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Geometry has played a central role in the history of
mathematical proof:

@ Axiomatic approach;

@ Foundational crisis of mathematics;

@ Metamathematics; ///’

Alfred Tarski
(1901 - 1983)
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@ Axiomatic approach;
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@ Metamathematics; ( i i; .

@ Education. Pythagoras

(580 B.C. - 495 B.C.)
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Euclid
(325 B.C. - 265 B.C.)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

Moritz Pasch
(1843 - 1930)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

Archimedes
(287 B.C. - 212 B.C))
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate. &

Posidonius
(135 B.C. - 51 B.C.)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

(90 - 168)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

Proclus
(412 - 485)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

2.

L DN
Omar Khayyam
(1048 - 1131)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

John Wallis
(1616 - 1703)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

Jean-Henri Lambert
(1728 - 1777)
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@ More than two millennia of false proofs of the
parallel postulate.
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Adrien-Marie Legendre
(1752 - 1833)
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@ The missing concept in Euclid’'s Elements: the
betweenness.

@ More than two millennia of false proofs of the
parallel postulate.

@ We can still make mistakes.

It soon became clear that the only real
long-term solution to the problems that |
encountered is to start using computers in
the verification of mathematical reasoning.

Vladimir Voevodsky
(1966 - )

(Vladimir Voevodsky, talk in March 2014 at the Institute
for Advanced Studies at Princeton)
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Il n'en est pas moins certain que le théoréme

sur la somme des trois angles du triangle

doit étre regardé comme I'une de ces vérités

fondamentales qu’il est impossible de

contester, et qui sont un exemple toujours

subsistant de la certitude mathématique .
qu’on recherche sans cesse et qu'on V &
n'obtient que bien difficilement dans les i /
autres branches des connaissances humaines.

Adrien-Marie Legendre

(Adrien-Marie Legendre, Réflexions sur quelques manieres (1752 - 1833)

de démontrer la théorie des paralléles ou le théoréme sur la

somme des trois angles du triangle)
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Il n'en est pas moins certain que le théoréme

sur la somme des trois angles du triangle

doit étre regardé comme I'une de ces vérités

fondamentales qu’il est impossible de

contester, et qui sont un exemple toujours

subsistant de la certitude mathématique C
qu’on recherche sans cesse et qu'on
n'obtient que bien difficilement dans les
autres branches des connaissances humaines.

(Adrien-Marie Legendre, Réflexions sur quelques maniéres
de démontrer la théorie des paralléles ou le théoréme sur la

somme des trois angles du triangle)
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid

Euclid
(325 av. J.-C. - 265 av. J.-C.)
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid

Euclide.

Les éléments.

Presses Universitaires de
France, 1998.

Traduit par Bernard Vitrac
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@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert

David Hilbert
(1862 - 1943)
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert

David Hilbert.

Foundations of Geometry
(Grundlagen der Geometrie).

Open Court, La Salle,
Illinois, 1960.

Second English edition,
translated from the tenth
German edition by Leo
Unger. Original publication

date, 1899
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Alfred Tarski
(1901 - 1983)
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski

Wolfram Schwabhauser,
Wanda Szmielew, and
Alfred Tarski.

Metamathematische
Methoden in der Geometrie.

Springer-Verlag, Berlin,
1983.
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axioms about them.

o Euclid
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@ Analytic approach
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@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski

@ Analytic approach: a field F is assumed and the
space is defined as [F".
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski

@ Analytic approach: a field F is assumed and the
space is defined as [F".

@ Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

o Birkhoff

George David Birkhoff
(1884 - 1944)
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski

. . . George David Birkhoff.
@ Analytic approach: a field F is assumed and the
A set of postulates for plane

space is defined as F". geometry (based on scale

and protractors).

@ Mixed analytic/synthetic approach: existence of a Smals of Mathematics, 33,
field and geometric axioms.
o Birkhoff
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski

@ Analytic approach: a field F is assumed and the
space is defined as [F".

@ Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

o Birkhoff Felix Klein

(1849 - 1925)

@ Erlangen program
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Formalizations of foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski
@ Analytic approach: a field F is assumed and the Felix C. Klein.
space is defined as F". A comparative review of

recent researches in

@ Mixed analytic/synthetic approach: existence of a geometry, 1872

field and geometric axioms.

o Birkhoff

@ Erlangen program: a geometry is defined as a
space of objects and a group of transformations
acting on it.
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Alfred Tarski
(1901 - 1983)

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Tarski's system of geometry

The axioms
Overv of the formalization

The axioms

@ A single primitive type: point.

e

Alfred Tarski
(1901 - 1983)
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@ congruence AB = CD;
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The axioms
Overview of the formalization

The axioms

@ A single primitive type: point.
@ Two primitive predicates:

@ congruence AB = CD;
@ betweenness A—B—C.

@ 11 axioms. //s’/ﬁ;ﬁ

Alfred Tarski
(1901 - 1983)
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The axioms

[

A single primitive type: point.
@ Two primitive predicates:

@ congruence AB = CD;
@ betweenness A—B—C.

@ 11 axioms. ///,
A parameter controls the dimension. @ ﬁ:ﬁ

Alfred Tarski
(1901 - 1983)

[
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The axioms
Overview of the formalization

The axioms

[

A single primitive type: point.
@ Two primitive predicates:

@ congruence AB = CD;
@ betweenness A—B—C.

@ 11 axioms. ///,
A parameter controls the dimension. @ ﬁ:ﬁ

Alfred Tarski
Good meta-theoritical properties. (1901 - 1983)

[
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Overvi of the formalization

Axioms about congruence

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Tarski's system of geometry The axioms

Overview of the formalization

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB=CDANAB=EF = CD = EF
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Overview of the formalization

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB=CDANAB=EF = CD = EF

Axiom (Pseudo-reflexivity for congruence)

AB = BA
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Overview of the formalization

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB=CDANAB=EF = CD = EF

Axiom (Pseudo-reflexivity for congruence)

AB = BA

Axiom (ldentity for congruence)

AB=CC=A=8B
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Axiom about betweenness

Axiom (ldentity for betweenness)

A-B-A=A=8B
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Five-Segment Axiom

Axiom (Five-Segment)

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Tarski's system of geometry

The axioms
Overview of the formalization

Five-Segment Axiom

Axiom (Five-Segment)
AB=A'B'ANBC=B'C'A
AD = A'D' AN BD = B'D'A
A-B-CNA-B—-CNA#B=CD=CD
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Overvi of the formalization

Axiom of Segment Construction
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Overview of the formalization

Axiom of Segment Construction

Axiom (Segment Construction)

JE,A-B—ENBE = (CD
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Overview of the formalization

