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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

In these slides...

The literature offers algorithms to detect and construct whether a second
order differential equation has Bessel, Kummer, Gauss,... type solutions.

What about equations of orders 3, 4, ...7

What about systems of equations?
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Preliminaries

Preliminaries
m Generalized hypergeometric series
m Transformations

Difficulties and possible scenarios

Our approach

Filtering the information: Removable singularities

Treating the available information: Recovering the pullback function
m [Hgo]: Logarithmic case
m [Hyo]: Irrational case
m [Hyo]: Rational non-logarithmic case =
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Preliminaries

Generalized hypergeometric series

Generalized hypergeometric series

ai, an, ..., (a1)« ap)kx
a; b;
( X) |:b1»b27"'7 :| Z

m p and g are two natural integers; p < g+ 1;

W ai,a,...,ap (resp. by, bo,..., by ) are called numerator parameters
(resp. denominator parameters);

m(a)g=1land (a)k =a(a+1)...(a+k—-1)= a)) is the
Pochhammer symbol;
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Generalized hypergeometric series

Generalized hypergeometric series

ay, a,. .., . (a1)« ap)k x"
a;b; x
( ) |:b17b27"'7 :| Z

m p and g are two natural integers; p < g+ 1;

W ai,a,...,ap (resp. by, bo,..., by ) are called numerator parameters
(resp. denominator parameters);

m(a)g=1land (a)k =a(a+1)...(a+k—-1)= a)) is the
Pochhammer symbol;
m With 6 = xd%, the series ,F4(a; b; x) satisfies:

(0(0+by—1)(0+ba—1) ... (0+bg—1)—x(0+a1)(0+az) ... (0+a,))y = 0.
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Preliminaries
[

Generalized hypergeometric series

Matricial representation of the differential equation
(C(), 4

1
0
d
[Hq,g] dx Y = Hq,g(X)Y =

0

0 1
_ g _ oax+p _ agx+pBq
x9(1—x)& x9(1—x)8 x(1—x)8
dy o diy\T
u YZ()@%;E{%M“:#)
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Generalized hypergeometric series

Matricial representation of the differential equation
(C(), 4

0 1 0 0
0 0 1 0
d
[Ha.e] dx Y = Hgg(x)Y =
0 0
_ ag _aix+p
x9(1—x)&
n Y =(y, %, 9

1
_ agx+pBq

x9(1—x)8 x(1—x)8

)T

dx27 " dxd

products of the a;'s and b;'s.

m the ay's and the B¢'s are parameters expressible explicitly as sums of
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Generalized hypergeometric series

Matricial representation of the differential equation
(C(), 4)

0 1 0 0
0 0 1 0
d
[Ha.¢] &Y = Hgg(x)Y = Y
0 0 1
_ ag _aix+B _ ogx+Pq
x9(1—x)& x9(1—x)8 x(1—x)8
dy o d?
Y= %)

m the ay's and the B¢'s are parameters expressible explicitly as sums of
products of the a;'s and b;'s.
|

)0 if p<g: 0 (resp. co) is a regular (resp. irregular) singular point
|1 ifp=g+1:0,1,00 are regular singular points
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Preliminaries

Transformations

Transformations

[5]

[5]

Y =5(Y. S(x) € Mg (C(x))

dixz =5(x)Z, $(x)e Mg11(C(x))
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Preliminaries

Transformations

Transformations
Sl Sy =50Y, S() € Mea(C(x)
1
8] J7=3092. 80 € Mgn(C())

Gauge transformation: T(x) € GL,+1(C(x))
Y=T()Z, $(x)=T(x)(S()T(x)~ & T(x))

7/48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Preliminaries

Transformations

Transformations

Sl Sy =50Y, S() € Mea(C(x)
1
8] J7=3092. 80 € Mgn(C())

Gauge transformation: T(x) € GL,+1(C(x))
Y=T()Z, $(x)=T(x)(S()T(x)~ & T(x))

Exponential transformation —g: b(x) € C(x)
Y = Zexp(— [ 2dx),  §(x) = S(x) + 2
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Preliminaries

Transformations

Transformations

Sl Sy =50Y, S() € Mea(C(x)
1
8] J7=3092. 80 € Mgn(C())

Gauge transformation: T(x) € GL,+1(C(x))
Y=T()Z, $(x)=T(x)(S()T(x)~ & T(x))

