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Motivation

Complexity of matrix product ⇒ complexity of linear algebra;

ω = inf
{
θ | it takes nθ operations to multiply in Mn(K)

}
∈ [2, 3];

Strassen ’69 : ω < 2.81 (used in practice);

Le Gall ’14 : ω < 2.3728639 (theoretical).

“Malgré leurs performances asymptotiques, aucun des algorithmes
de cette section ne semble devoir être implémenté sur machine dans
un proche avenir” Abdeljaoued & Lombardi, 2003

Can we bridge the gap a little?
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Problem Statement

Let 〈m, n, p〉 denote the bilinear map:

Mm,n(K)×Mn,p(K) −→Mm,p(K)

(A,B) 7→ A · B.

Goal: determine the arithmetic complexity of 〈m, n, p〉.

Known: naive algorithm in mnp operations:

∀i ∈ J1,mK,∀j ∈ J1, pK, [AB]i,j =
n∑

k=1

ai,kbk,j .

Can we do better?
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Strassen’s Algorithm

Strassen’s algorithm: 〈2, 2, 2〉 in 7 multiplications (instead of 2 · 2 · 2 = 8):

α1 = (a1,2 − a2,2), β1 = (b2,1 + b2,2), p1 = α1β1

α2 = (a2,1 − a1,1), β2 = (b1,2 + b1,1), p2 = α2β2

α3 = a1,1, β3 = (b1,2 − b2,2), p3 = α3β3

α4 = a2,2, β4 = (b2,1 − b1,1), p4 = α4β4

α5 = (a2,1 + a2,2), β5 = b1,1, p5 = α5β5

α6 = (a1,2 + a1,1), β6 = b2,2, p6 = α6β6

α7 = (a1,1 + a2,2), β7 = (b1,1 + b2,2), p7 = α7β7

c1,1 = p1 + p4 − p6

c1,2 = p4 + p5

c2,1 = p3 + p6

c2,2 = p2 + p3 − p5 + p7

C =

(
c1,1 c1,2

c2,1 c2,2

)
Observe:

C = p1γ1 + p2γ2 + p3γ3 + p4γ4 + p5γ5 + p6γ6 + p7γ7.

where

γ1 = E1,1, γ2 = E2,2, γ3 = E2,1 + E2,2, γ4 = E1,1 + E1,2,

γ5 = E1,2 − E2,2, γ6 = E2,1 − E2,2, γ7 = E2,2 Ei,j canonical basis

Tensor notation:
7∑

i=1

αi ⊗ βi ⊗ γi .
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T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice



5/22

Tensors and algorithms

General tensor notation identified with a bilinear map:

〈m, n, p〉 =
m∑
i=1

p∑
j=1

n∑
k=1

ai,k ⊗ bk,j ⊗ ci,j .

Representing 〈m, n, p〉 as
r∑

i=1

αi ⊗ βi ⊗ γi gives an algorithm.

Example: The elementary tensor (a1,2 + a3,5)⊗ b2,4 ⊗ (c1,4 + c2,4) reads
as the algorithm

tmp ← (a1,2 + a3,5) · b2,4

c1,4 ← tmp

c2,4 ← tmp

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice



6/22

Composition

t ⊗ t ′: computes the composition of two tensors.

To multiply A of size (mm′, nn′) by B of size (nn′, pp′), decompose A
and B into blocks:

A =

A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

 , B =

B1,1 · · · B1,p

...
...

Bn,1 · · · Bn,p


where Ai,j of size (m′, n′), Bj,k of size (n′, p′).

If t = 〈m, n, p〉 and t ′ = 〈m′, n′, p′〉:

t ⊗ t ′ ' 〈mm′, nn′, pp′〉.

Also set t⊗k = t ⊗ t ⊗· · · ⊗ t︸ ︷︷ ︸
k times

' 〈mk , nk , pk〉.
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Direct Sum of Tensors

t ⊕ t ′: computes two independent matrix products in parallel.

We will denote s � t for t ⊕ t ⊕· · · ⊕ t︸ ︷︷ ︸
s times

.

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice
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Rank and ω

Definition (Rank of a Tensor t)

R(t) := min

{
r | t can be written as

r∑
i=1

xi ⊗ yi ⊗ zi

}

R(〈m, n, p〉) is the minimal number of multiplications for 〈m, n, p〉.

Definition (Linear Algebra Exponent)

ω := inf{τ | There exists an algorithm to multiply n × n matrices in

O(nτ ) additions and multiplications}(∈ [2, 3])

Theorem

inf{τ |R(〈n, n, n〉) = O(nτ )} = ω

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice
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T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice



8/22

Rank and ω

Definition (Rank of a Tensor t)

R(t) := min

{
r | t can be written as

r∑
i=1

xi ⊗ yi ⊗ zi

}

R(〈m, n, p〉) is the minimal number of multiplications for 〈m, n, p〉.

Definition (Linear Algebra Exponent)

ω := inf{τ | There exists an algorithm to multiply n × n matrices in

O(nτ ) additions and multiplications}(∈ [2, 3])

Theorem

inf{τ |R(〈n, n, n〉) = O(nτ )} = ω
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Back to Strassen’s Algorithm

Theorem (Strassen ’69)

R (〈2, 2, 2〉) ≤ 7, hence ω ≤ log2(7) ' 2.81.