Axiom of Segment Construction

Axiom (Segment Construction)

JE,A-B—ENBE = (CD
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of the formalization

Pasch axiom
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Over of the formalization

Pasch axiom

Axiom (Pasch)
A-P-CANB-QRQ-C=3X,P-X-BANQRQ-X-A
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Pasch axiom

Axiom (Pasch)
A-P-CANB-QRQ-C=3X,P-X-BANQRQ-X-A
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2-Dimensional Axiom
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Ove of the formalization

2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

JABC,-A-B—-CA-B-C-AAN-C-A-B
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Tarski's system of geometry The axioms

Overview of the formalization

2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

JABC,-A-B—-CA-B-C-AAN-C-A-B

Axiom (Upper 2-Dimensional)

AP=AQANBP=BQANCP=CQANP# Q=
A-B-CVB-C-Av C-A-B
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Euclid's axiom
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Overview of the formalization

Euclid's axiom

Axiom (Euclid)

AD - TAB-D CANA#D=
IXY,A B XNAC YAX-T-Y
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Euclid's axiom

Axiom (Euclid)

AD - TAB-D CANA#D=
IXY,A B XNAC YAX-T-Y
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Euclid's axiom

Axiom (Euclid)

AD - TAB-D CANA#D=
IXY,A B XNAC YAX-T-Y
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Tarski's system of geometry The axioms

Overview of the formalization

Euclid's axiom

Axiom (Euclid)

AD - TAB-D CANA#D=
IXY,A B XNAC YAX-T-Y

X
/ \

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Tarski's system of geometry The axioms

Overview of the formalization

The axioms (summary)

Identity for betweenness A-B—-A= A=B
Transitivity for congruence AB = CD ANAB = EF = CD = EF
Reflexivity for congruence AB = BA
Identity for congruence AB=CC=A=B
Segment Construction 3JE,A-B—E ANBE =CD
Pasch A-P-CAB-Q-C=3X,P-X-BANQRQ-X-A
Five-Segment AB = A'B'ABC = B'C'A
AD=A'D'ABD = B'D'A
A-B-CANA—B—C ANA#£B=CD=CD’
Lower 2-Dimensional 3JABC,-A—B—CA-B—C—AAN-C—A—B
Upper 2-Dimensional AP =AQABP=BQACP=CQAP#Q
= A-B-CvB-C-AvC-A-B
Eucid A-D-TAB-D-CANA#D=
IXY,A—B—XNA-C-—Y ANX-T-Y
Continuity V=T,(3A,(VXY, X €EZAY €T = A-X-Y)) =
IB,(VXY, X E=ZAY €T = X-B-Y)
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Overview of the formalization

The axioms (summary)

Identity for betweenness A-B—-A= A=B
Transitivity for congruence AB = CD ANAB = EF = CD = EF
Reflexivity for congruence AB = BA
Identity for congruence AB=CC=A=B
Segment Construction 3JE,A-B—E ANBE =CD
Pasch A-P-CAB-Q-C=3X,P-X-BANQRQ-X-A
Five-Segment AB = A'B'ABC = B'C'A
AD=A'D'ABD = B'D'A
A-B-CANA—B—C ANA#£B=CD=CD’
Lower 2-Dimensional 3JABC,-A—B—CA-B—C—AAN-C—A—B
Upper 2-Dimensional AP =AQABP=BQACP=CQAP#Q
= A-B-CvB-C-AvC-A-B
Eucid A-D-TAB-D-CANA#D=
IXY,A—B—XNA-C-—Y ANX-T-Y
Continuity V=T, (3A,(VXY, X €EZAY €T = A X-Y)) =
IB,(VXY, X e=ZAY T = X-B-Y)
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Overview of the formalization
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Tarski's system of geometry

The axioms
Overview of the formalization

Overview of the formalization

W. Schwabhauser
W. Szmielew A Tarski

Metamathematische
Methoden
in der Geometrie

Mit 167 Abbildungen

Teil I: Ein axiomatischer Aufbau der

euklidischen Geometrie
on W Schwabhuser, W. Szmislew und A Tarski

Teil Il: Metamathematische Betrachtungen
von W. Schwabhauser

Springer-Verlag 4
Berlin Heidelberg New York Tokyo 1983

N

geocoq.github.io/GeoCoq/
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Tarski's system of geometry The axioms

Overview of the formalization

Overview of the formalization

Chapter Neutral > 2D = 2D Euclid Continuity

Ch 2: Properties about betweenness
Ch 3: Properties about congruence
Ch 4: Properties about bet. et cong.
Ch 5: Order relation on points

Ch 6: Collinearity

Ch 7: Midpoint

Ch 8: Orthogonality

Ch 9: Planes

Ch 10: Reflection

Ch 11: Angles

Ch 12: Parallelism

Ch 13: Pappus and Desargues

Ch 14: Ordered field

Ch 15: Pythagorean ordered field
Ch 16: Coordinates

AN N N N N N N N NENEN

NN N N NN
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© Parallel postulates
@ A syntaxic proof of the independence
@ Decidability of the predicates of the development
@ Equivalent statements
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Euclid's axiom

Axiom (Euclid)

AD - TAB-D CANA#D=
IXY,A B XNAC YAX-T-Y

X T Y
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the development
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Types of independence proofs

@ Semantic proofs: prove the consistency of non-Euclidean
geometry.

Hyperbolic geometry Elliptic geometry

@ Syntaxic proofs: prove there does not exist a derivation of the
axiom from the others.
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Syntaxic proof

Identity for betweenness A-B—-A= A=B
Transitivity for congruence AB = CD ANAB = EF = CD = EF
Reflexivity for congruence AB = BA
Identity for congruence AB=CC=A=B
Segment Construction 3JE,A-B—E ANBE =CD
Pasch A-P-CAB-Q-C=3X,P-X-BANQRQ-X-A
Five-Segment AB = A'B'ABC = B'C'A
AD=A'D'ABD = B'D'A
A-B-CANA—B—C ANA#£B=CD=CD’
Lower 2-Dimensional 3JABC,-A—B—CA-B—C—AAN-C—A—B
Upper 2-Dimensional AP=AQABP=BQACP=CQAP# Q=
A-B-CVB-C-AvV(C-A-B
Eucid A-D-TAB-D-CANA#D=
IXY,A—B—XNA-C-—Y ANX-T-Y
Continuity V=T,(3A,(VXY, X €EZAY €T = A-X-Y)) =
IB,(VXY, X E=ZAY €T = X-B-Y)
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JE,A-B—ENBE =CD
A-P-CANB-Q-C=3IX,P-X-BANQRQ-X-A

JABC,-A-B—-CA-B-C-AAN-C-A-B
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Intuitionistic Logic