Exponential transformation —g: b(x) € C(x)
Y = Zexp(— [ Mdx),  §(x) = S(x) + 22

Change of variable —¢
Z(x) = Y(f(x)), S(x)=(f'(x))"1S(f(x)) Maple sheet: Examples
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Transformations

Reformulating our quest

Equivalence problem

Input system

[A]

Algorithm to detect and construct

[Hq,g] —C [M]_] —E [MQ] —G [M3] —E [M4] —C .- [A]

D¢
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Preliminaries

On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Transformations
:

Reformulating our quest

Input system

[A]

Algorithm to detect and construct

[Hq,g] —C [Ml] —E [MQ] —G [M3] —E [M4] —C .. [A]
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Difficulties and possible scenarios

Difficulties and possible scenarios
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Difficulties and possible scenarios
:

Where to get information about [H; 4] and the
transformations?

m Dimension of the system (assumed irreducible- Barkatou'2007, van
Hoeij'1996, van der hoeven'2007): q, p?
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Difficulties and possible scenarios

Where to get information about [H; 4] and the
transformations?

m Dimension of the system (assumed irreducible- Barkatou'2007, van
Hoeij'1996, van der hoeven'2007): q, p?

m Singularity Structure: g7
m Order, number, kind of transformations: —¢, — g, —¢?

m Invariants under transformations?
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Difficulties and possible scenarios

Order of transformations

Input system
[A]

Proposition
Consider two systems [Hy ¢| and [A] with Hg 4(x), A(x) € Mg+1(C(x)).
If [Hqg] — [Al, then there exists an algebraic function f and a system
[M] with M(x) € Mgq41(C(x)) such that

[Ha.s] ¢ [M] —ec [A]

f: pullback function

12/48
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Difficulties and possible scenarios

Order of transformations

Input system

[A]
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Difficulties and possible scenarios
:

Order of transformations

Input system

[A]

Consequence

[Has] S [M] —ves [A]
(Barkatou-Pfluegel'1998)
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Difficulties and possible scenarios

Order of transformations

Input system

[A]

Consequence

[Hag] Do [M] =6 [A]
(Barkatou-Pfluegel'1998)

But!!

To construct [M], we need to construct [Hy 4] and — C using
information from [A]. So are there certain invariants under the
transformations involved to give us some insight?
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[

Difficulties and possible scenarios

In the literature...

mqg>1

m —gc in a more general context: van Hoeij'1996,

Barkatou-Pfluegel’'1998

f = x, finding all hypergeometric solutions: Petkovsek-Salvy'1993
g = 2, f has a special form: Cheb Terrab-Roche2008

Qe
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Difficulties and possible scenarios

In the literature...

mqg>1
m —gc in a more general context: van Hoeij'1996,
Barkatou-Pfluegel’'1998
m f = x, finding all hypergeometric solutions: Petkovsek-Salvy'1993
m g =2, f has a special form: Cheb Terrab-Roche'2008
mqg=1
[ ] L)c: Bronstein-Lafaille’2002

u L>c—>1:-G, 2007-: W. Koepf., M. Van Hoeij, Q. Yuan, V. J. Kunwar,
E. Imamoglu, R. Debeerst, ...
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Difficulties and possible scenarios

Order of transformations

Look for invarinats?

Input system
[A]

Proposition
Consider two systems [Hy g| and [A] with Hg 4(x), A(x) € Mg+1(C(x)).
If [Hq,g] — [Al, then there exists an algebraic function f and a system
[M] with M(x) € Mg+1(C(x)) such that

[Ha.s] ¢ [M] e [A]
f: pullback function
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Difficulties and possible scenarios

A closer look: Formal Solutions

O

dx

Y=5x)Y, S(x)e Mg1(C(x))
m Let xp € CU {o0} be a pole of S(x):

X — Xo

The local parameter t = {
1/x

if xg € C

if xg = 00

D¢
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Difficulties and possible scenarios

A closer look: Formal Solutions

Sl Sy =50Y, S() € Mea(C(x)

m Let xo € CU {00} be a pole of S(x):

—x if C
The local parameter t = x XO, o0
1/x ifxg =00

m A Fundamental Matrix of Formal Solutions (FMFS) is given by:

JU(t)+A dt

(Y =) Sol = &(t) exp™ ¢

® lies in Mq1(C((t7))); r € N%;

U(t) = diag(ui(t), ..., ug+1(t)) is a diagonal matrix whose entries
are polynomials from C[t~'/"] without constant terms;

A= D+ N, A commutes with E,

D = diag(\1, . .., Ag+1) with entries in /\/lq+1(5), N is an upper
triangular nilpotent matrix.

