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In the literature...
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

In these slides...

The literature o↵ers algorithms to detect and construct whether a second
order di↵erential equation has Bessel, Kummer, Gauss,... type solutions.

What about equations of orders 3, 4, . . . ?

What about systems of equations?
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Preliminaries

1 Preliminaries
Generalized hypergeometric series
Transformations

2 Di�culties and possible scenarios

3 Our approach

4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function
[Hq,0]: Logarithmic case
[Hq,0]: Irrational case
[Hq,0]: Rational non-logarithmic case
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Preliminaries

Generalized hypergeometric series

Generalized hypergeometric series

pFq(a;b; x) = pFq


a1, a2, . . . , ap
b1, b2, . . . , bq

; x

�
=

1X

k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

xk

k!
,

p and q are two natural integers; p  q + 1;

a1, a2, . . . , ap (resp. b1, b2, . . . , bq ) are called numerator parameters
(resp. denominator parameters);

(a)0 = 1 and (a)k = a(a+ 1) . . . (a+ k � 1) = �(a+k)
�(a) is the

Pochhammer symbol;

With ✓ = x d
dx , the series pFq(a;b; x) satisfies:

(✓(✓+b1�1)(✓+b2�1) . . . (✓+bq�1)�x(✓+a1)(✓+a2) . . . (✓+ap))y = 0.
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Preliminaries

Generalized hypergeometric series

Matricial representation of the di↵erential equation
(C(x), d

dx )

[Hq,g ]
d

dx
Y = Hq,g (x)Y =

2

6666664

0 1 0 0
0 0 1 0

0 0 1

� ↵0
xq(1�x)g � ↵1x+�1

xq(1�x)g � ↵qx+�q

x(1�x)g

3

7777775
Y

Y = (y , dy
dx ,

d2y
dx2 , . . . ,

dqy
dxq )T

the ↵k ’s and the �k ’s are parameters expressible explicitly as sums of
products of the aj ’s and bj ’s.

g =

(
0 if p  q: 0 (resp. 1) is a regular (resp. irregular) singular point

1 if p = q + 1: 0, 1,1 are regular singular points
.
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Preliminaries

Transformations

Transformations

[S ]
d

dx
Y = S(x)Y , S(x) 2 Mq+1(C (x))

#

[S̃ ]
d

dx
Z = S̃(x)Z , S̃(x) 2 Mq+1(C (x))

Gauge transformation: T (x) 2 GLq+1(C (x))

Y = T (x)Z , S̃(x) = T�1(x)(S(x)T (x)� d
dxT (x))

Exponential transformation !E : b(x) 2 C (x)

Y = Z exp(�
R b(x)

x dx), S̃(x) = S(x) + b(x)
x

Change of variable !C

Z (x) = Y (f (x)), S̃(x) = (f 0(x))�1S(f (x)) Maple sheet: Examples
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Preliminaries

Transformations

Reformulating our quest
Equivalence problem

Input system

[A]

Algorithm to detect and construct

[Hq,g ] !C [M1] !E [M2] !G [M3] !E [M4] !C . . . [A]
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Di�culties and possible scenarios

Where to get information about [Hq,g ] and the
transformations?

Dimension of the system (assumed irreducible- Barkatou’2007, van
Hoeij’1996, van der hoeven’2007): q, p?

Singularity Structure: g?

Order, number, kind of transformations: !G , !E , !C?

Invariants under transformations?

...?
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Di�culties and possible scenarios

Order of transformations

Input system

[A]

Proposition

Consider two systems [Hq,g ] and [A] with Hq,g (x),A(x) 2 Mq+1(C (x)).
If [Hq,g ] ! [A], then there exists an algebraic function f and a system
[M] with M(x) 2 Mq+1(C (x)) such that

[Hq,g ]
f�!C [M] !EG [A].

f: pullback function
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On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Di�culties and possible scenarios

Order of transformations

Input system

[A]

Consequence

[Hq,g ]
f�!C [M] !EG [A]

(Barkatou-Pfluegel’1998)

But!!
To construct [M], we need to construct [Hq,g ] and ! C using
information from [A]. So are there certain invariants under the
transformations involved to give us some insight?
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Di�culties and possible scenarios

In the literature...

q � 1:
!EG in a more general context: van Hoeij’1996,
Barkatou-Pfluegel’1998
f = x , finding all hypergeometric solutions: Petkovsek-Salvy’1993
q = 2, f has a special form: Cheb Terrab-Roche’2008

q = 1:
f�!C : Bronstein-Lafaille’2002
f�!C!EG , 2007-: W. Koepf., M. Van Hoeij, Q. Yuan, V. J. Kunwar,
E. Imamoglu, R. Debeerst, ...
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Di�culties and possible scenarios

Order of transformations
Look for invarinats?