Axiom (Excluded middle (not admitted))
VA,AV -A

L. E. J. Brouwer
(1881 - 1966)
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Intuitionistic Logic

Axiom (Excluded middle (not admitted))
VA,AV -A

A particular instance of the excluded middle

VABCD,(3/,Col ABI A Col CDI)V
~(31,Col ABI A Col CDI)

Pierre Boutry Formal Proofs in Tarski's System of Geometry



A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the development
Equivalent statements

Intuitionistic Logic

Axiom (Excluded middle (not admitted))
VA,AV -A

A particular instance of the excluded middle

VABCD,(3/,Col ABI A Col CDI)V
~(31,Col ABI A Col CDI)

The most frequent instance of the excluded middle
VAB : Point, A=BVA#B
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system of geometry in intuitionistic logic:
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We proved that the following formulas are equivalent in Tarski's
system of geometry in intuitionistic logic:

e VAB : Point, A= BV A# B;

e VABC,A-B-CVv-A-B-C,
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A first equivalence

We proved that the following formulas are equivalent in Tarski's
system of geometry in intuitionistic logic:

e VAB : Point, A= BV A# B;

e VABC,A-B-CVv-A-B-C,

e VABCD,AB = CD Vv -AB = CD.
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Results

We proved the decidability of:
Bet VABC,A-B—-CV -A-B—C,
Cong VABCD,AB = CD Vv -AB = CD;
Col YVABC,Col ABCV —Col ABC;
Out VABC,A-B—-C Vv -A-B-C,
Per VABC,.NABCV-NABC,
Perp_at VABCDP, AB JP_ CD v -AB JP_ CD;

TS YABCD, A?iB v ﬁAYRB;

CongA VABCDEF,ABC=DEFV-ABC=DEF;

Reflect ...
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Results

Chapter Neutral > 2D = 2D Euclid Decidability of equality = Excluded middle

Ch 2: Properties about betweenness v v
Ch 3: Properties about congruence
Ch 4: Properties about bet. et cong.
Ch 5: Order relation on points

Ch 6: Collinearity

Ch 7: Midpoint

Ch 8: Orthogonality

Ch 9: Planes

Ch 10: Reflection

Ch 11: Angles

Ch 12: Parallelism

Ch 13: Pappus and Desargues

Ch 14: Ordered field

Ch 15: Pythagorean ordered field

Ch 16: Coordinates

N N N N N N N NENENEN
EENENENENENEN

ENENENENEN

N N N N N N N NENEN
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Equivalent statements

Postulate of existence of a
right Saccheri quadrilateral

Postulate of existence of a
right Lambert quadrilateral

Lambert’s postulate
Posidonius’ postulate
Existential Thales' postulate
Thales' converse postulate
Thales' postulate

Postulate of existence of
similar triangles

Triangle postulate

Postulate of existence of a

triangle whose angles sum to
2 rights

Saccheri’s hypothesis of right
angle

Pierre Boutry

Postulate of parallelism of
perpendicular transversals

Proclus’ second postulate

Alternative Playfair's
postulate

Alternate interior angles
postulate

Consecutive interior angles
postulate

Midpoint converse postulate

Postulate of transitivity of
parallelism

Playfair's postulate

Perpendicular transversal
postulate

Formal Proofs in

Strong parallel postulate

Triangle circumscription
principle

Tarski's version of the parallel
postulate

Beeson'’s version of Euclid’s
postulate

Euclid's postulate

Alternative Strong parallel
postulate

Inverse projection postulate
Alternative Proclus’ postulate

Proclus’ postulate

ski's System of Geometry
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Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.
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A syn proof of the independence
Parallel postulates Decidability of the predicates of the development
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;
@ Playfair's postulate.

An extra axiom is needed to prove their equivalence.
Indeed:
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A syn proof of the independence
Parallel postulates Decidability of the predicates of the development
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;
@ Playfair's postulate.

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;
@ Playfair's postulate.

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate
(Max Dehn);
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate
(Max Dehn);

@ Archimedes' Axiom A Triangle postulate = —
Playfair's postulate.
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

A B

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate

(Max Dehn);
D
@ Archimedes' Axiom A Triangle postulate = — =

Playfair's postulate.
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

A B

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate

(Max Dehn);
. . . cD
@ Archimedes’ Axiom A Triangle postulate = — -

Playfair's postulate.
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

A B

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate

(Max Dehn);
D
@ Archimedes’ Axiom A Triangle postulate = — -

Playfair's postulate.
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate
(Max Dehn);

C
@ Archimedes’ Axiom A Triangle postulate = o=
Playfair's postulate.
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

A B

An extra axiom is needed to prove their equivalence.
Indeed:

@ Playfair's postulate = Triangle postulate;

@ Triangle postulate #- Playfair's postulate

(Max Dehn);
D
@ Archimedes’ Axiom A Triangle postulate = - o-m oo

Playfair's postulate.
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the devel
Equivalent statements

The role of continuity

Here, we consider two postulates:
@ Triangle postulate;

@ Playfair's postulate.

A B
An extra axiom is needed to prove their equivalence.
Indeed:
@ Playfair's postulate = Triangle postulate;
@ Triangle postulate #- Playfair's postulate
(Max Dehn);
c E

@ Archimedes' Axiom A Triangle postulate =
Playfair's postulate.
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Equivalent statements
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the development
Equivalent statements

Equivalent statements

0 Triangle postulate

‘ Tarski's version of the parallel

Playfair's postulate postulate

Equivalent to Playfair's postulate without continuity axiom
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the development
Equivalent statements

Equivalent statements

@

Q - o -

0 Triangle postulate o Playfair's postulate
Q -

‘ Tarski's version of the parallel
postulate

Equivalent to Playfair's postulate without continuity axiom

X
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A syntaxic proof of the independence
Parallel postulates Decidability of the predicates of the development
Equivalent statements

Equivalent statements

0 Triangle postulate

‘ Tarski's version of the parallel

Playfair's postulate postulate

Equivalent to Playfair's postulate without continuity axiom

X
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Outline

@ Arithmetization of geometry
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Several ways to define the foundations of geometry
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Construction of an or field

. R Automated proofs of raic characterization
Arithmetization of geometry utomated proofs o aic characterizatiol

Several ways to define the foundations of geometry

@ Synthetic approach: geometric objects and
axioms about them.

o Euclid
o Hilbert
o Tarski

@ Analytic approach: a field F is assumed and the
space is defined as [F".

@ Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

o Birkhoff

@ Erlangen program: a geometry is defined as a
space of objects and a group of transformations
acting on it.
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Arithmetization of geometry

@ These approches seem very different.
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Construction of an field
Automated proofs of algebraic characterization

Arithmetization of geometry

Arithmetization of geometry

@ These approches seem very different.