16
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Difficulties and possible scenarios

A closer look: Formal Solutions

Classification of singularities

(5] -

dx

Y=5x)Y, S(x)e Mg1(C(x))
Let xp € C U {00} with FMFS:

Y = ®d(t) exp

JU(t)+A dt

x—xp ifxpeC
£ , where t=
1/x

ion = 0

D¢
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Difficulties and possible scenarios

A closer look: Formal Solutions

Classification of singularities

(5] -

dx

Y=5x)Y, S(x)e Mg1(C(x))
Let xp € C U {00} with FMFS:

d  where t= xX—xp ifxgeC
1/x

if xg = 00

Y = o(t) expr(tHA

t

m If xp € CU {00} is not a pole of S(x) then Y is analytic in some
neighborhood of xp. We say that xg is an ordinary point of [S].

17 /48
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Difficulties and possible scenarios

A closer look: Formal Solutions

Classification of singularities

S] DY =StV S(x) € Mga(C)

Let xp € C U {00} with FMFS:

‘ —x ifxeC
y d)(t) expr(f)M dt7 where t — X XO‘ IT Xg €
1/x ifxg =00

m If xp € CU {00} is not a pole of S(x) then Y is analytic in some
neighborhood of xp. We say that xg is an ordinary point of [S].

m If xp € CU{oo} is a pole of S(x):
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m If xp € CU {00} is not a pole of S(x) then Y is analytic in some
neighborhood of xp. We say that xg is an ordinary point of [S].
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m X is said to be an apparently singular point of [S] if Y is analytic in

some nbhd of xp;
m xp is said to be a regular singular point of [S] if U(t) is null;
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Difficulties and possible scenarios

A closer look: Formal Solutions

Classification of singularities

S] DY =StV S(x) € Mga(C)

Let xp € C U {00} with FMFS:

‘ —x ifxeC
y d)(t) expr(f)M dt’ where t — X XO‘ IT Xg €
1/x ifxg =00

m If xp € CU {00} is not a pole of S(x) then Y is analytic in some
neighborhood of xp. We say that xg is an ordinary point of [S].
m If xp € CU{oo} is a pole of S(x):
m X is said to be an apparently singular point of [S] if Y is analytic in
some nbhd of xo;
m xp is said to be a regular singular point of [S] if U(t) is null;
m otherwise, xp is said to be an irregular singular point.

17 /48
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Difficulties and possible scenarios

A closer look: Formal Solutions

Invariants?

Sl Sv=5(0Y, S() € Mea(C(x)

m Let xp € CU {oo} be a pole of S(x):

x—xg ifxpeC

The local parameter t = )
1/x ifxg =00

m A Fundamental Matrix of Formal Solutions (FMFS) is given by:

/ U(;)M dt

Y = ®(t) exp

= ® lies in Mg1(C((t/7))); r € N* called ramification index;

U(t) = diag(ui(t), ..., ug+1(t)) is a diagonal matrix whose entries

are polynomials from C[t_l/’] without constant terms;

A= D+ N, A commutes with E,

m D =diag(\1, ..., \g+1) with entries in Mg41(C), N is an upper
triangular nilpotent matrix.
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Difficulties and possible scenarios

A closer look: Formal Solutions

Equivalence transformations: Two lemmas

51 Ly =sk)Y, ¥ =o() expr
dx
lec
18] L S(x)Z, Z=d(1) exp e dt
dx
Gauge Exp-product
T(x) € GLg11(C(x)) b(x) € C(x)
Y=TZ Y = Zexp(— [ X dx)
F=r F=r
u(t) = u(t) U(t) = U(t) + b(t)lgs1
A=A mod %Z N=N+blgifbeC
singularity structure can be tracked | singularity structure can be; tracked

Mabple sheet: Examples on effect of gauge and exp-product 19/48
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Difficulties and possible scenarios

Recall that...