Input system

[A]

Proposition

Consider two systems [Hq,g ] and [A] with Hq,g (x),A(x) 2 Mq+1(C (x)).
If [Hq,g ] ! [A], then there exists an algebraic function f and a system
[M] with M(x) 2 Mq+1(C (x)) such that

[Hq,g ]
f�!C [M] !EG [A].

f: pullback function
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Di�culties and possible scenarios

A closer look: Formal Solutions

[S ]
d

dx
Y = S(x)Y , S(x) 2 Mq+1(C (x))

Let x0 2 C̄ [ {1} be a pole of S(x):

The local parameter t =

(
x � x0 if x0 2 C̄

1/x if x0 = 1

A Fundamental Matrix of Formal Solutions (FMFS) is given by:

(Y =) Sol = �(t) exp
R

U(t)+⇤
t dt

� lies in Mq+1(C̄((t1/r ))); r 2 N⇤;
U(t) = diag(u1(t), . . . , uq+1(t)) is a diagonal matrix whose entries
are polynomials from C̄ [t�1/r ] without constant terms;
⇤ = D + N, ⇤ commutes with E ,
D = diag(�1, . . . ,�q+1) with entries in Mq+1(C̄), N is an upper
triangular nilpotent matrix.
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Di�culties and possible scenarios

A closer look: Formal Solutions
Classification of singularities

[S ]
d

dx
Y = S(x)Y , S(x) 2 Mq+1(C (x))

Let x0 2 C̄ [ {1} with FMFS:

Y = �(t) exp
R

U(t)+⇤
t dt , where t =

(
x � x0 if x0 2 C̄

1/x if x0 = 1

If x0 2 C̄ [ {1} is not a pole of S(x) then Y is analytic in some
neighborhood of x0. We say that x0 is an ordinary point of [S ].

If x0 2 C̄ [ {1} is a pole of S(x):
x0 is said to be an apparently singular point of [S ] if Y is analytic in
some nbhd of x0;
x0 is said to be a regular singular point of [S ] if U(t) is null;
otherwise, x0 is said to be an irregular singular point.
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Di�culties and possible scenarios

A closer look: Formal Solutions
Invariants?

[S ]
d

dx
Y = S(x)Y , S(x) 2 Mq+1(C (x))

Let x0 2 C̄ [ {1} be a pole of S(x):

The local parameter t =

(
x � x0 if x0 2 C̄

1/x if x0 = 1

A Fundamental Matrix of Formal Solutions (FMFS) is given by:

Y = �(t) exp
R

U(t)+⇤
t dt

� lies in Mq+1(C̄((t1/r ))); r 2 N⇤ called ramification index;
U(t) = diag(u1(t), . . . , uq+1(t)) is a diagonal matrix whose entries
are polynomials from C̄ [t�1/r ] without constant terms;
⇤ = D + N, ⇤ commutes with E ,
D = diag(�1, . . . ,�q+1) with entries in Mq+1(C̄), N is an upper
triangular nilpotent matrix. 18 / 48
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Di�culties and possible scenarios

A closer look: Formal Solutions
Equivalence transformations: Two lemmas

[S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
U(t)+⇤

t dt

#EG

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
Ũ(t)+⇤̃

t dt

Gauge Exp-product

T (x) 2 GLq+1(C (x)) b(x) 2 C (x)

Y = TZ Y = Z exp(�
R b(x)

x dx)

r̃ = r r̃ = r

Ũ(t) = U(t) Ũ(t) = U(t) + b(t)Iq+1

⇤̃ = ⇤ mod 1
r Z ⇤̃ = ⇤+ bIq+1 if b 2 C

singularity structure can be tracked singularity structure can be tracked

Maple sheet: Examples on e↵ect of gauge and exp-product 19 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Di�culties and possible scenarios

Recall that...
Input system

[A]

What about
f�!C?