@ In 1637, Descartes proved that the analytic
approach can be derived from the synthetic
approach.

René Descartes
(1596 - 1650)
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Arithmetization of geometry

Arithmetization of geometry

@ These approches seem very different.

@ In 1637, Descartes proved that the analytic
approach can be derived from the synthetic
approach.

A page from La Géométrie
of Descartes
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Arithmetization of geometry

@ These approches seem very different.

@ In 1637, Descartes proved that the analytic
approach can be derived from the synthetic
approach.

@ This is called arithmetization and
coordination of geometry.
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Automated proofs of algebraic characterization

Arithmetization of geometry

Arithmetization of geometry

As long as algebra and geometry traveled
separate paths their advance was slow and
their applications limited. But when these
two sciences joined company, they drew
from each other fresh vitality, and
thenceforth marched on at a rapid pace
toward perfection.

(Joseph-Louis Lagrange, Lecons élémentaires

sur les mathématiques; quoted by Morris Kline, j
Mathematical Thought from Ancient to modern f‘ P
Times, p. 322) ‘

Joseph-Louis Lagrange
(1736 - 1813)
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Construction of an o 1 field
Automated proofs of braic characterization

Arithmetization of geometry

Arithmetization of geometry

As long as algebra and geometry traveled
separate paths their advance was slow and
their applications limited. But when these
two sciences joined company, they drew
from each other fresh vitality, and
thenceforth marched on at a rapid pace
toward perfection.

(Joseph-Louis Lagrange, Lecons élémentaires
sur les mathématiques; quoted by Morris Kline,
Mathematical Thought from Ancient to modern
Times, p. 322)

René Descartes
(1596 - 1650)

First presented by Descartes, the arithmetization
of geometry is the culminating result of both
Hilbert's and Tarski's developments.
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Arithmetization of geometry

As long as algebra and geometry traveled

separate paths their advance was slow and
their applications limited. But when these
two sciences joined company, they drew

from each other fresh vitality, and A
thenceforth marched on at a rapid pace ’
toward perfection.

(Joseph-Louis Lagrange, Lecons élémentaires
sur les mathématiques; quoted by Morris Kline,
Mathematical Thought from Ancient to modern
Times, p. 322)

David Hilbert
(1862 - 1943)

First presented by Descartes, the arithmetization
of geometry is the culminating result of both
Hilbert's and Tarski's developments.
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Construction of an o 1 field
Automated proofs of ic characterization

Arithmetization of geometry

Arithmetization of geometry

As long as algebra and geometry traveled
separate paths their advance was slow and
their applications limited. But when these
two sciences joined company, they drew
from each other fresh vitality, and
thenceforth marched on at a rapid pace
toward perfection.

(Joseph-Louis Lagrange, Lecons élémentaires
sur les mathématiques; quoted by Morris Kline,

Mathematical Thought from Ancient to modern % éﬁ
Times, p. 322) ' i

Alfred Tarski
(1901 - 1983)

First presented by Descartes, the arithmetization
of geometry is the culminating result of both
Hilbert's and Tarski's developments.
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Outline

@ Arithmetization of geometry
@ Construction of an ordered field
@ Automated proofs of algebraic characterization
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Outline

@ Arithmetization of geometry
@ Construction of an ordered field
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; At Automated proofs of a characterization
Arithmetization of geometry LECIMEECIRIOOISIO erizatio

Arithmetic operations
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. R Automated proofs of a aic characterization
Arithmetization of geometry utomated proofs of a aic characterizatiol

Arithmetic operations

To define the operations we need three points:
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Arithmetic operations

To define the operations we need three points:

@ 1 point defines the neutral element of the addition;
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Arithmetic operations

To define the operations we need three points:
@ 1 point defines the neutral element of the addition;

@ 1 point defines the neutral element of the multiplication;
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Construction of an ordered field
. R Automated proofs of algebraic characterization
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Arithmetic operations

To define the operations we need three points:
@ 1 point defines the neutral element of the addition;
@ 1 point defines the neutral element of the multiplication;

@ These 2 points define the line on which we will define the
operations;
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Construction of an ordered field
. R Automated proofs of algebraic characterization
Arithmetization of geometry utomated proofs of alg aic characterizatio

Arithmetic operations

To define the operations we need three points:
@ 1 point defines the neutral element of the addition;
@ 1 point defines the neutral element of the multiplication;

@ These 2 points define the line on which we will define the
operations;

@ 1 to define a line needed for the ruler and compass
constructions.
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Construction of an ordered field
. R Automated proofs of algebraic characterization
Arithmetization of geometry utomated proofs of alg aic characterizatio

Arithmetic operations

To define the operations we need three points:
@ 1 point defines the neutral element of the addition;
@ 1 point defines the neutral element of the multiplication;

@ These 2 points define the line on which we will define the
operations;

@ 1 to define a line needed for the ruler and compass
constructions.

These properties are summarized as:
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Construction of an ordered field
. R Automated proofs of algebraic characterization
Arithmetization of geometry utomated proofs of alg aic characterizatio

Arithmetic operations

To define the operations we need three points
@ 1 point defines the neutral element of the addition
@ 1 point defines the neutral element of the multiplication

@ These 2 points define the line on which we will define the
operations

@ 1 to define a line needed for the ruler and compass
constructions

These properties are summarized as:

Definition Ar2 O E E> A B C :=
“Col0OEE” /N\ColOEA /\Col 0OEB /\ Col O EC.
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Addition (a first approach)
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; At Automated proofs of a characterization
Arithmetization of geometry LECIMEECIRIOOISIO erizatio

Addition (a first approach)

E’

O EAB
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Addition (a first approach)

o Let us prolong OB but the length of
OA.

E’

O EAB c
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Addition (a first approach)

o Let us prolong OB but the length of
OA.

@ But: E’

AO E B
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Addition (a first approach)

@ Let us prolong OB but the length of

OA.
@ But: this does not work for negative £
points.

A0 E BC

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Construction of an ordered field
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Addition (a first approach)

@ Let us prolong OB but the length of

OA.
@ But: this does not work for negative £
points.

A0 E CB
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Addition (a first approach)

o Let us prolong OB but the length of
OA.

@ But: this does not work for negative £
points.

@ Therefore, we need to be able to
handle the negative points.

A0 E CB
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Addition

E’

O EAB

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Construction of an ordered fleld
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Addition

Originally from Descartes.

E’

O EAB
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Addition

Originally from Descartes.

