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minilSOLDE- Lindalg

Formal Solutions of

X’JH% =A(x)Y,A e C[[«]]

Example (Barkatou'1997)

—2x2 xX° 4+ x*+x —X X + x2
dyY 1 x — 2x2 0 0
3— =
x dx 0 X —x2 —x 0 Y
—x3 —2x* X 0

Required: Compute a solution in a neighborhood of x = 0.
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O(x*) x exp(Q(x /7))

m s is a positive integer referred to as the ramification index;

1/5 (root-meromorphic in x)

m ® is a matrix of meromorphic series in x
over C;

m Q(x~1/%) is the exponential part. It is a diagonal matrix whose
entries are polynomials in x~/* over C without contant terms.

m C is a constant matrix which commutes with Q(x~%/%).
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O(x*) x exp(Q(x /7))

m s is a positive integer referred to as the ramification index;

® is a matrix of meromorphic series in x/* (root-meromorphic in x)
over C;

m Q(x~1/%) is the exponential part. It is a diagonal matrix whose
entries are polynomials in x~1/% over C without contant terms.

m C is a constant matrix which commutes with Q(x~1/%).

m Existence: Turrittin, Hukuhara, Levelt, Balser-Jurkat-Lutz, ...

m Algorithms for related problems: Levelt, Hilali and Wazner (1980s),
Sommeling (1993), Chen, Schaefke, van Hoeij , Barkatou,(1990s,
2004), Pfluegel (2000), Barkatou-Pfluegel (2007, 2009), ...

m Wasow (1965), Balser(2000), Hsieh and Sibuya (1999),..
m ISOLDE in MAPLE by Barkatou, E. Pfluegel (2012).
m MINIISOLDE in MAPLE and LINDALG in Mathemagix
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Figure: How to compute an intermediate “nicer” system(s)?
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Equivalent systems
T(x) € GLa(C((x)))

pr1dY _ Ax)Y, A(x) € Cl[[x]]
1Y=177
o

= Az, Ax) e Clix]
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Equivalent systems
N

(x) € GLa(C((x)))

xPT1 av

=AMX)Y, Alx) € C[[x]]

ly=1z

=A(x)Z, A(x) e C[[x]]

A dT
1 -1
xP+1 T xp+1 r=r dx
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Demo: Splitting Lemma

4
19V AGOY = (Ao + Aux+ AP + ...

dx
9 + x + 2
0 2%
- - SR -
Lo L L
O + I O X + e i 2
O O | L LU L LLygrLL X
o B (e

+ ] X+
0 o[ oy~

MAPLE file: Splitting Lemma examples
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Rank Reduction

Two kinds of transformations: Constant transformations and shearing
transformations in x
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Rank Reduction

Two kinds of transformations: Constant transformations and shearing
transformations in x

x1—|— x2—|— x3
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Rank Reduction

Shearing transformation?
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Rank Reduction

Shearing transformation?

q x* 4 x3
n
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Rank Reduction

Shearing transformation?

1

N

i g g
-'- o) .-. A -. 4 o
S— N

10 /58



Algorithms for Differential Systems
minilSOLDE, Lindalg: First-order linear ordinary differential systems with Singularities

Rank Reduction

Shearing transformation?

S T S
] = ]
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Rank Reduction

Shearing transformation?
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Demo: Rank Reduction (Barkatou'1995)

MAPLE file: Rank reduction examples (Barkatou'1996)
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Formal Reduction (Barkatou'1997)

r
At least
ltwo distinct
; |
/ [Unique
Input | lonzerocst
System \ leigenvalue
Y' =AY
Nilpotent
An At least
two distinct
o s
Apply | 7 eig
X-ra:
reducti
ueten - Computing Apply
Nilpotent » | —-ramifica—
# order tion in x
\
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Demo: Formal Reduction (Barkatou'1997)

m MAPLE file: Examples on computing exponential parts
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Paramlnt: First-order linear singularly-perturbed ordinary differential

1PN G4
14 /58



Algorithms for Differential Systems
L
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Paramint

Example

010
52ﬂ:001Y
dx

e 0 x

Required: Compute a solution in a full neighborhood of x =0 as e — 0.
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Iwano's formulation (1963)

(1) Divide a domain [D] in (x,€)-space into a finite number of
subdomains so that the solution behaves quite differently
as € tends to zero in each of these subdomains;

(2) Find out a complete set of asymptotic expressions of
independent solutions in each of these subdomains;

