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The Problem 1

C-relations and P-relations.

The binomial sequence

(bo,o bo,1 bo2 bo.3 \ ( 1 000 \
bi,0 b1,1 bi2 D13 - 1100 -
b=| bao b21 b22 b23 - |=| 1 2 1 0
b3,0 03,1 032 b33 - \ I 331 /

\

satisfies the relation

bit1,j+1 = bijy1+0i .
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C-relations and P-relations.

The binomial sequence
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e e
W Rk OO
= O O O
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satisfies the relation

bit1,j41 = bij+1+0bij ~  constant coefficients — C-relation.
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The Problem 1

C-relations and P-relations.

The binomial sequence

(bo,o bo,1 bo2 bos3 \ (
bi,0 01,1 D12 D13 -
b=| b2o b21 b22 b2s - |=

\53,0 b3.1 bz o b33 -

satisfies the relations

e e
RN = O
W = O O
= OO O

bit1,j+1 = bi j+1+bi; ~  constant coefficients — C-relation,

GA+Dbije1 = (i—4)bi; polynomial coefficients — P-relations.




The Problem 1

C-relations and P-relations.

The binomial sequence

(bo,o bo,1 bo2 bos3 \ (
bi,0 01,1 D12 D13 -
b=| b2o b21 b22 b2s - |=

Kbg,o b3.1 bz o b33 -

satisfies the relations

e e
W N = O
W = O O
= OO O

bit1,j+1 = bi j+1+bi; ~  constant coefficients — C-relation,

GA+Dbije1 = (i—4)bi; polynomial coefficients — P-relations.

Question.
How to compute or guess efficiently these C-relations and P-relations?




Applications in Computer Algebra 2

DYNAMICAL DICTIONARY OF MATHEMATICAL FuNcTIONS (DDMF).

Generates dynamically and automatically a web page on function
D irin 50 Wit in ' - ' thanks to the P-relations satisfied by (ui,,...,i,) (i1, ..,in) eNr-

[BEnOIT, CHYZAK, DARRASSE, GERHOLD, MEZZAROBBA, SALVY, 2010]

The Special Function e*

link

1. Differential Equation rendering |

The function e* satisfies the differential equation
d
—y(x)—y(x)=0
V() -y (x)
with initial value y (0) =1
2. Plot
3. Numerical Evaluation
el 220.54030231 + 0.841470981.

(Below, path may be either a point z or a broken-line path [z,,2,,..., zn] along which to perform analytic continuation of the solution of
the defining differential equation. Each 2; should be of the form x + y*i.)

path = precision = s Valider

4. Derivative in Terms of Lower-Order Derivatives

d_69)‘ = gX
daxb
order = s Valider
5. Taylor Expansion at 0
» Taylor coefficients:
oo X"
e = —.
prc n!

See the recurrence relations for the coefficients of the Taylor expansion.

H _ e y(0) = 1 . u
Figure. Web page of exp (x)_zizouzx from {%y@) _ @), { (i+1)ui+(1)

;.




Applications in Combinatorics

Planar and 3D-space walks.

Walk: The sequence (U/n,z’l’m,id)(n,il’m,id)eNd—i—l counts the number of ways to end in
(i1,...,14) starting from 0 with n steps in & C {—1,0, 1}¢ while remaining in N¢.
(planar walks) [BousQuET-MELOU, MisHNA, 2010] [BousQuET-MELOU, PETKOVSEK, 2010]
[BosTaN, RASCHEL, SALvVY, 2014]
(3D-space walks) [BosTaN, BousQuET-MELoU, KAUERS, MELCZER, 2014]

f
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Figure. Kreweras's walk K: .
S=1{(-1,0), (0, —1),(1,1)}. Flgure._ One of .the Kg 1,20=368 ways
to end in (1,2) in 9 steps.

o At least one C-relation thanks to &: K41, j=Kp iv1,j+Kn i jr1+Kni—1,j-1.
Any non trivial P-relations?
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Planar and 3D-space walks.