Input system

[A]

What about i>C?

[Hagl Doc [M] =6 [A]

1PN G4
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Difficulties and possible scenarios

Recall that...

Input system

[A]

f
What about —7?

[Hagl Doc [M] =6 [A]

. . c f
Singularity tracking under —?
[Ha.g] 2c [M]: Sol(x) L¢ Sol(f)
m If x is a zero of f(x) then it is a regular singularity of [M]

m If xo is a pole of f(x) then it is an irregular singularity of [M]

Maple sheet: The inverse is not necessarily true, possible scenarios 20/48
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Our approach

Our approach
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Our approach

[Hq.g] — [A] for g € {0,1}7
Step 0. Fix the order:
[Hq)g] f: pullback function c [M] . [A],

Step 1. Recover the poles and zeros of f from the singularity structure of
[A]:

Step 1.1. Filter the information: Distinguish between removable singularities
and zeroes and poles of f, determine g from the structure of
singularities;

Step 1.2. Recover the lost information about the zeroes and/or poles of f, and
determine p;

Step 2. Compute candidates for the coefficients of [Hg ], once a candidate
for f is computed;

Step 3. Compute [M] for each candidate f and set of candidates for the
coefficients of [Hy g]. Then test whether [M] —g¢ [A].

N
N
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Filtering the information: Removable singularities
:

Filtering the information: Removable singularities
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Filtering the information: Removable singularities

Removable singularities

Definition

Definition
A pole xg of S(x) is said to be a removable singularity of
[S] £Y = S(x)Y if there exists a system [S] such that:

m [S] =k [S];
®m xo is an ordinary (non-singular) point of [3].

24 /48
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Filtering the information: Removable singularities

Removable singularities

Definition

Definition
A pole xg of S(x) is said to be a removable singularity of
[S] £Y = S(x)Y if there exists a system [S] such that:

m [S] —ec [S];
®m X is an ordinary (non-singular) point of [3].

Shanin-Craster'2002, Chen-Kauers-Singer'2014, Bostan-Chyzak-Van
Hoeij-Pech,...

24 /48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Filtering the information: Removable singularities

Removable singularities

Detection for possible removal: a singular point

5] %Y —S(x)Y, Y=0(t) ep
lec
3] %z — 52, Z= (1) exp it
Gauge Exp-product
T(x) € GLg1(C(x)) b(x) € C(x)
Y=TZ Y = Zexp(— [ X dx)
F=r F=r
U(t) = U(t) U(t) = U(t) + b(t)lg41
A=A mod 1Z N=N+blgifbeC
singularity structure can be tracked | singularity structure can be tracked

25/48
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Filtering the information: Removable singularities

Removable singularities

Detection for possible removal: Irregular singular point

5] Ly =Sy, ¥ = o(t) exptit e
dx
le
B L7230z, Z=d(1) ep
X
Gauge Exp-product
b(x) € C(x)

Y = Zexp(— [ X dx)
U(t) = U(t) + b(t)lg+1

A=A+bl1ifbeC

[m]

26 /48
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Filtering the information: Removable singularities

Removable singularities

Detection for possible removal: Irregular singular point

LAV - L
[S] I Y =5(x)Y, Y =90(t) exp
LE
. d . .
[5] &Z =5(x)Z, Z=9(t) exp

I 0(:)+7\ dt
Gauge

Exp-product

b(x) € C(x)

Y = Zexp(— [ 2 dx)

U(t) = U(t) + b(t)lg+1

27 /48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable irregular singular point

Input system: [S]

dx

JUB)+A

Y=5x)Y, Y=0()exp - dt

1PN G4
28/ 48
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Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable irregular singular point

Input system: [S]
If

dx

U(t) = 0(t) — b(t) s
for some b(t) € C(x) then

Y=5(x)Y, Y =9%(t) exp

/ U(:)+/\ dr

1PN G4
28/ 48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable irregular singular point

Input system: [S] d_y = S(X)Y, Y =o(t) expfu(:m\ dt
X
If

U(t) = 0(t) — b(t) s
for some b(t) € C(x) then

Input system: [S]

dy_ = LU0 gt
&Y—S(X)Ya Y = &(t) exp
Output system: [§] — 7= §(X)Z, 7 — 5>(t) exertM dt
X

28/ 48
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Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable irregular singular point

Input system: [S] diy = S(X)Y, Y =o(t) expr(:HA e
X
If )
U(t) = 0(t) — b(t) g1
for some b(t) € C(x) then
Input system: [S] iy =S(x)Y, Y =9(1) expoM dt

e Y:Zexp(—/dex) e Y—Zexp(—l—/b(xx)dx)

O(t)+A dt

Output system: [5] diZ =5(x)Z, Z=9%(1) expf C
X

m If J(t) # 0 then xq is partially removable.
m If U(t) = 0 then xq is totally removable, and we continue..