(3) Determine the so-called connection formula; i.e. a relation
connecting two different complete sets of the asymptotic
expressions obtained in (2).
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State of Art

m Existence: Turrittin, Hukuhara, Levelt, Balser-Jurkat-Lutz,
Schaefke-Volkmer, . ..

m Capitalized on Arnold-Wasow form (classical approach for the
unperturbed counterpart): Turrittin (1952), Iwano-Sibuya (60's),
Wasow (1979), ...

m Algorithmic Treatment excluding turning points: G. Chen (1990),

m Scalar n""-order: Iwano-Sibuya (1963) , Macutan (1999), ...
m Analytic Reduction : Fruchard - Schaefke (2013) , Hulek, ...

Proufound advancement in the last two decades witihn the research line
of unperturbed singular linear differential systems in contrast to the
perturbed ones (Wasow' 1985).
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d
eh=— =

dx

A(x,e)Y = i Ar(x)exY.
k=0
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Paramint: First-order linear singularly-perturbed ordinary differential systems

dY
h— =
c dx

A(x,e)Y = Z Ar(x)ekY
k=0
BUT we need to consider the more general systems:
Ke =A{f

Y () € C((X))((E) st
k€EZ

val(fx) > ock+p forsomeoc e Q ,pec Q}
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dy
haYr _ _ K
v A(x,e)Y = kE_O Ak(x)e*Y.

BUT we need to consider the more general systems:

Ke={f = Z fi(x)ek € C((x))((e)) sit.

keZ
val(fx) > ock+p forsomeoc e Q ,pec Q}

dy =
prhﬁ = A(x, &)Y = ;OAk(x)ka.

E=x%¢,0€Q,peQ;
For all k > 0, Ax(x) € M,(C[[x]]):
o is called restraining index;

h >0, (and Ag(x) # 0);
At the starting point, c =0 and p = 0.

18 /58
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Paramint: First-order linear singularly-perturbed ordinary differential systems

Iwano's formulation (1963)

(1)

(2)

Divide a domain [D] in (x,e)-space into a finite number of
subdomains so that the solution behaves quite differently
as € tends to zero in each of these subdomains;

Find out a complete set of asymptotic expressions of
independent solutions in each of these subdomains;

Construct formal solutions:
Abbas-Barkatou-Maddah'ISSAC2014,
Barkatou-Maddah'2016

(MAPLE package Paramint)

Determine the so-called connection formula; i.e. a relation
connecting two different complete sets of the asymptotic
expressions obtained in (2).
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d
peh—_F —
xPE p

Alx, E)F
n>1 , h>0

Figure: How to compute an intermediate “nicer” system(s)?
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Equivalent systems

[AUA] ngh% = A(X7 f)F, § = x%%¢e
| F=TG,

T eGly(K.) 7

dx
We have:

D¢
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Example

01 0
s2ﬂ= 00 1Y
dx
e 0 x
With o4 = 0 we can write:

dy 01 0 01 0
g2d—= 0 0 1|Y where Ay(x)=10 0 1
x £ 0 x 0 0 x
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o

dy
eg = o

3

O O =
X = O

Y where Ay(x)=

o o
O O =
X = O

and o4 = 0.
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0 1 0 010

29X = 10 0 1|Y where Ay(x)= [0 0 1| and os=0.
& 0 x 0 0

Let T = diag(1,x,x?). Then Y = TG yields:

it
9
¢
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Paramint: First-order linear singularly-perturbed ordinary differential systems

0
dy
QE: 0

O O =
X X = O
[

~.<

3

=

[0}

=

(0]

>

o

—

x

SN—r

Il
|
o O O
O O =
X = O
[

[}

=]

o

q

>

Il

©

(

JC 010 000 0 0 0

£ = x{[0 0 11410 0 0|x+ [0 -1 0|x7?}6.
x 0 0 1 1 00 0
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Paramlnt: First-order linear singularly-perturbed ordinary differential systems

0 1 0 01 0
29 — 10 0 1| Y where Ag(x) 0 0 1| andoa=0.
& 0 x 0 0 x
Let T = diag(1,x,x%). Then Y = TG yields
e 01 0 0 0 O 0 O 0
§27:x{ 0 0 1|+1]0 0 O|x3¢+|0 -1 0 [|x2%2}G.
x 00 1 100 0 0 -2

Setting £ = x 3¢ = x 3¢, the former can be rewritten equivaently as:

010 000 [o o 0]
525 —{001+000£+0—x4 0 [&})6.
0 0 1 100 0 0 —2x*
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1 01 -1 -1 0] _ .
Let G=TW where T= [0 1 1|+ -1 -1 —2|¢&+0(&?).
0 01 -1 -1 0

Then with W = [Wy, Ws]" we have:

et — ) o]+ |3 el ] @ro@im

dx 00 —4 Lt
~ 5 dW, g 3 3
Ex—2 = {1+{+1+28 +0(@) W,

24 /58
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We have:

~ = dW; — - -
e (R e [ e R
o osdWo
§°x vl

{1+&+ 1 +2¢"E + 0(8) tWs

25 /58
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Paramlnt: First-order linear singularly-perturbed ordinary differential systems

We have:

55 W/ 1 0] 17 )
ettt (02 e e oem
€x 5dV:2 — {14+ (1422 +0(&) I

m The second subsystem is scalar and the exponential part is
exp([ €2x75(1+ O(€)) dx) = exp(3e2x3(1 + O(e~2x?))).
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Paramlnt: First-order linear singularly-perturbed ordinary differential systems

We have:

55 W/ 1 0] 17 )
ettt (02 e e oem
€x 5dV:2 — {14+ (1422 +0(&) I

m The second subsystem is scalar and the exponential part is
exp([ E2x72(1+ 0(8)) dx) = exp(3e72x%(1+ O(c7>x%))).

m The first subsystem has a nilpotent leading matrix and requires
further reduction.
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dW;
2 501
&x dx

B(ng)Wl
{[8 é] + [j 8} £+ [} _1_+1X4] €+ 0(¢%) .
m Set £ = £2x3 .

Do
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= Apply e-rank reduction via Diag(1,£), we get the following
é-irreducible system

§~3xllj—i = B(x,€)S where

st =[5 +[7 Jerfs ge

«6
0

[ et o

27/58
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m Apply turning point algorithm:
1 0

which yields
£3x19/2% = B(x,)U  where

.. )32 . N
e L B I L R
[xg/z 0

8+10 Xeso@)
0 X9/2(—1+x—|—x4) 0 O )

28/58



e
Algorithms for Differential Systems
I—Paramlnt: First-order linear singularly-perturbed ordinary differential systems

m Applying Splitting Lemma and re-substituting for £2x3 =f=x
we get

3.
3/2,1/29% _ &
e B(x,e)R  where
= i _1
B(x,e) = [OI ﬂ - [ 02 0

_l] x73/2e12 1 O(x3).
2
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System \ leigenvalue
ad

XxPE’ aF = A(x,&)F
n>1 , h>0

Ap = A(x =0,£ =0)

1 At least
A / two distinct
Otherwise =
Ta Turning Re-
/ . Nilpotent|—g | Point | —~| adjustmen
Input (Unique resolution of sigma
D — norlzerucst] and p

Nilpotent | ——

Aolx) = Al £ =0) At least
two dis!incl

s

\ Computing Ap]p}y
Nilpotent | —|€xp —Pr:aml.ﬁca-
order tion in
parameter

Ag(x) := A(x,£ = 0)
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Example
010 0
€29 = 10 0 1|Y where Ay(x)= |0
& x 0 0



Algorithms for Differential Systems

L Paramint: First-order linear singularly-perturbed ordinary differential systems

Example

0 1 0 0 0
&2 ‘% = |0 0 1|Y where Ag(x)= |0 1| ,0a =0. Here,
x 0 0 0

I

0 1
s=2 Sowecanset x=t>andlet Y = |0 x¥/2 Q| G then:
0 0 X

IO x o

iC 01 0] [o 00 0 0 0
E—=x"2{|1 0 0|+[0 0 0| x40 ~1 0 |x ¢} 6.
X 010 100 0 0 -2

or with the readjustment & = x=3/2¢ = x=3/2¢:

R 010 000 fo o0 0 |
52XS/2¢TI{ 1 0 Ol +|0 0 O|&E+ |0 —x? 0 [&}6,
2 010 100 0 0 —2x2
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System \ leigenvalue
ad

XxPE’ aF = A(x,&)F
n>1 , h>0

Ap = A(x =0,£ =0)

1 At least
A / two distinct
Otherwise =
Ta Turning Re-
/ . Nilpotent|—g | Point | —~| adjustmen
Input (Unique resolution of sigma
D — norlzerucst] and p
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Aolx) = Al £ =0) At least
two dis!incl
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Demo: Formal Reduction