E’

O EAB
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Arithmetization of geometry

Addition

Construction of an ordered field
Automated proofs of a ic characterization

Originally from Descartes.

exists A’,
Pj EE’> A A> /\ Col 0 E’ A’ /\

Pierre Boutry

E
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Formal Proofs in Tarski's System of Geometry




Arithmetization of geometry

Addition

Construction of an ordered field
Automated proofs of a ic characterization

Originally from Descartes.

exists A’,
Pj EE> A A /\ Col 0O E’ A’ /\

Pierre Boutry
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Construction of an ordered field

. R Automated proofs of a aic characterization
Arithmetization of geometry utomated proofs o aic characterizatiol

Addition

Originally from Descartes.

Al c’
exists A’, exists C’,
PjEE A A /N Col 0E A /\ E’
PfjOE A C /\N\PjOE B C /\
O EAB
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Construction of an ordered field

. R Automated proofs of a aic characterization
Arithmetization of geometry utomated proofs o aic characterizatiol

Addition

Originally from Descartes.

exists A’, exists C’,

Pj EE” A A’ /\ Col 0 E” A’ /\ E
PfjOE A>C /\PjOE B C /\

Pj E’ E C’ C.
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Arithmetization of geometry

Addition

Originally from Descartes.

Construction of an ordered field
Automated proofs of algebraic characterization

Definition Sum O E E> A B C :=
Ar2 0 EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E” A’ /\
PfjOE A>C /A\PjOE B C /\
Pj E> E C’ C.

C/
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Arithmetization of geometry

Addition

Construction of an ordered field
Automated proofs of algebraic characterization

Originally from Descartes.

Definition Sum O E E> A B C :=
Ar2 0 EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E” A’ /\
PfjOE A>C /A\PjOE B C /\
Pj E> E C’ C.

Pierre Boutry
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Arithmetization of geometry

Addition

Construction of an ordered field
Automated proofs of algebraic characterization

Originally from Descartes.

Definition Sum O E E> A B C :=
Ar2 0 EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E” A’ /\
PfjOE A>C /A\PjOE B C /\
Pj E> E C’ C.
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Arithmetization of geometry

Addition

Construction of an ordered field
Automated proofs of algebraic characterization

Originally from Descartes.

Definition Sum O E E> A B C :=
Ar2 0 EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E” A’ /\
PfjOE A>C /A\PjOE B C /\
Pj E> E C’ C.
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Construction of an ordered field

i ot Automated proofs of algebraic characterization
Arithmetization of geometry utomated proofs of algebraic characterizatiol

Addition

Originally from Descartes.

Definition Sum O E E’> A B C :=

Ar2 0 EE’ ABC /\ A’ c’
exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E’ A’ /\ E’
PfjOE A>C /A\PjOE B C /\

Pj E’> E C’ C.

Properties of parallelograms to prove 0 EAE T
properties about Sum.
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Multiplication
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Construction of an ordered fleld

; At Automated proofs of a characterization
Arithmetization of geometry LECIMEECIRIOOISIO erizatio

Multiplication

Originally from Descartes.
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Construction of an ordered fleld

; At Automated proofs of a characterization
Arithmetization of geometry LECIMEECIRIOOISIO erizatio

Multiplication

Originally from Descartes.

E/

O EA B
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Arithmetization of geometry

Construction of an ordered field
Automated proofs of a aic characterization

Multiplication

Originally from Descartes.

exists B’,
Pj EE’ BB’ /\ Col 0 E> B’ /\

Pierre Boutry

O \[EA B
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Construction of an ordered field
Automated proofs of ic characterization

Arithmetization of geometry

Multiplication

Originally from Descartes.

exists B’,
Pj EE’ BB’ /\ Col 0 E> B’ /\
Pj E> A B’ C.
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Arithmetization of geometry

Multiplication

Construction of an ordered field
Automated proofs of algebraic characterization

Originally from Descartes.

Definition Prod O E E> A B C :=
Ar2 0 E E’ A B C /\ exists B’,
Pj EE’ BB’ /\ Col 0 E’ B’ /\
Pj E> A B’ C.

OB OB’
OE OF

O EA B
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Arithmetization of geometry

Multiplication

Construction of an ordered field
Automated proofs of algebraic characterization

Originally from Descartes.

Definition Prod O E E> A B C :=
Ar2 0 E E’ A B C /\ exists B’,
Pj EE’ BB’ /\ Col 0 E’ B’ /\
Pj E> A B’ C.

08 _0F
OE OF
oc _ow
OA OF

O EA B
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Construction of an ordered field

i ot Automated proofs of algebraic characterization
Arithmetization of geometry utomated proofs of algebraic characterizatiol

Multiplication

Originally from Descartes.

Definition Prod O E E> A B C :=
Ar2 0 E E’ A B C /\ exists B’,
Pj EE’ BB’ /\ Col 0 E> B’ /\

Pj E’ A B’ C. ,
B
08 _0F
OE OF £
oc _ow
OA OF

) O EA B C
Using Pappus’ theorem, we proved the

commutativity of Prod and, using
Desargues’ theorem, its associativity.
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Multiplication

Originally from Descartes.

Definition Prod O E E> A B C :=
Ar2 0 E E’ A B C /\ exists B’,
Pj EE’ BB’ /\ Col 0 E> B’ /\

Pj E’ A B’ C. ,
B
08 _0F
OE OF £
oc _ow
OA OF

O EA B C
Using Pappus’ theorem, we proved the

commutativity of Prod and, using
Desargues’ theorem, its associativity.
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From predicates to function symbols
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From predicates to function symbols

Problems linked to the use of predicates:
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From predicates to function symbols

Problems linked to the use of predicates:

@ Statements become quickly unreadable;
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Construction of an ordered field

. R Automated proofs of a aic characterization
Arithmetization of geometry utomated proofs of a aic characterizatio

From predicates to function symbols

Problems linked to the use of predicates:

@ Statements become quickly unreadable;

Lemma sum_assoc : forall O E E> A B C AB BC ABC,
Sum O E E> A B AB —>
Sum 0 E E> B C BC ->
(Sum 0 E E> A BC ABC <-> Sum 0 E E’ AB C ABC).
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Problems linked to the use of predicates:

@ Statements become quickly unreadable;

Lemma sum_assoc : forall O E E> A B C AB BC ABC,
Sum O E E> A B AB —>
Sum 0 E E> B C BC ->
(Sum 0 E E> A BC ABC <-> Sum 0 E E’ AB C ABC).

@ We cannot apply the standard Coq tactics ring and field.
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From predicates to function symbols

Problems linked to the use of predicates:

@ Statements become quickly unreadable;

Lemma sum_assoc : forall O E E> A B C AB BC ABC,
Sum O E E> A B AB —>
Sum 0 E E> B C BC ->
(Sum 0 E E> A BC ABC <-> Sum 0 E E’ AB C ABC).