28 /48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Filtering the information: Removable singularities

Removable singularities

Detection for possible removal: Regular singular point

5] 2

™ Y =5S(x)Y, Y =9t) exprA dt

le
: d ,_¢ B1) el
[S] —Z=5(x)Z, Z=9®(t) expt
dx
Gauge

Exp-product

beC

Y = Zexp(— [ 2dx)

AN=AN+blg, ifbe C

[m]

29 /48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable regular singular point

d LA gt
Input system: [S] &Y =5(x)Y, Y =9(t) exp®

1PN G4
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Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable regular singular point

d LA gt
Input system: [S] d—Y =5(x)Y, Y =9(t) exp®
X
If y
N=N—=blgs1

for some b € C(x) then

1PN G4
30/48
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Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable regular singular point

d I gy
Input system: [S] d—Y =S5(x)Y, Y =90(t) exp®
X
If ;
N=N—blg1
for some b € C(x) then
Input system: [S] diY =5(x)Y, Y =9() exprA dt
X
b b
e Y =Zexp(— ;dx) Te Y = Zexp(+ ;dx)
: d,_¢ 51 el
Output system: [S] &Z =5(x)Z, Z=®(t) exp’®

30/48
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Filtering the information: Removable singularities

Removable singularities

Removal of a (partially) removable regular singular point

d L gy
Input system: [S] d—Y =S5(x)Y, Y =0(t) exp®
X
If )
N=N—blg1
for some b € C(x) then
Input system: [S] diY =S(x)Y, Y =9(t) exprA dt
X
b b
le Y =Zexp(— ;dx) Te Y = Zexp(+ ;dx)

d

L7302, Z=®(t) exp
= ) = p

Output system: [5]

Xp is not an ordinary point yet:

We now have to investigate A with a gauge transformation!
30/48
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Filtering the information: Removable singularities

Removable singularities

Removal of a removable regular singular point

Input system: [S] —

™ Y =5(x)Y,

1PN G4
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Filtering the information: Removable singularities

Removable singularities

Removal of a removable regular singular point

d
Input system: [S]

Rewriting:

X

Input system: [S]

dx

Y =5S(x)Y, Y =0d)x"

Y =S(x)Y, Y =0(t) exp’t %

1PN G4
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Filtering the information: Removable singularities

Removable singularities

Removal of a removable regular singular point

d

[S] ——Y =S(x)Y, Y=o()x"

dx
le

3] %z =35(x)2Z, Z=3&(t) <
Gauge Exp-product
T(x) € GLg11(C(x))
Y=TZ
F=r=1
A=A\ mod Z

Qe
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Filtering the information: Removable singularities

Removable singularities

Removal of a removable regular singular point

d

[S] ——Y =S(x)Y, Y=o()x"

dx
le

3] %z =35(x)2Z, Z=3&(t) <
Gauge Exp-product
T(x) € GLg11(C(x))
Y=TZ
F=r=1
A=A\ mod Z

A can be altered:

Only by integers!!
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Filtering the information: Removable singularities

Removable singularities

Removal of a removable regular singular point
[S] dy_ S(x)Y, Y =d(t) <"
dx ’ n
le
d

3] +Z=5(02. z=3%() X"

AN=D + N-:

m If N =0 and D has integer entries, singularity can be removed by a
Gauge transformation;

m Otherwise the singularity is nonremovable;

m Special case of N =0 and D has non-negative integer entries:
Apparent singularity (Barkatou-Maddah'2015).
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Treating the available information: Recovering the pullback function

Treating the available information: Recovering the pullback function

m [Hy]: Logarithmic case
m [Hg0]: Irrational case
m [Hg0]: Rational non-logarithmic case

Qe
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Treating the available information: Recovering the pullback function

