\sum_{k=0}^{p-1} y_{0,k}\right) \otimes w_{0,0}.$$

We get the output:

$$t_1 = arepsilon^2 \left(\langle m, 1, p
angle \oplus \langle 1, (m-1)(p-1), 1
angle
ight) + arepsilon^3 t_2$$

Hence $\underline{R}(\langle m, 1, p \rangle \oplus \langle 1, (m-1)(p-1), 1 \rangle) \leq mp + 1.$

Consequence: $\omega < 2.55$ with m = 4, p = 4.

Combined use with the τ -theorem

Every matrix variable appears with the same degree in $\ensuremath{\varepsilon}$: homogenous tensor.

Theorem (S,S-P '12)

Let t be a homogenous tensor.

If we apply the algorithm of the constructive proof of the τ -theorem to t, for any μ and k > 1, the resulting tensor $t_{\mu}(\varepsilon)$ can be written as

$$t_{\mu}(\varepsilon) = \varepsilon^{q} t_{1},$$

where t_1 does not contain any ε .

Consequence

Set $\varepsilon = 1$ in $t_{\mu}(\varepsilon)$: get an ε -free tensor computing disjoint matrix products.

Even better: set $\varepsilon = 1$ in $t(\varepsilon)$ before extracting t_{μ} from $t(\varepsilon)^{\otimes k}$.

We can get rid of the ε while still benefiting from the τ -theorem!

《曰》《曰》《曰》《曰》《曰》 []]

𝔄 𝔄 17/22

Example

Example: $2 \odot \langle 4, 9, 4 \rangle$ in 243 multiplications (instead of $2 \cdot (4 \cdot 9 \cdot 4) = 288$) with:

$$t_{1} = \sum_{i=0}^{m-1} \sum_{k=0}^{p-1} (x_{i,0} + \varepsilon u_{0,k,i}) \otimes (y_{0,k} + \varepsilon v_{k,i,0}) \otimes (\varepsilon^{2} z_{k,i} + w_{0,0}) \\ - \left(\sum_{i=0}^{m-1} x_{i,0}\right) \otimes \left(\sum_{k=0}^{p-1} y_{0,k}\right) \otimes w_{0,0}.$$

with m = p = 4, k = 2 and $\mu = (1, 1)$ in the τ -theorem. This gives an ω -equivalent of ~ 2.90 .

<ロト <部ト <きト <きト = 3

∮

∮

∮

↓

18/22

Example

Example: $2 \odot \langle 4, 9, 4 \rangle$ in 243 multiplications (instead of $2 \cdot (4 \cdot 9 \cdot 4) = 288$) with:

$$t_{1} = \sum_{i=0}^{m-1} \sum_{k=0}^{p-1} (x_{i,0} + \varepsilon u_{0,k,i}) \otimes (y_{0,k} + \varepsilon v_{k,i,0}) \otimes (\varepsilon^{2} z_{k,i} + w_{0,0}) \\ - \left(\sum_{i=0}^{m-1} x_{i,0}\right) \otimes \left(\sum_{k=0}^{p-1} y_{0,k}\right) \otimes w_{0,0}.$$

with m = p = 4, k = 2 and $\mu = (1, 1)$ in the τ -theorem. This gives an ω -equivalent of ~ 2.90 .

Better, with the same tensor: $\mu = (4, 2), k = 6, m = p = 4$: 15 \odot (256, 81, 256) matrix products in 23604048 multiplications, ω -equivalent ~ 2.80 .

<ロト <部ト <きト <きト = 3

Example

Example: $2 \odot \langle 4, 9, 4 \rangle$ in 243 multiplications (instead of $2 \cdot (4 \cdot 9 \cdot 4) = 288$) with:

$$t_{1} = \sum_{i=0}^{m-1} \sum_{k=0}^{p-1} (x_{i,0} + \varepsilon u_{0,k,i}) \otimes (y_{0,k} + \varepsilon v_{k,i,0}) \otimes (\varepsilon^{2} z_{k,i} + w_{0,0}) \\ - \left(\sum_{i=0}^{m-1} x_{i,0}\right) \otimes \left(\sum_{k=0}^{p-1} y_{0,k}\right) \otimes w_{0,0}.$$

with m = p = 4, k = 2 and $\mu = (1, 1)$ in the τ -theorem. This gives an ω -equivalent of ~ 2.90 .

Better, with the same tensor: $\mu = (4, 2), k = 6, m = p = 4$: 15 \odot (256, 81, 256) matrix products in 23604048 multiplications, ω -equivalent ~ 2.80 .

Even better, not built explicitly: $\mu = (10, 5)$, ω -equivalent ~ 2.729 .

<ロト <部ト <きト <きト = 3

- Parse degenerate tensors as Pan-style aggregation tables;
- Compose tensors symbolically;
- Extract a given coefficient $\mu \odot \langle \prod m_i^{\mu_i}, \prod n_i^{\mu_i}, \prod p_i^{\mu_i} \rangle$ following the τ -theorem;
- Test of tensors by applying them to random matrices;
- Maple code generation which computes the rank of a subterm of a power of tensor without actually computing it;
- C++ code generation implementing a given tensor.

- Static typing much helpful;
- Caveat: some algebraic computations had to be recoded;
- Symbolic computations on algorithms akin to compilation passes: AST manipulation;
- Some interaction with Maple : generating code to do some computations;
- Parametricity: Export possible to Latex, C++, Maple.

イロト イ部ト イヨト イヨト 一日

Roadmap of use

- Try out new or modified Pan Tables \Rightarrow extract good algorithms;
- Optimize corresponding code as much as possible (cache, other algorithms at leaves, ...).

Future work

Finish trying out all Pan tables.

This work showed improvements in ω are not purely theoretical results. \Rightarrow Adapt other theoretical improvements to build concrete tensors? For instance, the laser method?

イロト イ部ト イヨト イヨト 一日

Thank you for your attention!

Any questions?

୬**୯** _{22/22}