Construction of a fundamental matrix of formal solutions by a recursive
algorithm:

o0

Y = (Z <Di(xl/S) gi/d) exp(/ Q(Xl/s,g_l/d)),

i=0

where s, d are positive integers; [ Q is the diagonal matrix whose entries
are polynomials in e=1/? with coefficients in C((x'/*))
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Demo: Formal Reduction

Construction of a fundamental matrix of formal solutions by a recursive
algorithm:

o0

Y = (Z <Di(xl/S) gi/d) exp(/ Q(Xl/s,g_l/d)),

i=0

where s, d are positive integers; [ Q is the diagonal matrix whose entries
are polynomials in e=1/? with coefficients in C((x'/*))

MAPLE file: Examples on formal reduction
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Pfaffint: Completely Integrable Pfaffian systems with normal crossings

DA
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Pfaffint

Example
1oy At X .
Mo T = _ 3 2
1 X7 +xi —x2
B X2 —2x— 6 X3 v
2 8% —2x —3x2 —2x — 6

Required: Compute a solution in a neighborhood of (x,y) = (0,0).
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General form

X{71+1 iY

Ox1 = A(l)(X17X27 .. 7Xm) Y
Xt 3%2\/ = Ap)(x1, %2, xm) Y
[A] .
xprtt 2y

= A(m)(X17X27 °7Xm) Y

1PN G4
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General form

Xf1+1 0 Y

P21
(A]

8X1 =

= An(xt, X2, ..., Xm) Y
2 E)ixzy = A(2)(X17X27' '7Xm) Y
X[l;m"rl

Fori,je{l,...,m},

m p; is an integer and p = (p,
[ ] A(,-) eR = (C[[X]_,

P

Xm

Y = Am(x, %2, xm) Y

,Pm) is called Poincaré rank
oo Xm]] (7

h_component), and

Qe

36/58
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

General form

Xf1+1 8?(1 Y = A(l)(Xth, - 7Xm) Y
x5 ZY = Apla,x, .. xm) Y

[A]

xPmt1 %Y = Am (X1, X2, Xm) Y

Fori,je{l,...,m},
m p; is an integer and p = (p1,--.,Pm) is called Poincaré rank

m Ay € R=Cl[xq,...,Xm]] (i"-component), and

m Integrability conditions:
7 G () = LA = Al A () = Ag(x) Ag ()

36/58
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Fundamental matrix of formal solutions
(g’ el [T [Texe(@ix )
i=1 i=1

m ® is an invertible matrix whose entries are meromorphic series in

1 1/sm
xl/sl,...,x,,,/S ) over C;

(] Q,-(x,._l/s’) is a diagonal matrix of polynomials in x,-—l/s" over C
without contant terms.
m G is a constant matrix which commutes with Q,-(x,._l/s").

m H. Charriere, P. Deligne, R. Gérard, A. H. M. Levelt, Y. Sibuya, A.
van den Essen, ... (70's and 80’s)

m Algorithms: Reduction of Poincaré rank, Constructing Solutions of
regular systems - Barkatou and LeRoux (2006), Closed Form
Solutions of Integrable Connections:
Barkatou-Cluzeau-EIBacha-Weil 2012

N
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Example

Poincaré Rank Reduction, Barkatou-LeRoux'2006

xfa%Y =Ag)(x,x) Y =

% Y = A(z)(Xl,Xg) Y =

x13 + X

-1

X2
-2

2
X3

- 3X2

3
_ 3
X + X{

Y

D¢
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Example
Poincaré Rank Reduction, Barkatou-LeRoux'2006
x3 4+ Xo X2
A2y = Ap(xa,x) Y = | | 2 Y
{o Y = Al ) 1 ot
2
X2 X5
Y = A , Y = Y
X2 8X2 (X]- X2) _2 _3X2 )
3 2
_ (X1 =%
v —2x, 0
D Gc—A G = 2 G
X1%2 - @) (x1, x2) 1 ox
G=A =[] O
X2 8X2 (2) (Xl’ X2) - —2X% _2X22
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

First

First ——| associated | —— .EXP' part
component oDS in first var.

0 T R B

Input

system Exp. part

/

L Last Exp. part
ast ——| associated | —— | .=*P- P
component oDS in last var.