Available information
Input system [A]

. f
Recovering — 7

[Hael S IM] —ec Al
Singularities of [A] are classified into Sreg, Sirr, and Sremov -
m The information from the generalized exponents is filtered;
m one-to-one correspondence between S, and poles of f;
m the points of S, are zeroes of f;
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Treating the available information: Recovering the pullback function

Available information
Input system [A]

. f
Recovering —¢7

[Hael S IM] —ec Al
Singularities of [A] are classified into Sreg, Sirr, and Sremoy -
m The information from the generalized exponents is filtered;
m one-to-one correspondence between S, and poles of f;

m the points of S, are zeroes of f;

The points of S,, are zeroes of f

m But are they the only zeroes?!

m How to recover f from the filtered information?!



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

: f
Consequences on generalized exponents [Hy 1] —¢ [M]

IA
p =g+ 1, num-param:{ay,...,a,}, denom-param: {by,..., by}, by =1, ®(t) exp't
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

. f
Consequences on generalized exponents [Hy 1] —¢ [M]
p=q-+1, num-param:{a1, ..., ap}, denom-param: {b1,...,bq}, bp =1, d(t) expjTA dt
[Hq.1]: Generalized exponents at zero

A = diag(0,1 — by,...,1 — by)

Qe
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

. f
Consequences on generalized exponents [Hy 1] —¢ [M]
p=q-+1, num-param:{a1, ..., ap}, denom-param: {b1,...,bq}, bp =1, d(t) expjTA dt
[Hq.1]: Generalized exponents at zero
A = diag(0,1 — by,...,1 — by)

[Hq,1): Generalized exponents at oo

A = diag(a1, a2, ..., ap)

36/48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

. f
Consequences on generalized exponents [Hy 1] —¢ [M]
p=q-+1, num-param:{a1, ..., ap}, denom-param: {b1,...,bq}, bp =1, d(t) eprTA dt
[Hq.1]: Generalized exponents at zero
A = diag(0,1— by,...,1— by)
[Hq,1): Generalized exponents at oo

A = diag(a1, a2, ..., ap)

[Hq.1]: Generalized exponents at 1

q p
A=diag(0,1,...,q— 1, b~ > a)
k=1 k=1

36/48
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Treating the available information: Recovering the pullback function

: f
Consequences on generalized exponents [Hy 1] —¢ [M]

IA
p =g+ 1, num-param:{ay,...,a,}, denom-param: {by,..., by}, by =1, ®(t) exp't
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

. f
Consequences on generalized exponents [Hy 1] —¢ [M]
p=q-+1, num-param:{a1, ..., ap}, denom-param: {b1,...,bq}, bp =1, d(t) exprA dt
[M]: Generalized exponents at a zero of f of multiplicity m

A = diag(0, m(1 — by),...,m(1 — by))

Qe
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

. f
Consequences on generalized exponents [Hy 1] —¢ [M]
p=q-+1, num-param:{a1, ..., ap}, denom-param: {b1,...,bq}, bp =1, d(t) expjTA dt
[M]: Generalized exponents at a zero of f of multiplicity m

A = diag(0, m(1 — by), ..., m(1 — bg))
[M]: Generalized exponents at a pole of f of multiplicity m

N\ = diag(may, may, ..., map)
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

. f
Consequences on generalized exponents [Hy 1] —¢ [M]
p=q-+1, num-param:{a1, ..., ap}, denom-param: {b1,...,bq}, bp =1, d(t) eprTA dt
[M]: Generalized exponents at a zero of f of multiplicity m

A = diag(0, m(1 — by), ..., m(1 — by))
[M]: Generalized exponents at a pole of f of multiplicity m
N\ = diag(may, may, ..., map)
[M]: Generalized exponents at a zero of 1 — f of multiplicity m

A = diag(0, m(1),..., m(q — 1), Z bi — Z ak))

37/48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [H, 1] — [A]

IA
p=qg+1, num-param:{ay,...,a,}, denom-param: {by,..., by}, by =1, ®(t) exp't
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [H, 1] — [A]
p=q-+1, num-param:{ay, ..., ap}, denom-param: {bi,...,bq}, bp =1, d(t) exprA dt
[A]: Generalized exponents at a zero of f of multiplicity m