Idea: R
(
〈2k , 2k , 2k〉

)
≤ 7k by induction on k .

Cut into blocks of size 2k−1 and proceed recursively.

Lemma

R (〈m, n, p〉) ≤ r ⇒ R (〈mnp,mnp,mnp〉) ≤ r 3.

Idea: If we can do 〈m, n, p〉 in r operations, then we can obtain 〈n, p,m〉
and 〈p,m, n〉 in r operations. Then we compose them.

Theorem

R (〈m, n, p〉) ≤ r ⇒ ω ≤ 3 log(r)

log(mnp)
.

R (〈mnp,mnp,mnp〉) ≤ r 3;

Proceed recursively for 〈(mnp)k , (mnp)k , (mnp)k〉 just like for the
〈2, 2, 2〉 case.

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice
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Bini’s Approximate Algorithms (’79)

Idea: K  K [ε]

Definition (degenerate rank of a tensor t)

R(t) := min{r | ∃t(ε), t(ε) =
r∑

i=1

ui (ε)⊗ vi (ε)⊗ wi (ε)

with t(ε) = εq−1t + εqt1(ε) and q > 0}.

Algorithmically, one can obtain t by computing t(ε) modulo εq.

Theorem (Bini ’79)

R (〈m, n, p〉) ≤ r ⇒ ω ≤ 3 log(r)

log(mnp)

Consequence: ω < 2.79.

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice



10/22

Bini’s Approximate Algorithms (’79)

Idea: K  K [ε]

Definition (degenerate rank of a tensor t)

R(t) := min{r | ∃t(ε), t(ε) =
r∑

i=1

ui (ε)⊗ vi (ε)⊗ wi (ε)

with t(ε) = εq−1t + εqt1(ε) and q > 0}.

Algorithmically, one can obtain t by computing t(ε) modulo εq.

Theorem (Bini ’79)

R (〈m, n, p〉) ≤ r ⇒ ω ≤ 3 log(r)

log(mnp)

Consequence: ω < 2.79.
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The τ -theorem

Theorem (τ -theorem, Schönhage ’81)

If

R

(
s⊕

i=1

〈mi , ni , pi 〉

)
≤ r ,

and
s∑

i=1

(mi ni pi )
β = r ,

then
ω ≤ 3β.

Consequence (Schönhage again): ω < 2.55.

Crucial for recent records (including Le Gall ’14: ω < 2.37287)

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice
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Towards a Practical Use of the τ -Theorem

Theoretical Obstacles

The τ -theorem gives great bounds on ω but it is not seen as a way
to build ‘concrete’ matrix product algorithms (non-effective proofs).

‘Degenerate rank ⇔ rank’ relies on the fact that computing with
polynomials is asymptotically negligible compared with scalars.

Theoretical Contributions

More constructive proof of the τ -theorem (an algorithm).

Get rid of ε and use the τ -theorem constructively! (for specific kinds
of tensors)

T. Sibut-Pinote, É. Schost Fast Matrix Product Algorithms: From Theory To Practice
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Sketch of the constructive proof

(
s⊕

i=1

〈mi , ni , pi 〉

)⊗k

≈
⊕

µ=(µ1,···,µs )
µ1+···+µs=k

(
k

µ1,· · · , µs

)
�

〈
s∏

i=1

mµi

i︸ ︷︷ ︸
M

,

s∏
i=1

nµi

i︸ ︷︷ ︸
N

,

s∏
i=1

pµi

i︸ ︷︷ ︸
P

〉

︸ ︷︷ ︸
(k
µ) matrix products (M,N,P) in parallel

Suppose t(ε) is a degeneration of
s⊕

i=1

〈mi , ni , pi 〉. In the same way,

t(ε)⊗k '
⊕
µ

tµ(ε).

1 Choose one specific tµ(ε) ⇒ we can do
(
k
µ

)
〈M,N,P〉 matrix

products in parallel effectively (with ε’s).

2 Compute 〈M l ,N l ,P l〉 = 〈M l−1,N l−1,P l−1〉 ⊗ 〈M,N,P〉 recursively
like previously, using tµ to gain operations at each stage.
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〈mi , ni , pi 〉

)⊗k
≈

⊕
µ=(µ1,···,µs )
µ1+···+µs=k

(
k

µ1,· · · , µs

)
�

〈
s∏

i=1

mµi

i︸ ︷︷ ︸
M

,

s∏
i=1

nµi

i︸ ︷︷ ︸
N

,

s∏
i=1

pµi

i︸ ︷︷ ︸
P

〉

︸ ︷︷ ︸
(k
µ) matrix products (M,N,P) in parallel

Suppose t(ε) is a degeneration of
s⊕

i=1

〈mi , ni , pi 〉. In the same way,

t(ε)⊗k '
⊕
µ

tµ(ε).

1 Choose one specific tµ(ε) ⇒ we can do
(
k
µ

)
〈M,N,P〉 matrix

products in parallel effectively (with ε’s).