Figure: Computing the exponential part from associated ODS's
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Example
RV b X3 -
XMoo ' = _ 3., .2
1 X{ +Xxi —x2
By x2 —2x; — 6 x3
2 8% —2x —3x2 -2 — 6
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Example
RV b X3 -
XMoo F = 1 3, .2
— X{ +X{ — X2
By x22—2x2—6 xg’
2 axz - 2
—2x —3x5 —2xp — 6
Associated system:
4.d ) _ X+ x¢ 0
X1 d_le - 1 3 2
= X{ + X1
2 3
X3y — Xy —2x0 — 6 X5
S —2x —3x2 —2x— 6

40/58
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Example
3,2 2
xfﬂ _ X{ + X7 + X2 X5 v
& -1 X3+ X2 — x
2 3
Xgﬂ: X5 —2xp — 6 X5 v
ez —2x —3x3 —2x — 6

With MINIISOLDE or LINDALG we compute from the asscoiated system

G G ;_1 0 % + x2 0
CD(X1,X2) X1 X exp( d =i ) exp( : 0 : iz a2 )
X2 X2

X1

41/58
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:

Upon applying

-1 3 2
Y = exp(— )exp(— + —) G
(S ) ez + ) 6
we have
x3—|—x X2
49 ~_ |X1 2 2 e
Mo T -1 x3 — x
1 2
2 0 X2 Xz2
X28_X2 =
-2 —3X2
And so, it is left to obtain:

G(x1, %) = ®(x1, x2) chl x2C2
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

For rank-reduction, we apply G = T;H where

which yields:

0
axl

X2

3
o X2X1 —X2
i=1% 1
[ 2
H = 0 ,
—X2 1
-2
aiH = 3 ° H
2 —2x; -1
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|—Pfaf'FInt: Completely Integrable Pfaffian systems with normal crossings

Finally, we compute

1 0
2= [% +2x3 —1]
Then H = T, U yields

1o}

—2
Xla—XlU = C1 U = 0 2 U,
-2 0
Xzaisz = C2 U = 0 - U
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3 2 2
pop_ |t tx X5 =
18X1 - 3 2
-1 XP +Xxi —x2
30 x22—2x2—6 x23
X et = 2
2 —2x —3x5 —2xp — 6

A fundamental matrix of formal solutions is given by

-1 3, 2 0

-1 g 2 +
T1 To x x5° eXP([)S —_1])9XP([X220X2 3+;)-

X1
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Input
system

System w.|
> 2 distinct < lower dim.,
i lues|
° System w.|
lower dim|
First RN .Unique
component eigenvalue
/ : Nilpotent
——| Apply rank
reduction
in first var.

N

System w.|

Last
component

lower dim|

System w.|

lower dim|

> 2 distinc]
eigenvalues
Ram.
Compute in
Nilpotent | —— | exp. order .
i first
in first var.
var.
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Demo

MAPLE file: Examples on formal reduction (Abbas-M. Barkatou-S.S.
Maddah-ISSAC’14 and M. Barkatou- M.

Jaroschek-S.S.Maddah-Submitted'2015)

D¢
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Perturbed Pfaffian System in Quantum Chromodynamics

m Communicated by Clemens Raab, Group of Elementary Particle Theory;

m DESY Research Center of Experimental Physics, Hamburg.

0
aY—A(x,y,S)Y—

1 O4)<4 O4><3
= (C10) x Gy—y 1) Cote—y+) | M(x,y)  N(x,y)

E(x,y) Oaxs
H(x,y) L(x,y)

Y
W - B(X,y,{:‘)Y—

1
y (y=1) (xy—y+1) (xy+e—y+1)

Objective

Construct a solution in a neighborhood of (x,y = 1)
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m Y =T Z where T = Diag(e,¢,e,¢,1,1,1) yields an equivalent
system non-singular in ¢;

1PN G4
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

m Y =T Z where T = Diag(e,¢,e,¢,1,1,1) yields an equivalent
system non-singular in ¢;

m Apply a translation of independent variable z =y — 1.