Walk: The sequence (U/n,z’l’m,id)(n,il’m,id)eNd—i—l counts the number of ways to end in
(i1,...,14) starting from 0 with n steps in & C {—1,0, 1}¢ while remaining in N¢.
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Figure. Kreweras's walk K: .
S=1{(-1,0), (0, —1),(1,1)}. Flgure._ One of .the Kg 1,20=368 ways
to end in (1,2) in 9 steps.

o At least one C-relation thanks to &: K41, j=Kp iv1,j+Kn i jr1+Kni—1,j-1.
Any non trivial P-relations? Yes: 2k = =2(i+1)°K
—4(i4+2)2K —4i?K —4(i+ 1)K

n,i+2,5+1 n+1,4,5+2

—(i+2)2 K 4P K

n+2,i+1,7

+2ij K

nt1,i+2,
—6(i+1)jK

n+2,i,j+1

n,i+1,542 n+3,1,7 n+2,i+1,5

—  Need for efficient computations!

e Planar walks classified but some 3D-space walks are still open problems!




Related Work 4

Guessing the C-relations of a sequence.

— The BERLEKAMP — MASSEY algorithm in dimension 1.
[BERLEKAMP, 1968] [MASsEY, 1969]

—  The BERLEKAMP — MASSEY — SAKATA algorithm in dimension n.
[SAKATA, 1988, 1990, 2009]

— The SCALAR-FGLM algorithm in dimension n. [B., BoYER, FAUGERE, 2015]

— The BECKERMANN — LABAHN algorithm in dimension 1.
[BECKERMANN, LABAHN, 1994]

Proving parameterized sums or integrals.

—  The creative telescoping method.
[ZEILBERGER, 1990] and see [CHYZAK, 2014] for a nice survey:

[BosTaN, CHEN, CHYZAK, KAUERS, KOUTSCHAN, SALVY, ZEILBERGER,...]

I Guessing the P-relations of a sequence.




Main Results 5

Past results.

e Computation of C-relations (constant coefficients) for a sequence.
o Use of linear algebra techniques.
o Algebraic complexity.

o Number of sequence queries.

[B., BoYER, FAUGERE, 2015]




Main Results 5

Past results.

e Computation of C-relations (constant coefficients) for a sequence.
o Use of linear algebra techniques.
o Algebraic complexity.

o Number of sequence queries.

[B., BoYER, FAUGERE, 2015]

New results.

e Computation of C-relations for a sequence tuple.

e Computation of P-relations (polynomial coefficients) for a sequence.
o Use of linear algebra techniques.
o Use of Grébner basis computations.
o Algebraic complexity.

o Number of sequence queries.




Sequences with C-relations 6

Notation — Link between C-relations and polynomials.

For a sequence u, [x*],, = u;.

(zy—y—1Da'yp = [o"THy/ T —aty/ T =2ty

%
= bit1,j+1—bi j+1—bi ;.

Definition.
The set I = {P cKlz], Vic N", [Px%, =0} is the ideal of C-relations of wu.




Sequences with C-relations 6

Notation — Link between C-relations and polynomials.

For a sequence u, [x*],, = u;.

(zy—y—1Da'yp = [o"THy/ T —aty/ T =2ty

%
= bit1,j+1—bi j+1—bi ;.

Definition.
The set I ={P cK|z], Vic N", [Px%, =0} is the ideal of C-relations of w.

Example.
Sequences w=(2"(i +39))(; \en2 bz((?))
q ( ( ))(Z,]>E J (’i,j)ENQ
(
o ug,0 = 1 S '
Initial terms Q uro = 4 {2“9 B (1)’ :;eﬂgﬁ
up,1 = 3 0,7 — ) .]6
>
_ Uit2,j = dUitr,j —4ui;
C—relatlons § Uit1,j41 = Uip1,j+2U5 j+1—2U; 5 b@'+1,j+1:b@',j+1—|—b@',j
Ui,j+2 = Ui j+1—3Uj
|deal of (r?—dx+dxy—o—-2y+2,°—4y+3) | (zy—y—1)
C-relations




Guessing C-Relations 7

Main idea.

Find relations [}~ _asx*"], =0 valid for all v € /.

Definition.

For two ordered sets of terms 7" and U in x, the multi-Hankel matrix Hy; 7 is

vel [Sv]u

The set of the first linearly independent columns is the staircase of Hy; 7.

Example.

1 x x2 x3

1 Up,0 U1,0 U2,0 U3,0

H{l,x,xQ,xB},{l,m,xQ,mB}: x U1,0 U2,0 U3,0 U4,0
z? U2,0 U3,0 U4,0 Us5,0
z3 u3,0 U4,0 U5,0 U6,0




Guessing C-Relations 7

Main idea.

Find relations [}~ _asx*"], =0 valid for all v € /.

Definition.