@ We cannot apply the standard Coq tactics ring and field.

We used an axiom which turns a relation which has been proved to be
functional into a proper Coq function.
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. R Automated proofs of a aic characterization
Arithmetization of geometry utomated proofs of a aic characterizatio

From predicates to function symbols

Problems linked to the use of predicates:

@ Statements become quickly unreadable;

Lemma sum_assoc : forall O E E> A B C AB BC ABC,
Sum O E E> A B AB —>
Sum 0 E E> B C BC ->
(Sum 0 E E> A BC ABC <-> Sum 0 E E’ AB C ABC).

@ We cannot apply the standard Coq tactics ring and field.

We used an axiom which turns a relation which has been proved to be
functional into a proper Coq function.

Axiom constructive_definite_description :
forall (A : Type) (P : A->Prop),
(exists! x, Px) > {x: A | Px}.
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From predicates to function symbols

Problems linked to the use of predicates:

@ Statements become quickly unreadable;

Lemma sum_assoc : forall O E E> A B C AB BC ABC,
Sum O E E> A B AB —>

Sum 0 E E> B C BC ->

(Sum 0 E E> A BC ABC <-> Sum 0 E E’ AB C ABC).

@ We cannot apply the standard Coq tactics ring and field.

We used an axiom which turns a relation which has been proved to be
functional into a proper Coq function.

Axiom constructive_definite_description :
forall (A : Type) (P : A->Prop),
(exists! x, Px) > {x: A | Px}.

However, this axiom turns the intuitionistic logic of Coq into an almost
classical logic.
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Total functions

@ The function are only defined for points which belong to our
ruler.
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Arithmetization of geometry utomated proofs of algebraic characterizatiol

Total functions

@ The function are only defined for points which belong to our
ruler.

Definition Sum O E E’ A B C :=
Ar2 0EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E> A’ /\
PfjOE A>C> /\PjOE B C /\
Pj E’ E C’ C.
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Total functions

@ The function are only defined for points which belong to our
ruler.

Definition Sum O E E’ A B C :=
Ar2 0EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E> A’ /\
PfjOE A>C> /\PjOE B C /\
Pj E’ E C’ C.

@ Nothing but total functions are allowed in Coq.
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Total functions

@ The function are only defined for points which belong to our
ruler.

Definition Sum O E E’ A B C :=
Ar2 0EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E> A’ /\
PfjOE A>C> /\PjOE B C /\
Pj E’ E C’ C.

@ Nothing but total functions are allowed in Coq.

@ Therefore we defined a dependent type to represent the points
belonging to the ruler.
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Total functions

@ The function are only defined for points which belong to our
ruler.

Definition Sum O E E’ A B C :=
Ar2 0EE’ ABC /\

exists A’, exists C’,

Pj EE> A A’ /\ Col 0 E> A” /\
PfjOE A>C> /\PjOE B C /\
Pj E’ E C’ C.

@ Nothing but total functions are allowed in Coq.

@ Therefore we defined a dependent type to represent the points
belonging to the ruler.

Definition F : Type := {P: Tpoint | Col O E P}.
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An ordered field
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An ordered field

We proved some lemmas asserting that the operations are
morphisms relative to our defined equality.
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An ordered field

We proved some lemmas asserting that the operations are
morphisms relative to our defined equality.

For example, the lemma asserting that if A= A" and B= B’
implies A+ B = A’ + B’ is defined in Coq as:
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An ordered field

We proved some lemmas asserting that the operations are
morphisms relative to our defined equality.

For example, the lemma asserting that if A= A" and B= B’
implies A+ B = A’ + B’ is defined in Coq as:

Global Instance addF_morphism :
Proper (EqF ==> EqF ==> EqF) AddF.
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An ordered field

We proved some lemmas asserting that the operations are
morphisms relative to our defined equality.

For example, the lemma asserting that if A= A" and B= B’
implies A+ B = A’ + B’ is defined in Coq as:

Global Instance addF_morphism :
Proper (EqF ==> EqF ==> EqF) AddF.

Finally, we can prove we have a field:
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An ordered field

We proved some lemmas asserting that the operations are
morphisms relative to our defined equality.

For example, the lemma asserting that if A= A" and B= B’
implies A+ B = A’ + B’ is defined in Coq as:

Global Instance addF_morphism :
Proper (EqF ==> EqF ==> EqF) AddF.

Finally, we can prove we have a field:

Lemma fieldF :
(field_theory OF OneF AddF MulF SubF OppF DivF InvF EgF).
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Outline

@ Arithmetization of geometry

@ Automated proofs of algebraic characterization
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Characterization of the predicates of the theory
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
Cong A B CD <>
let (Ac, HA) := coordinates_of_point_F A in let (Ax,Ay) := Ac in
let (Bc, HB) := coordinates_of_point_F B in let (Bx,By) Bc in
let (Cc, HC) := coordinates_of_point_F C in let (Cx,Cy) Cc in
let (Dc, HD) := coordinates_of_point_F D in let (Dx,Dy) := Dc in
(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
Cong A B CD <>
let (Ac, HA) := coordinates_of_point_F A in let (Ax,Ay) := Ac in
let (Bc, HB) := coordinates_of_point_F B in let (Bx,By) Bc in
let (Cc, HC) := coordinates_of_point_F C in let (Cx,Cy) Cc in
let (Dc, HD) := coordinates_of_point_F D in let (Dx,Dy) := Dc in
(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.

coordinates_of point_F is a one-to-one correspondence between the pairs of
points on the ruler representing the coordinates and the points of the plane.
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
Cong A B CD <>

(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.

coordinates_of point_F is a one-to-one correspondence between the pairs of
points on the ruler representing the coordinates and the points of the plane.
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
Cong A B CD <>

(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.

coordinates_of point_F is a one-to-one correspondence between the pairs of
points on the ruler representing the coordinates and the points of the plane.

(xa — x8)° + (ya — y8)* = (xc — x0)* + (yc — yp)’
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
Cong A B CD <>

(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.

coordinates_of point_F is a one-to-one correspondence between the pairs of
points on the ruler representing the coordinates and the points of the plane.

(xa — x8)° + (ya — y8)* = (xc — x0)* + (yc — yp)’

This was proved using the first synthetic and formal proofs of the intercept

and Pythagoras’ theorems.
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Characterization of the predicates of the theory

We formalized the characterizations of the predicates of the theory.

For example, the characterization of the congruence predicate is:

Lemma characterization_of_congruence_F : forall A B C D,
Cong A B CD <>

(Ax - Bx) * (Ax - Bx) + (Ay - By) * (Ay - By) -
((Cx - Dx) * (Cx - Dx) + (Cy - Dy) * (Cy - Dy)) =F= 0.

coordinates_of point_F is a one-to-one correspondence between the pairs of
points on the ruler representing the coordinates and the points of the plane.

