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miniISOLDE, Lindalg: First-order linear ordinary differential systems with Singularities

miniISOLDE- Lindalg

Formal Solutions of

xp+1 dY

dx
= A(x)Y ,A ∈ C[[x ]]

Example (Barkatou’1997)

x3 dY

dx
=


−2x2 x5 + x4 + x −x x + x2

1 x − 2x2 0 0
0 x −x2 − x 0
−x3 −2x4 x 0

Y

Required: Compute a solution in a neighborhood of x = 0.
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Φ(x1/s) xC exp(Q(x−1/s))

s is a positive integer referred to as the ramification index ;

Φ is a matrix of meromorphic series in x1/s (root-meromorphic in x)
over C;

Q(x−1/s) is the exponential part. It is a diagonal matrix whose
entries are polynomials in x−1/s over C without contant terms.

C is a constant matrix which commutes with Q(x−1/s).

Existence: Turrittin, Hukuhara, Levelt, Balser-Jurkat-Lutz, . . .

Algorithms for related problems: Levelt, Hilali and Wazner (1980s),
Sommeling (1993), Chen, Schaefke, van Hoeij , Barkatou,(1990s,
2004), Pfluegel (2000), Barkatou-Pfluegel (2007, 2009), . . .

Wasow (1965), Balser(2000), Hsieh and Sibuya (1999),..

ISOLDE in Maple by Barkatou, E. Pfluegel (2012).

miniIsolde in Maple and Lindalg in Mathemagix
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Figure: How to compute an intermediate “nicer” system(s)?
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Equivalent systems
T (x) ∈ GLn(C((x)))

xp+1 dY

dx
= A(x)Y , A(x) ∈ C[[x ]]

↓ Y = TZ

x p̃+1 dZ

dx
= Ã(x)Z , Ã(x) ∈ C[[x ]]

Ã

x p̃+1
= T−1 A

xp+1
T − T−1 dT

dx
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Demo: Splitting Lemma

xp+1 dY

dx
= A(x)Y = (A0 + A1x + A2x

2 + . . . )Y

O
+

O
x + x2 + x3 + . . .

O
+

O

O
x +

O
x2 + x3 + . . .

O
+

O

O
x +

O

O
x2 +

O
x3 + . . .

Maple file: Splitting Lemma examples
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Rank Reduction

Two kinds of transformations: Constant transformations and shearing
transformations in x

x0+ x1+ x2+ x3
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Rank Reduction

Two kinds of transformations: Constant transformations and shearing
transformations in x

x1+ x2+ x3
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Rank Reduction
Shearing transformation?

T =


x

. . .

x
1

. . .

1



x0+ x1+ x2+ x3
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Demo: Rank Reduction (Barkatou’1995)

Maple file: Rank reduction examples (Barkatou’1996)
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Formal Reduction (Barkatou’1997)

Φ(x1/s) xC exp(Q(x−1/s))
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Demo: Formal Reduction (Barkatou’1997)

Maple file: Examples on computing exponential parts

13 / 58



Algorithms for Differential Systems

ParamInt: First-order linear singularly-perturbed ordinary differential systems

1 miniISOLDE, Lindalg: First-order linear ordinary differential systems
with Singularities

2 ParamInt: First-order linear singularly-perturbed ordinary differential
systems

3 PfaffInt: Completely Integrable Pfaffian systems with normal crossings

4 AppSing: Apparent Singularities

5 Summary

14 / 58



Algorithms for Differential Systems

ParamInt: First-order linear singularly-perturbed ordinary differential systems

ParamInt

Example

ε2 dY

dx
=

0 1 0
0 0 1
ε 0 x

Y

Required: Compute a solution in a full neighborhood of x = 0 as ε→ 0.
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Iwano’s formulation (1963)

(1) Divide a domain [D] in (x , ε)-space into a finite number of
subdomains so that the solution behaves quite differently
as ε tends to zero in each of these subdomains;

(2) Find out a complete set of asymptotic expressions of
independent solutions in each of these subdomains;

(3) Determine the so-called connection formula; i.e. a relation
connecting two different complete sets of the asymptotic
expressions obtained in (2).
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

State of Art

Existence: Turrittin, Hukuhara, Levelt, Balser-Jurkat-Lutz,
Schaefke-Volkmer, . . .