[Hq,g ]
f�!C [M] !EG [A]

Singularity tracking under
f�!C?

[Hq,g ]
f�!C [M]: Sol(x)

f�!C Sol(f )

If x0 is a zero of f (x) then it is a regular singularity of [M]

If x0 is a pole of f (x) then it is an irregular singularity of [M]

Maple sheet: The inverse is not necessarily true, possible scenarios 20 / 48
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Our approach

1 Preliminaries
Generalized hypergeometric series
Transformations

2 Di�culties and possible scenarios

3 Our approach

4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function
[Hq,0]: Logarithmic case
[Hq,0]: Irrational case
[Hq,0]: Rational non-logarithmic case
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Our approach

[Hq,g ] ! [A] for g 2 {0, 1}?
Step 0. Fix the order:

[Hq,g ]
f : pullback function�����������!C [M] !EG [A];

Step 1. Recover the poles and zeros of f from the singularity structure of
[A]:

Step 1.1. Filter the information: Distinguish between removable singularities
and zeroes and poles of f , determine g from the structure of
singularities;

Step 1.2. Recover the lost information about the zeroes and/or poles of f , and
determine p;

Step 2. Compute candidates for the coe�cients of [Hq,g ], once a candidate
for f is computed;

Step 3. Compute [M] for each candidate f and set of candidates for the
coe�cients of [Hq,g ]. Then test whether [M] !EG [A].

Maple file: Example on our approach
22 / 48
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Filtering the information: Removable singularities

1 Preliminaries
Generalized hypergeometric series
Transformations

2 Di�culties and possible scenarios

3 Our approach

4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function
[Hq,0]: Logarithmic case
[Hq,0]: Irrational case
[Hq,0]: Rational non-logarithmic case
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Filtering the information: Removable singularities

Removable singularities
Definition

Definition
A pole x0 of S(x) is said to be a removable singularity of
[S ] d

dxY = S(x)Y if there exists a system [S̃ ] such that:

[S ] !EG [S̃ ];

x0 is an ordinary (non-singular) point of [S̃ ].

Shanin-Craster’2002, Chen-Kauers-Singer’2014, Bostan-Chyzak-Van
Hoeij-Pech,...
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Filtering the information: Removable singularities

Removable singularities
Detection for possible removal: a singular point

[S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
U(t)+⇤

t dt

#EG

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
Ũ(t)+⇤̃

t dt

Gauge Exp-product

T (x) 2 GLq+1(C (x)) b(x) 2 C (x)

Y = TZ Y = Z exp(�
R b(x)

x dx)

r̃ = r r̃ = r

Ũ(t) = U(t) Ũ(t) = U(t) + b(t)Iq+1

⇤̃ = ⇤ mod 1
r Z ⇤̃ = ⇤+ bIq+1 if b 2 C

singularity structure can be tracked singularity structure can be tracked
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Filtering the information: Removable singularities

Removable singularities
Detection for possible removal: Irregular singular point

[S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
U(t)+⇤

t dt

#E

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
Ũ(t)+⇤̃

t dt

Gauge Exp-product

b(x) 2 C (x)

Y = Z exp(�
R b(x)

x dx)

r̃ = r

Ũ(t) = U(t) + b(t)Iq+1

⇤̃ = ⇤+ bIq+1 if b 2 C
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Filtering the information: Removable singularities

Removable singularities
Detection for possible removal: Irregular singular point

[S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
U(t)+⇤

t dt

#E

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
Ũ(t)+⇤̃

t dt

Gauge Exp-product

b(x) 2 C (x)

Y = Z exp(�
R b(x)

x dx)

Ũ(t) = U(t) + b(t)Iq+1
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Filtering the information: Removable singularities

Removable singularities
Removal of a (partially) removable irregular singular point

Input system: [S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
U(t)+⇤

t dt

If
U(t) = Ũ(t)� b(t)Iq+1

for some b(t) 2 C (x) then

Input system: [S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
U(t)+⇤

t dt

#E Y = Z exp(�
Z

b(x)

x
dx) "E Y = Z exp(+

Z
b(x)

x
dx)

Output system: [S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
Ũ(t)+⇤̃

t dt

If Ũ(t) 6= 0 then x0 is partially removable.
If Ũ(t) = 0 then x0 is totally removable, and we continue..
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Filtering the information: Removable singularities