For two ordered sets of terms 7" and U in x, the multi-Hankel matrix Hy; 7 is

vel [Sv]u

The set of the first linearly independent columns is the staircase of Hy; 7.

Example.

1 T Y Ty

1 / u0,0 U1,0 U0,1 U1,1

H{l,x,y,my},{l,m,y,my}: T ui,0 U2,0 U1,1 U2,1
up,1 U1,1 Up,2 U1,2

U1,1 U2,1 U1,2 U2,2

N—




Guessing C-Relations 7

Main idea.
Find relations [}~ _a,x*""], =0 valid for all v € /.

Definition.

For two ordered sets of terms 7" and U in x, the multi-Hankel matrix Hy; 7 is

vel [Sv]u

The set of the first linearly independent columns is the staircase of Hy; 7.

Example.
For u=(2"(i+37))u jyenz and T=U={1,z,y,z% xy,y*}, Hr r has rank 3 and the
staircase is {1,z,y}.

1 =z vy x° zy vy

1
€T
HT,T— Y 8 9 20 20 27
12 32 20 80 48 44 |
8 20 20 48 44 56
9 20 27 44 56 81




Guessing C-Relations 8

Informal version of the SCALAR-FGLM algorithm.

Input.
e A sequence u = (u;);ecNn» over K;
e The ordered set T' of all monomials in « of degree at most d wrt. <.
Output.
— A reduced d-truncated Grobner basis of the ideal of C-relations of wu.
L SET -
1. Compute S the staircase of Hp 7:= UéT / s ;]u \ .
o)
2. L:=T\S.
3.G:= 2.
4. While L + & do
a. 7:=ming (L).
b. Find a=(as)ses st. Hs sa+ Hg (71 =0.

c. G:= QU{T+ZS€Sass} and remove multiples of 7 from L.

5. Return G.




Tuple of Sequences | 9

Motivation.

e The sequence u = (u;)jeN= (L%J' + (—1)"’), N satisfies, for all 7 € N,
1E

Ui43 — U2;4+2 — U241+ U2; = 0

ul) =l —ulV 4l = o,

with ’U,(O) = (UQZ')/L’GN and ’U,(l) = (UQH_l)Z'E]N.
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Motivation.

e The sequence u = (u;)jeN= Q%J' + (—1)"'), N satisfies, for all 7 € N,
1E

Ui43 — U2;4+2 — U241+ U2; = 0

-l = o

with ’U,(O) = (UQZ')ie}N and ’U,(l) = (UQH_l)Z'E]N.

However, for all 7 € N,
Uit4 — U2i43 — U242+ U241 F 0.

Hence no global C-relation satisfied by wu.




Tuple of Sequences | 9

Motivation.

e The sequence u = (u;)jeN= Q%J' + (—1)"'), N satisfies, for all 7 € N,
1E

Ui43 — U2;4+2 — U241+ U2; = 0

-l = o

with ’U,(O) = (u%)ieN and u(l) = (UQH_l)iE]N.
However, for all 7 € N,
U2i44 — U2i+3 — U2i+2 + U2i+1 F 0.

Hence no global C-relation satisfied by wu.

e The P-relation (i —j+1)b;41,;=(i+1)b; ; can be rewritten as

(i+1)biv1,j—Jbit1,; = 1bij+0bi

by =6 = bt bl

i+1,7 Yitl,j 1,97

with b(()) = (bi,j)(i,j)elNza b(1> — (7/ bi,j)(i,j)GNz and b(2> — (] bi,j)(iaj)ENQ'




Tuple of Sequences Il

First idea for computing P-relations.

Find C-relations between the sequences (u;)ienn, (i1 Ui)ieNn, ooy (in Ui)ieNn,
(iTwi)ienn, (192 Us)ieNn, .. (i3 Us)icNn, .-

Problem.
How can we find C-relations between multiple sequences?

Notation — Link between C-relations and polynomials vectors.

For sequences u'?, ..., u(™), leo Po+ -+ em P :=[Po] g + -+ + [Prn] yyom-

L e (z—1)—eo(x—1)) 2y = [T =2 0 —["T = 2,0
= o, )
[(er(z—1)—exx—eq) 2’ yly = [Ty — 2"yl — [T 9]y — [2" 9/ ]p0
- = D M) _p2 - p(0)
1+1,7 1,7 1+1,7 1,]°




Guessing C-Relations for a Tuple

Main idea.
Find relations [>~," | > s sx* ¥ ef] =0 valid for all v €.