Capitalized on Arnold-Wasow form (classical approach for the
unperturbed counterpart): Turrittin (1952), Iwano-Sibuya (60’s),
Wasow (1979), . . .

Algorithmic Treatment excluding turning points: G. Chen (1990),
. . .

Scalar nth-order: Iwano-Sibuya (1963) , Macutan (1999), . . .

Analytic Reduction : Fruchard - Schaefke (2013) , Hulek, . . .

Proufound advancement in the last two decades witihn the research line
of unperturbed singular linear differential systems in contrast to the
perturbed ones (Wasow’ 1985).
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εh
dY

dx
= A(x , ε)Y =

∞∑
k=0

Ak(x)εkY .

BUT we need to consider the more general systems:

Kε = {f =
∑
k∈Z

fk(x)εk ∈ C((x))((ε)) s.t.

valx(fk) ≥ σk + p for some σ ∈ Q−, p ∈ Q}

xpξh
dY

dx
= A(x , ξ)Y =

∞∑
k=0

Ak(x)ξkY .

ξ = xσε, σ ∈ Q−, p ∈ Q;

For all k ≥ 0, Ak(x) ∈Mn(C[[x ]]);

σ is called restraining index ;

h > 0, (and A0(x) 6= 0);

At the starting point, σ = 0 and p = 0.
18 / 58
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Iwano’s formulation (1963)

(1) Divide a domain [D] in (x , ε)-space into a finite number of
subdomains so that the solution behaves quite differently
as ε tends to zero in each of these subdomains;

(2) Find out a complete set of asymptotic expressions of
independent solutions in each of these subdomains;

Construct formal solutions:
Abbas-Barkatou-Maddah’ISSAC2014,
Barkatou-Maddah’2016

(Maple package ParamInt)

(3) Determine the so-called connection formula; i.e. a relation
connecting two different complete sets of the asymptotic
expressions obtained in (2).
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Figure: How to compute an intermediate “nicer” system(s)?
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Equivalent systems

[AσA
] xpξh

dF

dx
= A(x , ξ)F , ξ = xσAε

↓ F = TG , T ∈ GLn(Kε) ?

[ÃσÃ
] ξ̃h̃x p̃

dG

dx
= Ã(x , ξ̃) G , ξ̃ = xσÃε

We have:
Ã(x , ξ̃)

ξ̃h̃x p̃
= T−1 A(x , ξ)

ξhxp
T − T−1 dT

dx
.
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Example

ε2 dY

dx
=

0 1 0
0 0 1
ε 0 x

Y

With σA = 0 we can write:

ξ2 dY

dx
=

0 1 0
0 0 1
ξ 0 x

Y where A0(x) =

0 1 0
0 0 1
0 0 x

 .
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ξ2 dY
dx =

0 1 0
0 0 1
ξ 0 x

Y where A0(x) =

0 1 0
0 0 1
0 0 x

 and σA = 0.

Let T = diag(1, x , x2). Then Y = TG yields:

ξ2 dG

dx
= x{

0 1 0
0 0 1
0 0 1

+

0 0 0
0 0 0
1 0 0

 x−3ξ+

0 0 0
0 −1 0
0 0 −2

 x−2ξ2 } G .

Setting ξ̃ = x−3ξ = x−3ε, the former can be rewritten equivaently as:

ξ̃2x5 dG

dx
= {

0 1 0
0 0 1
0 0 1

+

0 0 0
0 0 0
1 0 0

 ξ̃ +

0 0 0
0 −x4 0
0 0 −2x4

 ξ̃2 } G .
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Let G = TW where T =

1 0 1
0 1 1
0 0 1

+

−1 −1 0
−1 −1 −2
−1 −1 0

 ξ̃ + O(ξ̃2).

Then with W = [W1,W2]T we have:

ξ̃2x5 dW1

dx
= {

[
0 1
0 0

]
+

[
−1 0
−1 0

]
ξ̃ +

[
1 −1
1 −1 + x4

]
ξ̃2 + O(ξ̃3) }W1.

ξ̃2x5 dW2

dx
= {1 + ξ̃ + (1 + 2x4)ξ̃2 + O(ξ̃3) }W2.
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We have:

ξ̃2x5 dW1

dx
= {

[
0 1
0 0

]
+

[
−1 0
−1 0

]
ξ̃ +

[
1 −1
1 −1 + x4

]
ξ̃2 + O(ξ̃3) }W1.