Removable singularities
Detection for possible removal: Regular singular point

[S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
⇤
t dt

#E

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
⇤̃
t dt

Gauge Exp-product

b 2 C

Y = Z exp(�
R

b
x dx)

⇤̃ = ⇤+ bIq+1 if b 2 C
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Filtering the information: Removable singularities

Removable singularities
Removal of a (partially) removable regular singular point

Input system: [S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
⇤
t dt

If
⇤ = ⇤̃� bIq+1

for some b 2 C (x) then

Input system: [S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
⇤
t dt

#E Y = Z exp(�
Z

b

x
dx) "E Y = Z exp(+

Z
b

x
dx)

Output system: [S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) exp

R
⇤̃
t dt

x0 is not an ordinary point yet:

We now have to investigate ⇤ with a gauge transformation!
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Filtering the information: Removable singularities

Removable singularities
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Filtering the information: Removable singularities
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Filtering the information: Removable singularities

Removable singularities
Removal of a removable regular singular point

Input system: [S ]
d

dx
Y = S(x)Y , Y = �(t) exp

R
⇤
t dt

Rewriting:

Input system: [S ]
d

dx
Y = S(x)Y , Y = �(t) x⇤
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Filtering the information: Removable singularities

Removable singularities
Removal of a removable regular singular point
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Filtering the information: Removable singularities

Removable singularities
Removal of a removable regular singular point

[S ]
d

dx
Y = S(x)Y , Y = �(t) x⇤

#G

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) x ⇤̃

Gauge Exp-product

T (x) 2 GLq+1(C (x))

Y = TZ

r̃ = r = 1

⇤̃ = ⇤ mod Z

⇤ can be altered:
Only by integers!!
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Filtering the information: Removable singularities

Removable singularities
Removal of a removable regular singular point
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Filtering the information: Removable singularities

Removable singularities
Removal of a removable regular singular point

[S ]
d

dx
Y = S(x)Y , Y = �(t) x⇤

#G

[S̃ ]
d

dx
Z = S̃(x)Z , Z = �̃(t) x ⇤̃

⇤ = D + N :

If N = 0 and D has integer entries, singularity can be removed by a
Gauge transformation;

Otherwise the singularity is nonremovable;

Special case of N = 0 and D has non-negative integer entries:
Apparent singularity (Barkatou-Maddah’2015).
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Treating the available information: Recovering the pullback function

1 Preliminaries
Generalized hypergeometric series
Transformations

2 Di�culties and possible scenarios

3 Our approach

4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function
[Hq,0]: Logarithmic case
[Hq,0]: Irrational case
[Hq,0]: Rational non-logarithmic case
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Treating the available information: Recovering the pullback function

Available information
Input system [A]

Recovering
f�!C?

[Hq,g ]
f�!C [M] !EG [A]

Singularities of [A] are classified into Sreg , Sirr , and Sremov .

The information from the generalized exponents is filtered;

one-to-one correspondence between Sirr and poles of f ;

the points of Sreg are zeroes of f ;

The points of Sreg are zeroes of f

But are they the only zeroes?!

How to recover f from the filtered information?!

Maple sheet: recall possible scenarios
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Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[Hq,1]: Generalized exponents at zero

⇤ = diag(0, 1� b1, . . . , 1� bq)

[Hq,1]: Generalized exponents at 1

⇤ = diag(a1, a2, . . . , ap)

[Hq,1]: Generalized exponents at 1

⇤ = diag(0, 1, . . . , q � 1,
qX

k=1

bk �
pX

k=1

ak)

36 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[Hq,1]: Generalized exponents at zero

⇤ = diag(0, 1� b1, . . . , 1� bq)

[Hq,1]: Generalized exponents at 1

⇤ = diag(a1, a2, . . . , ap)

[Hq,1]: Generalized exponents at 1

⇤ = diag(0, 1, . . . , q � 1,
qX

k=1

bk �
pX

k=1

ak)

36 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[Hq,1]: Generalized exponents at zero

⇤ = diag(0, 1� b1, . . . , 1� bq)

[Hq,1]: Generalized exponents at 1

⇤ = diag(a1, a2, . . . , ap)

[Hq,1]: Generalized exponents at 1

⇤ = diag(0, 1, . . . , q � 1,
qX

k=1

bk �
pX

k=1

ak)

36 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[Hq,1]: Generalized exponents at zero