2 Compute 〈M l ,N l ,P l〉 = 〈M l−1,N l−1,P l−1〉 ⊗ 〈M,N,P〉 recursively
like previously, using tµ to gain operations at each stage.
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Visualizing the exponent in the proof

(〈2, 1, 2〉 ⊕ 〈1, 3, 1〉)⊗2 = 〈4, 1, 4〉 ⊕ 2� 〈2, 3, 2〉 ⊕ 〈1, 9, 1〉

Figure : Direct Sum, iterated once, of two matrix products 〈2, 1, 2〉 and 〈1, 3, 1〉
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Pan’s aggregation tables (’84)

Builds a family of tensors computing independent matrix products to
improve ω:

Input: table with various tensors. Example:

m−1∑
i=0

p−1∑
k=0

xi,0 ⊗ y0,k ⊗ ε2zk,i 〈m, 1, p〉

m−1∑
i=0

p−1∑
k=0

εu0,k,i ⊗ εvk,i,0 ⊗ w0,0 〈1, (m − 1)(p − 1), 1〉

Every row gives a matrix product (actually, some variables to adjust);

Aggregate terms by summing over columns,

here: t =
m−1∑
i=0

p−1∑
k=0

(xi,0 + εu0,k,i )⊗ (y0,k + εvk,i,0)⊗ (ε2zk,i + w0,0).

t = ε2 (〈m, 1, p〉 ⊕ 〈1, (m − 1)(p − 1), 1〉) + t2
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Correction term

t =
m−1∑
i=0

p−1∑
k=0

(xi,0 + εu0,k,i )⊗ (y0,k + εvk,i,0)⊗ (ε2zk,i + w0,0)

To apply the τ -theorem we want:

t = ε2 (〈m, 1, p〉 ⊕ 〈1, (m − 1)(p − 1), 1〉) + terms of higher degree in ε

Let us remove terms of degree 0 and 1, hence the corrected term:

t1 = t −

(
m−1∑
i=0

xi,0

)
⊗

(
p−1∑
k=0

y0,k

)
⊗ w0,0.

We get the output:

t1 = ε2 (〈m, 1, p〉 ⊕ 〈1, (m − 1)(p − 1), 1〉) + ε3t2

Hence R(〈m, 1, p〉 ⊕ 〈1, (m − 1)(p − 1), 1〉) ≤ mp + 1.

Consequence: ω < 2.55 with m = 4,p = 4.
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Combined use with the τ -theorem

Every matrix variable appears with the same degree in ε: homogenous
tensor.

Theorem (S,S-P ’12)

Let t be a homogenous tensor.
If we apply the algorithm of the constructive proof of the τ -theorem to t,
for any µ and k > 1, the resulting tensor tµ(ε) can be written as

tµ(ε) = εqt1,

where t1 does not contain any ε.

Consequence

Set ε = 1 in tµ(ε): get an ε-free tensor computing disjoint matrix
products.
Even better: set ε = 1 in t(ε) before extracting tµ from t(ε)⊗k .

We can get rid of the ε while still benefiting from the τ -theorem!
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Example

Example: 2� 〈4, 9, 4〉 in 243 multiplications (instead of
2 · (4 · 9 · 4) = 288) with:

t1 =
m−1∑
i=0

p−1∑
k=0

(xi,0 + εu0,k,i )⊗ (y0,k + εvk,i,0)⊗ (ε2zk,i + w0,0)

−

(
m−1∑
i=0

xi,0

)
⊗

(
p−1∑
k=0

y0,k

)
⊗ w0,0.

with m = p = 4, k = 2 and µ = (1, 1) in the τ -theorem. This gives an
ω-equivalent of ∼ 2.90.

Better, with the same tensor: µ = (4, 2), k = 6,m = p = 4:
15� 〈256, 81, 256〉 matrix products in 23604048 multiplications,
ω-equivalent ∼ 2.80.
Even better, not built explicitly: µ = (10, 5), ω-equivalent ∼ 2.729.
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Software implementation in OCaml

Parse degenerate tensors as Pan-style aggregation tables;

Compose tensors symbolically;

Extract a given coefficient µ� 〈
∏

mµi

i ,
∏

nµi

i ,
∏

pµi

i 〉 following the
τ -theorem;

Test of tensors by applying them to random matrices;

Maple code generation which computes the rank of a subterm of a
power of tensor without actually computing it;

C++ code generation implementing a given tensor.
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Specifics of doing this in OCaml

Static typing much helpful;

Caveat: some algebraic computations had to be recoded;

Symbolic computations on algorithms akin to compilation passes:
AST manipulation;

Some interaction with Maple : generating code to do some
computations;

Parametricity: Export possible to Latex, C++, Maple.
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How to Use this Result and Implementation, Future Work

Roadmap of use

Try out new or modified Pan Tables ⇒ extract good algorithms;

Optimize corresponding code as much as possible (cache, other
algorithms at leaves, ...).

Future work

Finish trying out all Pan tables.

This work showed improvements in ω are not purely theoretical results.
⇒ Adapt other theoretical improvements to build concrete tensors?

For instance, the laser method?
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Thank you for your attention!

Any questions?
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