ξ̃2x5 dW2

dx
= {1 + ξ̃ + (1 + 2x4)ξ̃2 + O(ξ̃3) }W2.

The second subsystem is scalar and the exponential part is
exp(

∫
ξ̃−2x−5(1 + O(ξ̃)) dx) = exp( 1

2ε
−2x2(1 + O(ε−2x2))).

The first subsystem has a nilpotent leading matrix and requires
further reduction.
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ξ2x5 dW1

dx
= B(x , ξ)W1

= {
[

0 1
0 0

]
+

[
−1 0
−1 0

]
ξ +

[
1 −1
1 −1 + x4

]
ξ2 + O(ξ3) }W1.

Set ξ = ξ̃2x3 .
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Apply ε-rank reduction via Diag(1, ξ̃), we get the following
ε̃-irreducible system

ξ̃3x11 dS

dx
= B̃(x , ξ̃)S where

B̃(x , ξ̃) =

[
0 1
−x3 0

]
+

[
−x3 0

0 0

]
ξ̃ +

[
0 0
x6 0

]
ξ̃2

+

[
x6 0
0 x6(−1 + x4)

]
ξ̃3 +

[
0 −x6

0 0

]
ξ̃4 + O(ξ̃5).
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Apply turning point algorithm:

S =

[
1 0
0 x3/2

]
U

which yields

ξ̃3x19/2 dU

dx
= B̃(x , ξ̃)U where

B̃(x , ξ̃) =

[
0 1
−1 0

]
+

[
−x3/2 0

0 0

]
ξ̃ +

[
0 0
x3 0

]
ξ̃2

+

[
x9/2 0

0 x9/2(−1 + x + x4)

]
ξ̃3 +

[
0 −x3

0 0

]
ξ̃4 + O(ξ̃5).
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Applying Splitting Lemma and re-substituting for ξ̃2x3 = ξ = x−3ε,
we get

ε3/2x1/2 dR

dx
= ˜̃B(x , ε)R where

˜̃B(x , ε) =

[
−i 0
0 i

]
+

[
− 1

2 0
0 − 1

2

]
x−3/2ε1/2 + O(x−3ε).
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ParamInt: First-order linear singularly-perturbed ordinary differential systems
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Example

ξ2 dY
dx =

0 1 0
0 0 1
ξ x 0

Y where A0(x) =

0 1 0
0 0 1
0 x 0

 , σA = 0. Here,

s = 2. So we can set x = t2 and let Y =

0 0 1
0 x1/2 0
0 0 x

G then:

ξ2 dG

dx
= x1/2{

0 1 0
1 0 0
0 1 0

+

0 0 0
0 0 0
1 0 0

 x−3/2ξ+

0 0 0
0 −1 0
0 0 −2

 x−1ξ2} G ,

or with the readjustment ξ̃ = x−3/2ξ = x−3/2ε:

ξ̃2x5/2 dG

dx
= {

0 1 0
1 0 0
0 1 0

+

0 0 0
0 0 0
1 0 0

 ξ̃ +

0 0 0
0 −x2 0
0 0 −2x2

 ξ̃2 } G ,
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ParamInt: First-order linear singularly-perturbed ordinary differential systems
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ParamInt: First-order linear singularly-perturbed ordinary differential systems

Demo: Formal Reduction

Construction of a fundamental matrix of formal solutions by a recursive
algorithm:

Y = (
∞∑
i=0

Φi (x
1/s) εi/d) exp(

∫
Q(x1/s , ε−1/d)),

where s, d are positive integers;
∫
Q is the diagonal matrix whose entries

are polynomials in ε−1/d with coefficients in C((x1/s))

Maple file: Examples on formal reduction
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Algorithms for Differential Systems

PfaffInt: Completely Integrable Pfaffian systems with normal crossings

1 miniISOLDE, Lindalg: First-order linear ordinary differential systems
with Singularities

2 ParamInt: First-order linear singularly-perturbed ordinary differential
systems

3 PfaffInt: Completely Integrable Pfaffian systems with normal crossings

4 AppSing: Apparent Singularities

5 Summary
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

PfaffInt

Example


x4

1
∂
∂x1

Y =

[
x3

1 + x2
1 + x2 x2

2

−1 x3
1 + x2

1 − x2

]
Y

x3
2
∂
∂x2

Y =

[
x2

2 − 2x2 − 6 x3
2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.