A = diag(0, m(1 — b1),...,m(1 — by)) modZ

Qe
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [H, 1] — [A]
p=q-+1, num-param:{ay, ..., ap}, denom-param: {bi,...,bq}, bp =1, d(t) expjTA dt
[A]: Generalized exponents at a zero of f of multiplicity m

A = diag(0, m(1 — b1),...,m(1 — by)) modZ
[A]: Generalized exponents at a pole of f of multiplicity m

N\ = diag(may, may, ..., ma,) modZ
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Consequences on generalized exponents [H, 1] — [A]
p=q-+1, num-param:{ay, ..., ap}, denom-param: {bi,...,bq}, bp =1, d(t) eprTA dt
[A]: Generalized exponents at a zero of f of multiplicity m

A = diag(0, m(1 — b1),...,m(1 — by)) modZ
[A]: Generalized exponents at a pole of f of multiplicity m
N\ = diag(may, may, ..., ma,) modZ

[A]: Generalized exponents at a zero of 1 — f of multiplicity m

A = diag(0, m(1),...,m(qg — 1), m(z by — Zak)) mod Z

k=1 k=1
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Treating the available information: Recovering the pullback function

: f
Consequences on generalized exponents [Hy o] —¢ [M]

JU®)+A

p < g, num-param:{ai, ..., ap}, denom-param: {bi,...,bg}, bg =1, ®(t) exp ¢ dt

[Hgo]: Generalized exponents at zero
U(t) =0, A=diag(0,1—by,...,1— by)

[H,0]: Generalized exponents at co: t = 1/x = (—T)9 P!

1 1

U(t) :dlag(O,...,O,?,...?)

A =diag(as,...,ap, ..., @),

g—p+1

o — q=p =20 kg 3+ 3k bi)
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Treating the available information: Recovering the pullback function

: f
Consequences on generalized exponents [Hy o] —¢ [M]

JU@)+A dt
p < g, num-param:{ai, ..., ap}, denom-param: {bi,...,bg}, bg =1, ®(t) exp ¢
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

: f
Consequences on generalized exponents [Hy o] —¢ [M]

JU@®)+A dt
p < g, num-param:{ai, ..., ap}, denom-param: {bi,...,bg}, bg =1, ®(t) exp ¢

[M]: Generalized exponents at a zero xo of f of multiplicity m

U(t) =0, A =diag(0, m(1— b1),...,m(1— by))

Qe
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Treating the available information: Recovering the pullback function

: f
Consequences on generalized exponents [Hy o] —¢ [M]

JU@®)+A
p < g, num-param:{ai, ..., ap}, denom-param: {bi,...,bg}, bg =1, ®(t) exp ¢

[M]: Generalized exponents at a zero xo of f of multiplicity m

dt

U(t) =0, A =diag(0, m(1— b1),...,m(1— by))

[M]: Generalized exponents at a pole xo of f of multiplicity m

f=tm>S 2, fith e C, fy #0, s = maxken{k < e I
U(t) = diag(0,...,0,5,...8), B=) (i(qg—p+1)—m)gT@Pri=m

where t = T97 Pl g =T "M% g T’ and f = (—g)@—P*1),

A = diag(may, ..., ma,, ma, ..., ma)
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Treating the available information: Recovering the pullback function

Recovering f

[Ha.e] 2c [M] g6 [A]

exponents:

For [A], we compute Seg, Sirr, and Sremov, and the generalized

m If xp € Sz then xg is a zero of f (however, the multiplicity had been
shifted by an integer);




On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Treating the available information: Recovering the pullback function

Recovering f

[Ha.e] 2c [M] g6 [A]
exponents:

For [A], we compute Seg, Sirr, and Sremov, and the generalized

m If xp € Sz then xg is a zero of f (however, the multiplicity had been
shifted by an integer);

m If xp is a zero of f then xg € Sremov OF Xp € Sreg;




On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Recovering f

[Ha.e] 2c [M] g6 [A]

For [A], we compute Seg, Sirr, and Sremov, and the generalized
exponents:

m If xp € Sz then xg is a zero of f (however, the multiplicity had been
shifted by an integer);

m If xp is a zero of f then xg € Sremov OF Xp € Sreg;

m xg € S, iff xo is a pole of f. The generalized exponents of [A] and
[M] are equal modulo ﬁZ (p can be calculated from the

rmaification index).
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On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Recovering f

[Ha.e] 2c [M] g6 [A]

For [A], we compute Seg, Sirr, and Sremov, and the generalized
exponents:

m If xp € Sz then xg is a zero of f (however, the multiplicity had been
shifted by an integer);

m If xp is a zero of f then xg € Sremov OF Xp € Sreg;

m xg € S, iff xo is a pole of f. The generalized exponents of [A] and
[M] are equal modulo ﬁZ (p can be calculated from the

rmaification index).
mIfS;,, =0 then g =1.
mIf S, # () then g = 0.