Example.

For ul!) = (3") (i, 5) ez, u® = (3" + 27) . yenz T ={e1, e2, x e1, T ea, y €1, y e2} and
U={1,z,y,2% zy, y*}, the matrix Hy 1 has rank 2,

€1 €2 €1 T €z Yer Yyez

1 /1 2 3 4 1 3 \
x 3 4 9 10 3 5
HU,T— Yy 1 3 3 5 1 5
x2 9 10 27 28 9 11
Ty 3 5 9 11 3 7
y2 1 5 3 7 1 9

D 2ty — e 2209 = ulP ) 9,0 0

— Relations ez(z—1) o'y’ — e :Cy] UHLLZl) U; 4 (1>ul,] ;
er(y—Da'y’] = Ui 41— U 0,

le2(y—2)a'y/ +era’y!] = U§,2j>'—|—1 2U§2j>+u§13> =0




Guessing C-Relations for a Tuple

I The MULTISCALAR-FGLM algorithm.

—  An algorithm for computing C-relations of a sequence tuple.

Useless computations.

For b(?) = ((;))(imew, bh) = (z (;))(imew, b(?) = (j (;))(imew, up to degree 2,

we find the 3 relations

)

lex (@ —1) 2’y —epai Tyl —egaiyl] = b, =0l =0, ;-0 = o0,
ea(y+ 1)ty —eratyd] = bbb =0,
leo(zy—y—1)a"y!] = bz('(jgl,j+1_bz('?;+1_bz('?; = 0.
and an extra, useless, relation:
i g i 1 1 1 0 0
er(ry—y—1) 'y —eo(y+ 1) a'y?] = by 5y — b =) — b —b)

= 0.

Problem.
—  Computing the P-relations is not a simple extension of computing the C-relations.




P-recursive Sequences

Definition. [LipscHITZ, 1989, Definition 3.2]

A sequence u = (u;);cNn is P-recursive if 9k € N s.t.

o Vje{l,...,n},Veec{0, ...,k}“,ﬂp&j) € K[t] not all zero s.t.

Ve <ty bn <in, ZEE{O,...,k}”pg)(ij) Wiy —L1,...yin—L, = U;

e all the subsequences with fixed indices set between 0 and £ — 1 are P-recursives.

Example.

Sequences bz((?)) o K = (Kni,j)(n,i,j)eNs
() eN the Kreweras's walk,

with & = {(—1,0), (0, —1), (1,1)}

. Kopoo0 =1
Initial terms | by o =1 Koi,; = 0, V(i,j)eN2\{(0,0)}
Ky j; = 0,ifn<0ori<0orj<O.
_ (t—Jg+1D)bit1,; = (i+1)bs;
P-relations GADbiger = G=Nbiy | Knt1,,j= ce Kni—o1,j—02
bit1,5+1 = bij+1+bi;




P-recursive Sequences

Definition.

K(t,x): ring of quasi-commutative polynomials in ¢y, ...,%,,, z1, ..., x,, where
o Vk, traxr— xpty =Tk,

o VEk+£U, ty, ty, xk, ¢ commute!

Notation — Link between P-relations and polynomials.

For a sequence u, [t7 2%, =7 u;.
= (1 +1) 27 2¥e = (i1 + 1) biy io;
= [(ti—t2) 2P a)e = (i1 4+ 1 — 12) biy 41,0

(1 —to) a1 — (L + 1) at a¥le = [(t1—t2) ) T 2y — (b +1) 2t 2¥]s
= (n+1—i2) b1, — (G1+1) biyay

(i —to) a1 — (i + 1) ot 2fle = [((1T—trta—t1+12) 21— (H + 1)) 27 255
— = ((1+1)*=(i1+1)i2— (i1 + 1) +i2) biy 41,4,
— (1T 411) biy i




P-recursive Sequences

Definition.

K(t,x): ring of quasi-commutative polynomials in ¢y, ...,%,,, z1, ..., x,, where
o VEk, tpxp— Tply=k;

o VEk+£U, ty, ty, xk, ¢ commute!

Notation — Link between P-relations and polynomials.

For a sequence u, [t7 x|, =17 u;.

= [(t1—t2) 21— (t1+ 1)) 27 2P)o= (i1 + 1 —i2) biy 41,5, — (i1 + 1) by 4o

Theorem. [LipscHITZ, 1989, Theorem 3.8 (vii)]

If a sequence u = (u;);cnn is P-recursive, then Yy, 3d, e, s.t. t¢ xf € LT (1), where
I={PcK(t,xz), Vi,j € N", [PtIx*], =0} is the right ideal of P-relations of w.