(xa — x8)° + (ya — y8)* = (xc — x0)* + (yc — yp)’

This was proved using the first synthetic and formal proofs of the intercept

and Pythagoras’ theorems.
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A bootstraping approach
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A bootstraping approach

@ Wu's approach: prove manually the characterizations then
use these characterizations to obtain theorems automatically.
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A bootstraping approach

@ Wu's approach: prove manually the characterizations then
use these characterizations to obtain theorems automatically.

@ Our approach: prove manually only the first three
characterizations and obtain automatically the others.
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Automated proofs of characterizations
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Automated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.
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Automated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.

For example, to characterize the parallelism, we did
not use its definition, namely:
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Automated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.

For example, to characterize the parallelism, we did
not use its definition, namely:

Definition Par_strict A B C D :=
A<>B /\ C<>D /\ Coplanar A B C
~ exists X, Col X A B /\ Col X
Definition Par A B C D :=
Par_strict AB C D \/
(A<>B /\ C<>D /\ Col A CD /\ Col B CD).

Qo
SN
D
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omated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.

For example, to characterize the parallelism, we did
not use its definition, namely:

Definition Par_strict A B C D :=
A<>B /\ C<>D /\ Coplanar A B C
~ exists X, Col X A B /\ Col X
Definition Par A B C D :=
Par_strict AB C D \/
(A<>B /\ C<>D /\ Col A CD /\ Col B CD).

Qo
SN
D

But an equivalent statement:
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Automated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.

For example, to characterize the parallelism, we did
not use its definition, namely:

Definition Par_strict A B CD :

A<>B /\ C<>D /\ Coplanar A B C D /\
~ exists X, Col X A B /\ Col X C D.
Definition Par A B C D :=
Par_strict AB CD \/
(A<>B /\ C<>D /\ Col A C D /\ Col B CD). C D

But an equivalent statement:

Lemma characterization_of_parallelism_F_aux :
forall A B CD,
Par AB CD <>
A<>B/\C<D/\
exists P, Midpoint C A P /\
exists Q, Midpoint Q B P /\ Col C D Q.
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Automated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.

For example, to characterize the parallelism, we did
not use its definition, namely:

Definition Par_strict A B CD :

A<>B /\ C<>D /\ Coplanar A B C D /\ P
~ exists X, Col X A B /\ Col X C D.
Definition Par A B C D :=
Par_strict A B C D \/
(A<>B /\ C<>D /\ Col A CD /\ Col B CD). C D

But an equivalent statement:

Lemma characterization_of_parallelism_F_aux :
forall A B CD,
Par AB CD <>
A<>B/\C<D/\
exists P, Midpoint C A P /\
exists Q, Midpoint Q B P /\ Col C D Q.
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Automated proofs of characterizations

We used the Grobner basis method to prove new
characterizations from already proven ones.

For example, to characterize the parallelism, we did
not use its definition, namely:

Definition Par_strict A B C D :=
A<>B /\ C<>D /\ Coplanar A B C
~ exists X, Col X A B /\ Col X
Definition Par A B C D :=
Par_strict AB C D \/
(A<>B /\ C<>D /\ Col A CD /\ Col B CD).

C Q D
But an equivalent statement:
. A B

Lemma characterization_of_parallelism_F_aux :
forall A B CD,
Par AB CD <>
A<>B/\C<D/\
exists P, Midpoint C A P /\
exists Q, Midpoint Q B P /\ Col C D Q.

Qo
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization

AB = CD (a —xg)* + (va — y8)* — (xc = x0)* + (yc —yp)> = ©
A—-B—C

Col ABC

A-I-B

NABC

AB || cD

AB L CD
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization
_ 2 2 2 2

AB = CD (xa —=xg)°+(va —y8)" — (xc =xp)" +(yc —yp)* = 0

A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =y8 —ya

Col ABC

A-I-B

NABC

AB || CD

AB L CD

Pierre Boutry Formal Proofs in Tarski's System of Geometry




Construction of an ordered field

Arithmetization of geometry Automated proofs of algebraic characterization

Automated proofs of characterizations

Geometric predicate Algebraic Characterization

AB = CD (xa — x8)* + (va — ¥8)> — (xc —xp)> + (yc —yp)*> = O

A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =y8 —ya

Col ABC (xa —xg)(yg —yc) — (va —yB)xg —xc) = 0

A-I-B

NABC

AB || CD

AB L CD
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization
AB = CD (xa — x8)* + (va — ¥8)> — (xc —xp)> + (yc —yp)*> = O
A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =y8 —ya

Col ABC (xa —x8)(yg —yc) —(va —yB)xg —xc) = 0O

2xp — (xa+xg) = 0 A
A-I-B

2y —(vatyg) = 0
NABC
AB || CD
AB L CD
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization
_ 2 2 2 2
AB = CD (xa —=xg)°+(va —y8)" — (xc =xp)" +(yc —yp)* = 0
A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =y8 —ya

Col ABC (xa —xg)(yg —yc) — (va —yB)xg —xc) = 0

2xp — (xa+xg) = 0 A
A-l-B

2y —(vatyg) = 0
NABC (xa = xB)(xg —xc)+ (va —yB)yg —yc) = 0
AB || cD
AB L CD
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization
AB = CD (a —xg)* + (va — y8)* — (xc = x0)* + (yc —yp)> = ©
A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =yg —ya
Col ABC (xa —xg)lyg —yc) —(va—yB)xg —xc) = 0
2xp — (xa+xg) = 0 A
A-I-B
2yy—(yatyg) = 0
NABC (xa —xg)(xg —xc)+(va—yB)ys —yc) = 0
(xa —xg)(xc —xp)+(ya —yB)yc —yc) = 0 A
AB || CD (xa —xg)(xa —xg) + (ya —yB)(ya—yg) # 0 A
(xc = xp)(xc —xp) + (yc —yp)lyc —yp) # O

AB L CD
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization
AB = CD (a —xg)* + (va — y8)* — (xc = x0)* + (yc —yp)> = ©
A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =yg —ya
Col ABC (xa —xg)lyg —yc) —(va—yB)xg —xc) = 0
2xp — (xa+xg) = 0 A
A-I-B
2yy—(yatyg) = 0
NABC (xa —xg)(xg —xc)+(va—yB)ys —yc) = 0
(xa —xg)(xc —xp)+(ya —yB)yc —yc) = 0 A
AB || CD (xa —xg)(xa —xg) + (ya —yB)(ya—yg) # 0 A
(xc = xp)(xc —xp) + (yc —yp)lyc —yp) # O
(xa —xg)lyc —yp) — (ya —yB)(xc —xp) = 0 A
AB L CD (xa —xg)(xa —xg) + (ya —yB)(ya—yg) # 0 A
(xc = xp)(xc —xp) + (yc —yp)lyc —yp) # O
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Automated proofs of characterizations