Required: Compute a solution in a neighborhood of (x , y) = (0, 0).
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

General form

[A]


xp1+1

1
∂
∂x1

Y = A(1)(x1, x2, . . . , xm) Y

xp2+1
2

∂
∂x2

Y = A(2)(x1, x2, . . . , xm) Y
...

xpm+1
m

∂
∂xm

Y = A(m)(x1, x2, . . . , xm) Y

For i , j ∈ {1, . . . ,m},
pi is an integer and p = (p1, . . . , pm) is called Poincaré rank

A(i) ∈ R = C[[x1, . . . , xm]] (i th-component), and

Integrability conditions:

xpi+1
i

∂

∂xi
A(j)(x) − x

pj+1
j

∂

∂xj
A(i)(x) = A(i)(x) A(j)(x) − A(j)(x) A(i)(x).
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Fundamental matrix of formal solutions

Φ(x
1/s1

1 , . . . , x1/sm
m )

m∏
i=1

xCi

i

m∏
i=1

exp(Qi (x
−1/si
i ))

Φ is an invertible matrix whose entries are meromorphic series in

(x
1/s1

1 , . . . , x
1/sm
m ) over C;

Qi (x
−1/si
i ) is a diagonal matrix of polynomials in x

−1/si
i over C

without contant terms.

Ci is a constant matrix which commutes with Qi (x
−1/si
i ).

H. Charrière, P. Deligne, R. Gérard, A. H. M. Levelt, Y. Sibuya, A.
van den Essen, . . . (70’s and 80’s)

Algorithms: Reduction of Poincaré rank, Constructing Solutions of
regular systems - Barkatou and LeRoux (2006), Closed Form
Solutions of Integrable Connections:
Barkatou-Cluzeau-ElBacha-Weil’2012
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Example
Poincaré Rank Reduction, Barkatou-LeRoux’2006

x4
1
∂
∂x1

Y = A(1)(x1, x2) Y =

([
x3

1 + x2 x2
2

−1 −x2 + x3
1

])
Y

x2
2
∂
∂x2

Y = A(2)(x1, x2) Y =

([
x2 x2

2

−2 −3x2

])
Y

↓ Y =

([
x3

1 −x2
2

0 x2

])
G

x1x2
∂
∂x1

G = Ã(1)(x1, x2) G =

([
−2x2 0

−1 x2

])
G

x3
2
∂
∂x2

G = Ã(2)(x1, x2) G =

([
−x2

2 0

−2x3
1 −2x2

2

])
G .
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∂
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−1 x2

])
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x3
2
∂
∂x2
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−x2
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−2x3
1 −2x2

2

])
G .
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Input
system

First
component

Last
component

First
associated

ODS

Last
associated

ODS

Exp. part
in first var.

Exp. part
in last var.

Exp. part

Figure: Computing the exponential part from associated ODS’s
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Example


x4

1
∂
∂x1

Y =

[
x3

1 + x2
1 + x2 x2

2

−1 x3
1 + x2

1 − x2

]
Y

x3
2
∂
∂x2

Y =

[
x2

2 − 2x2 − 6 x3
2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.

Associated system:
x4

1
d
dx1
Y =

[
x3

1 + x2
1 0

−1 x3
1 + x2

1

]
Y

x3
2

d
dx2
Y =

[
x2

2 − 2x2 − 6 x3
2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.
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x4

1
d
dx1
Y =

[
x3

1 + x2
1 0

−1 x3
1 + x2

1

]
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x3
2

d
dx2
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x2

2 − 2x2 − 6 x3
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−2x2 −3x2
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Y
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Example


x4

1
dY
dx1

=

[
x3

1 + x2
1 + x2 x2

2

−1 x3
1 + x2

1 − x2

]
Y

x3
2
dY
dx2

=

[
x2

2 − 2x2 − 6 x3
2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.