Example.

(i1 4 1 — is) <i1i‘;1>—(¢1+1)(’%1) = 0,
The sequence b= ((“)) e is P-recursive. Since (a4 1) <i2’11>+ (i3 —i1) (?1) = 0,
(
)

12
i1+ 1\ i1 (1
i9+ 1 i9+ 1 ]




Guessing P-Relations |

Definition.

For two ordered sets of terms 7" in ¢, and U in x, the multi-Hankel matrix Hy 7 is

seT

velU [Sv]u

Example.

For "= {1, tl, tz, t%, t1 t2, t%}, U= {1, X1, T2, ZC%, X1 I, 1‘%},

1t to 7 t1to t3
1 /uo,o 0-up,0 O0-up,0 02 -upo 0-0-ug,0 0% up,o
1 ui,0 1-ui,0 O-ui0 12-u10 1-0-u1 0 0%-ui o
HU,T: T2 uo,1 O-U()’l 1-u0,1 02'71/0’1 O-l-uo,l 12-u0,1
zi uz,0 2-u2,0 O-uzo 2% -u2,0 2-0-uzo 0%-u2o
12 u1,1 1-u1,1 ]_-U()71 12'U1,1 1 1-U1,1 12"11/071
CE% uo,g O'/U/()’Q 2~UO,2 02'7,60’2 0 2~UO’2 22~UO,2




Guessing P-Relations |

Definition.

For two ordered sets of terms 7" in ¢, and U in x, the multi-Hankel matrix Hy 7 is

seT

velU [Sv]u

Example.

2 2 2 2
For T'={1,t1,z1,t1,t1x1, 21}, U = {1, z1, w9, x1, X1 T2, T3},

1 t1 1 2 t1xq z7
1 / up,0 0-uo,0 w10 0% -wup,0 1-ui,0 w20
1 ui,0 1-ui,0 w20 12 w10 2-u2,0 u3,0
HU,T: T2 uo,1 0-uo,1 w1y 0%-won 1-uin w2
o] u2,0 2-uU2,0 u3,0 2% -u2,0 3-U30 U4o0
T1Z2 w1 lowig ws1 12 wi1 2-us1 ug
3 up,2 0-up,2 ui2 0% -upg2 1-uj o uzo




Guessing P-Relations |

Definition.

For two ordered sets of terms 7" in ¢, and U in x, the multi-Hankel matrix Hy 7 is

seT

velU [Sv]u

Example.

/I __ _ / / _ 2 2 .3 .2 2
For T° _{17$17$2}7T_T UtlT UtQT 7U—{17ZC17$27$17£B1 $27$27$17$1$27$1$2}1

1 1 9 '/Z1 tl 1 tl 92 t2 t2 1 t2 o
1 up,0 41,0 %0,1 O0-uo,0 1-u1,0 O-up,1§0-uo,0 O-u10 1-uo,1
1 ui1,0 u2,0 ui,1 fl-ur,0 2-u20 1l-ur 1§0-ur0 O-uzo 1-ui
xg uo,1 u1,1 uo,2 §0-uo,1 1-ui,1 O-up2fl-uwo,1 1-ui,1 2-uog,2
HU = 1 uz,0 u3,0 u2,1 2 -u20 3-u3z,0 2-u2,1§0-u20 0-u3z,0 1-uz1
’ T1 22 ui,1 u2,1 ur2fl-urr 2-ug1 lrupofl-ur1 1-us1 2-up2
T3 ug,2 u1,2 0,30 -uo,2 1-ui,2 O-up,3j2-uo,2 2-u1,2 3-uop,3
z? uz,0 ug,0 u3,1f3-uz0 4-ug0 3-uz1 0 -uz0 O0-ugo 1-uz;:
2 xo u2,1 uz,1 u2,2f2-u21 3-uz1 2-ugz2fl-uz1 l-uz 1 2-uz 2
x1 T3 ui,2 uz,2 ur,zfl-ure 2-uz2 l-uyp 32 -ur,2 2-uz2 3-ui3




Guessing P-Relations Il

Useless columns.