Geometric predicate Algebraic Characterization
AB = CD (a —xg)* + (va — y8)* — (xc = x0)* + (yc —yp)> = ©
A—B—C Ido<t<in xe—xa)=xg—xa A
tlyc —ya) =yg —ya
Col ABC (xa —xg)lyg —yc) —(va—yB)xg —xc) = 0
2xp — (xa+xg) = 0 A
A-I-B
2yy—(yatyg) = 0
NABC (xa —xg)(xg —xc)+(va—yB)ys —yc) = 0
(xa —xg)(xc —xp)+(ya —yB)yc —yc) = 0 A
AB || CD (xa —xg)(xa —xg) + (ya —yB)(ya—yg) # 0 A
(xc = xp)(xc —xp) + (yc —yp)lyc —yp) # O
(xa —xg)lyc —yp) — (ya —yB)(xc —xp) = 0 A
AB L CD (xa —xg)(xa —xg) + (ya —yB)(ya—yg) # 0 A
(xc = xp)(xc —xp) + (yc —yp)lyc —yp) # O

We first proved the characterization of the midpoint predicate manually and then automatically and the script of

the proof by computation was eight times shorter than our original one.
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An example of proof by computation
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An example of proof by computation

Our example is the nine-point circle
theorem which states that the following
nine points are concyclic: B
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Arithmetization of geometry

An example of proof by computation

Our example is the nine-point circle
theorem which states that the following
nine points are concyclic:

@ The midpoints of each side of the
triangle;
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Arithmetization of geometry

An example of proof by computation

Our example is the nine-point circle
theorem which states that the following
nine points are concyclic:

@ The midpoints of each side of the
triangle;
@ The feet of each altitude;
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Arithmetization of geometry

An example of proof by computation

Our example is the nine-point circle
theorem which states that the following
nine points are concyclic:

@ The midpoints of each side of the
triangle;
@ The feet of each altitude;

@ The midpoints of the line-segments
from each vertex of the triangle to
the orthocenter.
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Construction of an ordered field
Automated proofs of algebraic characterization

Arithmetization of geometry

An example of proof by computation

Lemma nine_point_circle:

forall A B C A1 B1 C1 A2 B2 C2 A3 B3 C3 H O,
" Col ABC —>
Col A B C2 -> Col B C A2 -> Col A C B2 —>
Perp A B C C2 -> Perp B C A A2 -> Perp A C B B2 —>
Perp A B C2H -> Perp BC A2 H -> Perp A C B2 H ->
Midpoint A3 A H -> Midpoint B3 B H -> Midpoint C3 C H —>
Midpoint C1 A B -> Midpoint A1 B C -> Midpoint B1 C A —>
Cong 0 A1 0 B1 -> Cong 0 A1 0 C1 >
Cong 0 A2 0 A1 /\ Cong 0 B2 0 A1l /\ Cong 0O C2 0 A1 /\
Cong 0 A3 0 A1 /\ Cong 0 B3 0 A1 /\ Cong 0 C3 0O Al.
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Construction of an ordered field
Automated proofs of algebraic characterization

Arithmetization of geometry

An example of proof by computation

Lemma nine_point_circle:

forall A B C A1 B1 C1 A2 B2 C2 A3 B3 C3 H O,
" Col ABC —>
Col A B C2 -> Col B C A2 -> Col A C B2 —>
Perp A B C C2 -> Perp B C A A2 -> Perp A C B B2 —>
Perp A B C2H -> Perp BC A2 H -> Perp A C B2 H ->
Midpoint A3 A H -> Midpoint B3 B H -> Midpoint C3 C H —>
Midpoint C1 A B -> Midpoint A1 B C -> Midpoint B1 C A —>
Cong 0 A1 0 B1 -> Cong 0 A1 0 C1 >
Cong 0 A2 0 A1 /\ Cong 0 B2 0 A1l /\ Cong 0O C2 0 A1 /\
Cong 0 A3 0 A1 /\ Cong 0 B3 0 A1 /\ Cong 0 C3 0O Al.

@ We did not prove a theorem about polynomials but a geometric
statement.
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Construction of an ordered field
Automated proofs of algebraic characterization

Arithmetization of geometry

An example of proof by computation

Lemma nine_point_circle:

forall A B C A1 B1 C1 A2 B2 C2 A3 B3 C3 H O,
" Col ABC —>
Col A B C2 -> Col B C A2 -> Col A C B2 —>
Perp A B C C2 -> Perp B C A A2 -> Perp A C B B2 —>
Perp A B C2H -> Perp BC A2 H -> Perp A C B2 H ->
Midpoint A3 A H -> Midpoint B3 B H -> Midpoint C3 C H —>
Midpoint C1 A B -> Midpoint A1 B C -> Midpoint B1 C A —>
Cong 0 A1 0 B1 -> Cong 0 A1 0 C1 >
Cong 0 A2 0 A1 /\ Cong 0 B2 0 A1l /\ Cong 0O C2 0 A1 /\
Cong 0 A3 0 A1 /\ Cong 0 B3 0 A1 /\ Cong 0 C3 0O Al.

@ We did not prove a theorem about polynomials but a geometric
statement.

@ The nine-point circle theorem is true in any model of Tarski's Euclidean
geometry axioms (without continuity) and not only in a specific one.

Pierre Boutry Formal Proofs in Ta

ki's System of Geometry



Perspectives

Perspectives

Pierre Boutry Formal Proofs in Tarski's System of Geometry



Perspectives

Perspectives

@ Instantiate other automated deduction methods or axiomatic
systems such as Wu's method or real closed fields.
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Perspectives

Perspectives

@ Instantiate other automated deduction methods or axiomatic
systems such as Wu's method or real closed fields.

@ Verify the constructive version of the arithmetization of
geometry introduced by Beeson.
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Perspectives

Perspectives

@ Instantiate other automated deduction methods or axiomatic
systems such as Wu's method or real closed fields.

@ Verify the constructive version of the arithmetization of
geometry introduced by Beeson.
@ Formalize the arithmetization of hyperbolic geometry.
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Perspectives

Perspectives

@ Instantiate other automated deduction methods or axiomatic
systems such as Wu's method or real closed fields.

@ Verify the constructive version of the arithmetization of
geometry introduced by Beeson.

@ Formalize the arithmetization of hyperbolic geometry.

@ Extend our formalization of geometry to higher dimension
geometry.
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Thank you!
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