⇤ = diag(0, 1� b1, . . . , 1� bq)

[Hq,1]: Generalized exponents at 1

⇤ = diag(a1, a2, . . . , ap)

[Hq,1]: Generalized exponents at 1

⇤ = diag(0, 1, . . . , q � 1,
qX

k=1

bk �
pX

k=1

ak)

36 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[M ]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq))

[M ]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map)

[M ]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak))

37 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[M ]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq))

[M ]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map)

[M ]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak))

37 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[M ]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq))

[M ]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map)

[M ]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak))

37 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1]
f�!C [M ]

p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[M ]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq))

[M ]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map)

[M ]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak))

37 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1] ! [A]
p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[A]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq)) modZ

[A]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map) modZ

[A]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak)) modZ

38 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1] ! [A]
p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[A]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq)) modZ

[A]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map) modZ

[A]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak)) modZ

38 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1] ! [A]
p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[A]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq)) modZ

[A]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map) modZ

[A]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak)) modZ

38 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [Hq,1] ! [A]
p = q + 1, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
⇤
t dt

[A]: Generalized exponents at a zero of f of multiplicity m

⇤ = diag(0,m(1� b1), . . . ,m(1� bq)) modZ

[A]: Generalized exponents at a pole of f of multiplicity m

⇤ = diag(ma1,ma2, . . . ,map) modZ

[A]: Generalized exponents at a zero of 1� f of multiplicity m

⇤ = diag(0,m(1), . . . ,m(q � 1),m(
qX

k=1

bk �
pX

k=1

ak)) modZ

38 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems
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Consequences on generalized exponents [Hq,0]
f�!C [M ]

p  q, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
U(t)+⇤

t dt

[Hq,0]: Generalized exponents at zero

U(t) = 0, ⇤ = diag(0, 1� b1, . . . , 1� bq)

[Hq,0]: Generalized exponents at 1: t = 1/x = (�T )q�p+1

U(t) = diag(0, . . . , 0,
1

T
, . . .

1

T
)

⇤ = diag(a1, . . . , ap,↵, . . . ,↵), ↵ =
q � p � 2(

Pp
k=1 ak +

Pq
k=1 bk)

q � p + 1
.
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Consequences on generalized exponents [Hq,0]
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p  q, num-param:{a1, . . . , ap}, denom-param: {b1, . . . , bq}, b0 = 1, �(t) exp

R
U(t)+⇤

t dt

[M ]: Generalized exponents at a zero x0 of f of multiplicity m

U(t) = 0, ⇤ = diag(0,m(1� b1), . . . ,m(1� bq))

[M ]: Generalized exponents at a pole x0 of f of multiplicity m

f = t�m
P1

i=0 fi t
i , fi 2 C̄ , f0 6= 0, s = maxk2N{k < m

q�p+1},

U(t) = diag(0, . . . , 0,�, . . .�), � =
sX

i=0

(i(q�p+1)�m)giT
i(q�p+1)�m

where t = T q�p+1, g = T�m
P1

i=0 giT
i , and f = (�g)(q�p+1).

⇤ = diag(ma1, . . . ,map,m↵, . . . ,m↵)
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Treating the available information: Recovering the pullback function

Recovering f

[Hq,g ]
f�!C [M] !EG [A]

For [A], we compute Sreg , Sirr , and Sremov , and the generalized
exponents:

If x0 2 Sreg then x0 is a zero of f (however, the multiplicity had been
shifted by an integer);

If x0 is a zero of f then x0 2 Sremov or x0 2 Sreg ;

x0 2 Sirr i↵ x0 is a pole of f . The generalized exponents of [A] and
[M] are equal modulo 1

q�p+1Z (p can be calculated from the
rmaification index).

If Sirr = ; then g = 1.

If Sirr 6= ; then g = 0.
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Treating the available information: Recovering the pullback function

Recovering f

[Hq,g ]
f�!C [M] !EG [A]

For [A], we compute Sreg , Sirr , and Sremov , and the generalized
exponents:

If x0 2 Sreg then x0 is a zero of f (however, the multiplicity had been
shifted by an integer);

If x0 is a zero of f then x0 2 Sremov or x0 2 Sreg ;

x0 2 Sirr i↵ x0 is a pole of f . The generalized exponents of [A] and
[M] are equal modulo 1

q�p+1Z (p can be calculated from the
rmaification index).