For u=(i!)ien, T={1,t,2,tx,2*} and U ={1,z, 22, 23, 2},

1 ¢t = tx =«

1 (1 o 1 1 2 \
Hype © 1 1 2 4 6
’ 2 4 6 18 24

332
x> 6 18 24 96 120
4 \ 24 96 120 600 720 /

Hy . has rank 3 and its column rank profile is {1,¢,tx}.

— Fromug=1, [z 2] =[(t+1) 2'] <= u;+1= (i + 1) u; allows us to compute any term.




Guessing P-Relations Il

Useless columns.

For u=(i!)ien, T={1,t,2,tx,2*} and U ={1,z, 22, 23, 2},

1 ¢t = tx =«

1 (1 o 1 1 2 \
Hype © 1 1 2 4 6
’ 2 4 6 18 24

332
x> 6 18 24 96 120
4 \ 24 96 120 600 720 /

Hy . has rank 3 and its column rank profile is {1,¢,tx}.
— Fromug=1, [z 2| =[(t+1) 2'] <= u;+1= (i + 1) u; allows us to compute any term.
— But (i+1D)uj1=(*+2i+1)u<=trxx]=[t*+2t+1)zY.

—  Column t x seems useless!




Guessing P-Relations Il

Useless columns.

For u=(i!)ien, T={1,t,2,tx,2*} and U ={1,z, 22, 23, 2},

1

1 1 2 1 4 6
Hygzsy, oy = 2? 2 4 6 8 18 24
x> 6 18 24 54 96 120
z? 24 96 120 384 600 720
:L‘5

\ 120 600 720 3000 4320 5040 )

Hy 1 has rank 3 and its column rank profile is {1,¢,¢%}.




A Matrix Criterion

Remark.

Relations form a right ideal of IK(t, x) ~~ take this structure into account.

[te md-l—v] — [ZreR,se‘SOf"‘,S tr ms—i—v]

is valid for all v €U,
(d+v)Udgiy = ZreR,seSO‘T,s (8+v)" Usto

~ |f relation

then

[tktewd+”]:(dk+vk) (d—|—’U)eud—|—v: Z Qp g (dk—|—vk) (S—I—’U)TUS_H):[Z...]
reR,scS

is also valid for all v € U.

Example.

u=(i)jen ~ [={(x—(t+1)) CK(t,x). Hence (x — (t+ 1))t €1 but
(x—(t+1))t rt—(t+1)t

= toe—oc—(t+1)t

tr—(t+1)—(t+1)t—(x—(t+1))

= tx—(t+1)?%—(z—(t+1)).

Therefore, (tx — (t+1)%) € 1.




A Matrix Criterion

Remark.

Relations form a right ideal of IK(t, x) ~~ take this structure into account.

[te wd—l—v] - [ZTER,SESQT’S t" ws—f-v]

is valid for all v €U,
(d+v)%Udtv = ZTER,SGSO‘T,S (8+v) " Us o

~ |f relation

then

[tkte$d+v]=(dk+vk) (d—|—’l))eud+v: Z Qp g (dk+vk) (S+v)rus+v:[z...]
reR,seS

is also valid for all v € U4.

Proposition.

Let 7" (resp. U) be an ordered set of terms in t, = (resp. x). If column t©x% is discarded

in matrix Hy 7, then so is any column ¢¢+J 2.
Example.
1 t x tx
For u=(i!);en, T={1,t,x,tx} and U={1,z,2% 2°}, Hy 7= 0162 (Lo 1 1)
x k 2 4 6 18 )
3 6 18 24 96
Column z is discarded, hence so is column ¢ x and the staircase is S ={1,t}.




Guessing P-Relations (cont.)

Informal version of the PRECURSIVE-FGLM algorithm.

Input.
e A sequence u = (u;);ecNn» over K;
e The ordered set T of all monomials in ¢, x of bidegree at most (d¢, dg) wrt. <.
e The ordered set U of all monomials in @ wrt. < such that #U = #T'.

Output.

— A reduced (d¢, dz)-truncated Grobner basis of the ideal of P-relations of wu.
. sEeT -

1. Compute S the staircase of Hy,7:= e . ( s ;]u ) :
2. Compute V' the row rank profile of Hys s.
3.L:=T\S.
4. While L #+ @ do
a. 7:=ming (L).
b. Find a=(as)ses s.t. Hy sa+ Hy (71=0.
c. G:=gU{r+>  .gass} and remove multiples of 7 from L.
5. Return G.




Mixed Approach

Remark.