With miniISOLDE or Lindalg we compute from the asscoiated system

Φ(x1, x2) xC1
1 xC2

2 exp(

[−1
x1

0

0 −1
x1

]
) exp(

[ 3
x2

2 + 2
x2

0

0 3
x2

2 + 2
x2

]
).
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Upon applying

Y = exp(
−1

x1
) exp(

3

x2
2

+
2

x2
) G ,

we have 
x4

1
∂
∂x1

G =

[
x3

1 + x2 x2
2

−1 x3
1 − x2

]
G

x2
2
∂
∂x2

G =

[
x2 x2

2

−2 −3x2

]
G

And so, it is left to obtain:

G (x1, x2) = Φ(x1, x2) xC1
1 xC2

2 .
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

For rank-reduction, we apply G = T1H where

T1 =

[
x2x

3
1 −x2

0 1

]
which yields: 

x1
∂
∂x1

H =

[
−2 0

−x2 1

]
H,

x2
∂
∂x2

H =

[
−2 0

−2x3
1 −1

]
H.
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Finally, we compute

T2 =

[
1 0

x2

3 + 2x3
1 −1

]
.

Then H = T2 U yields
x1

∂
∂x1

U = C1 U =

[
−2 0

0 1

]
U,

x2
∂
∂x2

U = C2 U =

[
−2 0

0 −1

]
U.
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings


x4

1
∂
∂x1

F =

[
x3

1 + x2
1 + x2 x2

2

−1 x3
1 + x2

1 − x2

]
F

x3
2
∂
∂x2

F =

[
x2

2 − 2x2 − 6 x3
2

−2x2 −3x2
2 − 2x2 − 6

]
F

.

A fundamental matrix of formal solutions is given by

T1 T2 xC1
1 xC2

2 exp(

[−1
x1

0

0 −1
x1

]
) exp(

[ 3
x2

2 + 2
x2

0

0 3
x2

2 + 2
x2

]
).
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Input
system

First
component

Last
component

System w.
lower dim.

System w.
lower dim.

≥ 2 distinct
eigenvalues

Unique
eigenvalue

Nilpotent

System w.
lower dim.

System w.
lower dim.

Apply rank
reduction

in first var.

≥ 2 distinct
eigenvalues

Nilpotent
Compute

exp. order
in first var.

Ram.
in

first
var.
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Demo

Maple file: Examples on formal reduction (Abbas-M. Barkatou-S.S.
Maddah-ISSAC’14 and M. Barkatou- M.
Jaroschek-S.S.Maddah-Submitted’2015)
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Perturbed Pfaffian System in Quantum Chromodynamics
Communicated by Clemens Raab, Group of Elementary Particle Theory;

DESY Research Center of Experimental Physics, Hamburg.


∂

∂x
Y = A(x , y , ε)Y = 1

ε (−1+x) x (xy−y+1) (xy+ε−y+1)

[
O4×4 O4×3

M(x , y) N(x , y)

]
Y

∂Y

∂y
= B(x , y , ε)Y = 1

y (y−1) (xy−y+1) (xy+ε−y+1)

[
E (x , y) O4×3

H(x , y) L(x , y)

]
Y

Objective

Construct a solution in a neighborhood of (x , y = 1)
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Y = T Z where T = Diag(ε, ε, ε, ε, 1, 1, 1) yields an equivalent
system non-singular in ε;

Apply a translation of independent variable z = y − 1.

Let Z =

[
G
R

]
be a FMFS. We have


∂G

∂x
= O4×1

z
∂G

∂z
= E (z , ε)G

and 
∂R

∂x
= Ñ(x , z , ε)R + M̃(x , z , ε)R

∂R

∂z
= L̃(x , z , ε)R + H̃(x , z , ε)R
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PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Since the perturbation is non-singular in ε, the solution can be
obtained by this self-explanatory rewriting (up to some order µ in ε):G =

∑µ
i=0 Gi (z) εi ,

R =
∑µ

i=0 Ri (x , z) εi

Substituting and comparing coefficients of like-wise powers of ε, the
problem is reduced to solving successively

A set of inhomogeneous (except for the first) ODS
A set of inhomogeneous completely integrable Pfaffian systems with
normal crossings

50 / 58



Algorithms for Differential Systems

PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Since the perturbation is non-singular in ε, the solution can be
obtained by this self-explanatory rewriting (up to some order µ in ε):G =