If Sirr = ; then g = 1.

If Sirr 6= ; then g = 0.

If q = p then we can recover the polar part of f = (�g)q�p+1 from
the generalized exponents at a point in Sirr !
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Treating the available information: Recovering the pullback function

[Hq,0]: Recovering f
[Hq,g ]

f�!C [M] !EG [A]

For [A], we compute Sreg , Sirr , and Sremov , and the generalized exp:
f 2 C (x)
Let f = A

B where A,B 2 C [x ], B is monic, and gcd(A,B) = 1.
We compute B from Sirr :

B =
Y

x02Sirr

(x � x0)
mx0 , x0 6= 1.

We compute a bound dA for the degree of A =
PdA

i=0 aix
i . Set

dA =

(
deg(B) +m1 if1 2 Sirr

deg(B) otherwise

:
If 1 2 Sreg then deg(A) < dA.
If 1 2 Sirr then deg(A) = dA.
Otherwise deg(A)  dA.

Either insure that there is one-to-one correspondence btw poles of f
and Sreg or find dA + 1 equations to compute A!! 43 / 48
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Treating the available information: Recovering the pullback function

[Hq,0]: Logarithmic case

[Hq,0]: Logarithmic case
Example: Maple file

[Hq,g ]
f�!C [M ] !EG [A]

x0 is a logarithmic singularity of [A] if and only if x0 is a logarithmic
singularity of [M] if and only if zero is a logarithmic singularity of
[Hq,0].

If x0 is a logarithmic singularity of [A] then there exists one-to-one
correspondence between the singularities of [A] and zeros of f

Method:

f = c A
B , c 2 C

Find B , dA and Sreg

For each possible degree configuration, find c : We always have
enough number of equations from Sirr !
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Treating the available information: Recovering the pullback function

[Hq,0]: Irrational case

[Hq,0]: Irrational case
Example: Maple file

[Hq,g ]
f�!C [M ] !EG [A]

If at least one of the generalized exponents at x0 lies in C\Q then
there exists at least one k 2 {1, ..., q} such that bk 2 C\Q.

There exists one-to-one correspondence between the singularities of
[A] and zeros of f

Method:

f = c A
B , c 2 C

Find B , dA, and Sreg

We can also compute the multiplicities of the zeroes of f !

Find c : We always have enough number of equations from Sirr !
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Treating the available information: Recovering the pullback function

[Hq,0]: Rational non-logarithmic case

[Hq,0]: Rational non-logarithmic case

[Hq,g ]
f�!C [M ] !EG [A]

The zeros of f are regular singularities of [M].

If the generalized exponents of the zeros of f in [M] are integers,
they might be removed by a gauge transformation.

So, we do not have a one-to-one correspondence between the
singularities of [A] and zeros of f . Example: Maple file

Method:

f = c
A1A

d
2

B , c 2 C

Find B , dA, and Sreg

Find candidates for (d ,A1, deg(A2)

For each candidate, find c : We always have enough number of
equations from Sirr !

46 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

[Hq,0]: Rational non-logarithmic case

[Hq,0]: Rational non-logarithmic case

[Hq,g ]
f�!C [M ] !EG [A]

The zeros of f are regular singularities of [M].

If the generalized exponents of the zeros of f in [M] are integers,
they might be removed by a gauge transformation.

So, we do not have a one-to-one correspondence between the
singularities of [A] and zeros of f . Example: Maple file

Method:

f = c
A1A

d
2

B , c 2 C

Find B , dA, and Sreg

Find candidates for (d ,A1, deg(A2)

For each candidate, find c : We always have enough number of
equations from Sirr !

46 / 48



On Generalized Hypergeometric Solutions of First-Order Linear Di↵erential Systems

Treating the available information: Recovering the pullback function

[Hq,0]: Rational non-logarithmic case

Summary and further investigations

We give an algorithm which detects and removes removable
singularities of an input first-order system

We apply this algorithm to detect whether an input di↵erential
equation of an arbitrary order or a first-order system has generalized
hypergeometric solutions (p  q + 1)

We give a decision algorithm in the case p  q

We give a method to ”filter” the information in the case p = q + 1

Maple package GenHypSols

Further investigations:

Recovering f in the case p = q + 1
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[Hq,0]: Rational non-logarithmic case
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