D¢
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m Y =T Z where T = Diag(e,¢,e,¢,1,1,1) yields an equivalent
system non-singular in ¢;
m Apply a translation of independent variable z = y — 1.

mlet Z = {g] be a FMFS. We have
oG
g = O4><1
oG
25— = E(z,e)G
and oR
v N(x,z,e)R+ M(x,z,e)R
OR

[(x,z,e)R+ A(x,z,€)R
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:
m Since the perturbation is non-singular in ¢, the solution can be

obtained by this self-explanatory rewriting (up to some order p in )
G=31,Gl(2)e,

R=3Y",Ri(x,z) &
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

m Since the perturbation is non-singular in ¢, the solution can be

obtained by this self-explanatory rewriting (up to some order p in €):

G=2oGi(2)e,

R=Y" Ri(x,z) &

m Substituting and comparing coefficients of like-wise powers of ¢, the
problem is reduced to solving successively
m A set of inhomogeneous (except for the first) ODS
m A set of inhomogeneous completely integrable Pfaffian systems with
normal crossings
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Pfafflnt: Completely Integrable Pfaffian systems with normal crossings

Application in Statistics: Muirhead system

Communicated by N. Takayama, Kobe University, Japan

o F = wppAlx,y) F

o r_ 1
a_yF T Y2 x—y)? B(x.y) F

Objective

Construct a Fundamental Matrix of Formal Solutions in nbhd of (0, 0)

m No Normal Crossings
m A(x,y) = P B(y, x) where P is a permutation matrix.
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:

AppSing: Apparent Singularities

1PN G4
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AppSing

dy
dx

AX)Y,  Ax) € Ma(C(x))

Apparent singularities

If xo is a pole of A(x) but there exists a fundamental matrix of formal
solutions whose entries are holomorphic in some neighborhood of xg, then

Xp is an apparent singularity.

Detecting and removing apparent singularities (M. Barkatou, S.S.
Maddah, ISSAC'15): MAPLE file: Examples on removing apparent
singularities
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Summary
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S.S.

LINDALG: MATHEMAGIX package for symbolic resolution of linear
systems of differential equations with singularities.

MINIISOLDE : MAPLE package for symbolic resolution of linear
Systems of Differential Equations with singularities.

PARAMINT: MAPLE package for symbolic resolution of
singularly-perturbed linear systems of differential equations,
prototype implementaton.

PrarrINT: MAPLE package for symbolic resolution of completely
integrable pfaffian systems with normal crossings, prototype
implementation.

APPSING: MAPLE package for removing apparent singularities of
systems of linear differential equations with rational function
coefficients.

PARAMALG: MAPLE package for differential-like reduction of
matrices perturbed by a parameter.

Maddah, http : //specfun.inria.fr/ smaddah/
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Nov. 14th

Generalized Hypergeometric Solutions of Linear Differential Systems :

Test equivalence between an input system and a hypergeometric system
Given system

[A] OW = A(x)W  where

A(x) =

3x4+15x3 —x2 —86x—85
X

(x2 —x—3)(x+3)2(x+4)(x+1)

(x+4)(2x3 41152 +12x—8) (P+1)(x+4)? (x+2)
(x2 —x—3)(x+3)2 (x2—x—3)(x+3)2x
_ —(3x*+18x3+23x2 —23x—35) — (x+2)(x+4)
(x2 —x—3)(x+3)2(x+4) (x2 —x—3)(x+3)2(x+1) (x2—x—=3)(x+3)2x
x(30x2+79x+12) x(15x3 — 169x —147) (x+4) 1552 +121x% +323x3 +394x2 4+-387x+270
30(x+2)3(x+3) —30(x+2)3(x+3) 15(x+2)(x+3)2x(x+1)
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0 1 0

[H270] Y = H270(X)Y = 0 0 1
-1 45x+4 1— —14
2x2 T30x2 15x

1PN G4
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1 0

[H270] Y = H270(X)Y = 0 0 1
-1 45x+-4 —14
2x2 T30x2 T Ibx

m The change of variable x — (x+2)°

x+3
m The gauge transformation Y = T(x)Z where
1 x2+1 0
T(x)=|7/ 1 Of.
0 0 1

m The exp-product transformation Z = We/ s
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Summary

0 1 0
[H270] oY = H270(X)Y = 0 0 1
—1  45x+4 —14
2x2 T30x2 T Iex
m The change of variable x — (2123)2
m The gauge transformation Y = T(x)Z where
1 x*+1 0
T(x)= |3 1 0
0 0 1

m The exp-product transformation Z = We/ s

Result

Solutions of input system [A] can be expressed in terms of generalized
hypergeometric functions.
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m Take APPSING a step further: REMOVSING
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m Take APPSING a step further: REMOVSING

involved

m Use MINIISOLDE to compute generalized exponents of systems
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Summary

m Take APPSING a step further: REMOVSING

m Use MINIISOLDE to compute generalized exponents of systems
involved

m MAPLE package GenHypSols

Qe
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