∑µ
i=0 Gi (z) εi ,

R =
∑µ

i=0 Ri (x , z) εi

Substituting and comparing coefficients of like-wise powers of ε, the
problem is reduced to solving successively

A set of inhomogeneous (except for the first) ODS
A set of inhomogeneous completely integrable Pfaffian systems with
normal crossings

50 / 58



Algorithms for Differential Systems

PfaffInt: Completely Integrable Pfaffian systems with normal crossings

Application in Statistics: Muirhead system
Communicated by N. Takayama, Kobe University, Japan


∂
∂x F = 1

x2(y−x)2 A(x , y) F

∂
∂y F = 1

y2(x−y)2 B(x , y) F

Objective

Construct a Fundamental Matrix of Formal Solutions in nbhd of (0, 0)

No Normal Crossings

A(x , y) = P B(y , x) where P is a permutation matrix.
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AppSing: Apparent Singularities

1 miniISOLDE, Lindalg: First-order linear ordinary differential systems
with Singularities

2 ParamInt: First-order linear singularly-perturbed ordinary differential
systems

3 PfaffInt: Completely Integrable Pfaffian systems with normal crossings

4 AppSing: Apparent Singularities

5 Summary
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AppSing: Apparent Singularities

AppSing

dY

dx
= A(x)Y , A(x) ∈Mn(C(x))

Apparent singularities

If x0 is a pole of A(x) but there exists a fundamental matrix of formal
solutions whose entries are holomorphic in some neighborhood of x0, then
x0 is an apparent singularity.

Detecting and removing apparent singularities (M. Barkatou, S.S.
Maddah, ISSAC’15): Maple file: Examples on removing apparent

singularities
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Summary

1 miniISOLDE, Lindalg: First-order linear ordinary differential systems
with Singularities

2 ParamInt: First-order linear singularly-perturbed ordinary differential
systems

3 PfaffInt: Completely Integrable Pfaffian systems with normal crossings

4 AppSing: Apparent Singularities

5 Summary
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Lindalg: Mathemagix package for symbolic resolution of linear
systems of differential equations with singularities.

miniISOLDE : Maple package for symbolic resolution of linear
Systems of Differential Equations with singularities.

ParamInt: Maple package for symbolic resolution of
singularly-perturbed linear systems of differential equations,
prototype implementaton.

PfaffInt: Maple package for symbolic resolution of completely
integrable pfaffian systems with normal crossings, prototype
implementation.

AppSing: Maple package for removing apparent singularities of
systems of linear differential equations with rational function
coefficients.

ParamAlg: Maple package for differential-like reduction of
matrices perturbed by a parameter.

S.S. Maddah, http : //specfun.inria.fr/ smaddah/
55 / 58



Algorithms for Differential Systems

Summary

Nov. 14th
Generalized Hypergeometric Solutions of Linear Differential Systems :
Test equivalence between an input system and a hypergeometric system

Given system

[A] ∂W = A(x)W where

A(x) =

− 3x4+15x3−x2−86x−85

(x2−x−3)(x+3)2(x+4)(x+1)

(x+4)(2x3+11x2+12x−8)

(x2−x−3)(x+3)2
(x2+1)(x+4)2(x+2)

(x2−x−3)(x+3)2x

−1

(x2−x−3)(x+3)2(x+4)

−(3x4+18x3+23x2−23x−35)

(x2−x−3)(x+3)2(x+1)

−(x+2)(x+4)2

(x2−x−3)(x+3)2x

x(30x2+79x+12)

30(x+2)3(x+3)

x(15x3−169x−147)(x+4)

−30(x+2)3(x+3)
15x5+121x4+323x3+394x2+387x+270

15(x+2)(x+3)2x(x+1)

.
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[H2,0] ∂Y = H2,0(x)Y =

 0 1 0
0 0 1
−1
2x2

45x+4
30x2 1− −14

15x


The change of variable x → (x+2)2

x+3

The gauge transformation Y = T (x)Z where

T (x) =

 1 x2 + 1 0
1

x+4 1 0

0 0 1
x

.

The exp-product transformation Z = We
∫

1
x+1 dx

Result

Solutions of input system [A] can be expressed in terms of generalized
hypergeometric functions.
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Take AppSing a step further: RemovSing

Use miniISOLDE to compute generalized exponents of systems
involved

Maple package GenHypSols
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