When a relation [P;] =0 is true, we do not need relations [Q] =0 s.t. P;| Q.

—  When relations [P;] =--- =[P,] =0 are true, we should not need relations [()] =0 with
Qe (P, ... ) CKit,z).

Idea.

Computation of a (truncated) Grobner basis of J = (P,..., P.) CK(t,x):
— new polynomials P, 1,..., Ps€ J, s.t. LT(P,11),...,LT(Ps) ¢ (LT(Py), ..., LT(P,))

— guessing new relations without new queries to the sequence!

Implementation.

e In MAPLE using the F4 algorithm in Ore algebras.

e In C, integrated in the FGB library. [FAUGERE, 2010]




Mixed Approach

Remark.

When a relation [P;] =0 is true, we do not need relations [Q] =0 s.t. P;| Q.

—  When relations [P] =---=[P,] =0 are true, we should not need relations [Q)] =0 with

Qe(P,....P)YCK < >

Example.

G =(Ghn,i,j)(n,i,j)ens the Gessel walk, with & ={(-1,0), (—-1,-1),(0,1),(1,1)}.

— If G is P-recursive, then so is G' = (G,.0,5) (n,i)ene.
—  Computation of relations of G’ in bidegree (5,5) with PRECURSIVE-FGLM:

— [t() t2 LCO LCQ — ] =
tot5 x5 x5 — -] =0.
—  Grdbner basis computation in K(tq, t2, g, T2):

0.

= [tgt3ap— -] =[tgx0 — -] =[tdt2 25 — -] = [t3t3 23 — -]
—  Zero-dimensional ideal of relations in xq, x5:

—  We can suspect that G’ is P-recursive.

[t 28 oo — -] = [t6 to x§ T2 — ---] = [13 13 26 22 — -

.]:




Mixed Approach

Remark.

When a relation [P;] =0 is true, we do not need relations [Q] =0 s.t. P;| Q.

—  When relations [P;] =--- =[P,] =0 are true, we should not need relations [()] =0 with
Qe (Py,.... ) CK(t.x).

Example.

W = (Wi i, j.k)(n,i,j,k)en4, a 3D-space walk, with & = {(~1, -1, —1), (-1,

(—1,1,0),(1,0,0)

_17 1)7

[BosTaN, BousQuET-MELoU, KAUERS, MELCZER, 2014, Section 4.3]

— If W is P-recursive, then so is W' = (W,, i j.0)(n,i,j)ens.

(dt,dg) | Matrix size | Timing | Grobner bases | Timing | Relations Staircase

(2,2) 270 x 100 19s N/A [tot1xzox1 — -] =0 | Not closed
max (d¢, dg): 5

2,4 144 1 — .=

(2,4) 8 x350| T756s (4,3). (3,4, (2,5), (1,7) s [tot1to 7 ] =0 | Not closed
t ted t 3 .=

(3,4) [2959x600| 4310s| oo 9 s 1511 t220 =] =0 | ) o)
total degree 9 [totitoxs—-]=0

—  We guess relations in bidegree (5,4) for free!

—  We can suspect that W' is P-recursive.




Table Queries and Complexity

Proposition.

e Adaptive variant of PRECURSIVE-FGLM:
o Increase S and V step by step such that Hy g is always full rank.

e Denote S,=SNIK][x]. Let the Dth dilatation of S, contain V', then with this adaptive
algorithm, we can compute the relations with at most

#(S2 V) < D" #(2 Sa)

queries.
~ If S, is included in a parallelotope, ¢, #(2S5%) < ¢ Sg. [Rusza, 1994]

Proposition.

If 0,d1,...,d, are the maximal degrees of polynomials in t,x1,...,z,, D is as above, and
(4 is the number of polynomials in the Grébner basis, then the number of operations in
the base field to compute the Grobner basis is no more than

O(p(D"nldy--dy)* =t M(dy --- dy,) log(dy - dy,)),

using fast quasi-Hankel algorithms. [BosTAN, JEANNEROD, ScHOST, 2007]




Conclusion and Perspectives

Conclusion.

Algorithm for guessing C-relations of sequence tuples.
Algorithm for guessing P-relations of sequences.
Mixed approach:

o Non trivial computations on 3D-space walks.
Estimation on the number of sequence queries.

Estimation on the complexity.

Perspectives.

Improving the complexity estimates using the structure.
Unclassified 3D-space walks:

o Can we exhibit a 0-dim. ideal of P-relations for their first terms?