4148



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

Recovering f

[Ha.e] 2c [M] g6 [A]

For [A], we compute Seg, Sirr, and Sremov, and the generalized
exponents:

If xo € Sreg then xg is a zero of f (however, the multiplicity had been
shifted by an integer);
If xo is a zero of f then Xo € Sremov OF Xo € Sregi

Xo € Sirr iff xg is a pole of f. The generalized exponents of [A] and
[M] are equal modulo ﬁz (p can be calculated from the

rmaification index).
If S;;, = 0 then g = 1.
If S;;y # () then g = 0.

If g = p then we can recover the polar part of f = (—g)9=P*! from
the generalized exponents at a point in S, !
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Treating the available information: Recovering the pullback function

[Hq0]: Recovering f

[Ha.g] D¢ [M] —ec [A]
For [A], we compute Seg, Sirr, and Syemov, and the generalized exp:
mfeC(x)

o
]

i
it

1PN G4
43/48
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Treating the available information: Recovering the pullback function

[Hq0]: Recovering f
[Ha.c] “c [M] —ec [A]
For [A], we compute Seg, Sirr, and Syemov, and the generalized exp:
mfeC(x)
m Let f = 4 where A, B € C[x], B is monic, and gcd(A, B) = 1.
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Treating the available information: Recovering the pullback function

[Hq0]: Recovering f

[Ha.g] 2c [M] —e6 [Al

For [A], we compute Seg, Sirr, and Syemov, and the generalized exp:

mfeC(x)
m Let f = 4 where A, B € C[x], B is monic, and gcd(A, B)
m We compute B from S;,:

B= H (x — x0)™0, xp # 00.

X0 € Sirr

|
=




On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

[Hq0]: Recovering f
[Ha.g] 2c [M] —e6 [Al

For [A], we compute Seg, Sirr, and Syemov, and the generalized exp:
mfeC(x)

m Let f = 4 where A, B € C[x], B is monic, and gcd(A, B) = 1.
m We compute B from S;,:

B= H (x — x0)™0, xp # 00.

X0 € Sirr
m We compute a bound d4 for the degree of A = Z?io ajx’. Set

) deg(B) + my, ifoo € Sy
AT deg(B) otherwise

m If 00 € S,e¢ then deg(A) < da.
m If co € Sy then deg(A) = da.
m Otherwise deg(A) < da.

43 /48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

[Hq0]: Recovering f
[Ha.g] 2c [M] —e6 [Al

For [A], we compute Seg, Sirr, and Syemov, and the generalized exp:
mfeC(x)

m Let f = 4 where A, B € C[x], B is monic, and gcd(A, B) = 1.
m We compute B from S;,:

B= H (x — x0)™0, xp # 00.

X0 € Sirr
m We compute a bound d4 for the degree of A = Z?io ajx’. Set

) deg(B) + my, ifoo € Sy
AT deg(B) otherwise

m If 00 € S,e¢ then deg(A) < da.
m If co € Sy then deg(A) = da.
m Otherwise deg(A) < da.

m Either insure that there is one-to-one correspondence btw poles of
and S... or find da - 1 equations to compute All

43 /48
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Treating the available information: Recovering the pullback function

I [Hyo]: Logarithmic case

[Hqo0]: Logarithmic case

[Hag] Doc [M] =6 [A]

B xp is a logarithmic singularity of [A] if and only if xg is a logarithmic
singularity of [M] if and only if zero is a logarithmic singularity of
[Hq.0l-

m If xo is a logarithmic singularity of [A] then there exists one-to-one
correspondence between the singularities of [A] and zeros of f



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems
Treating the available information: Recovering the pullback function

I [Hyo]: Logarithmic case

[Hqo0]: Logarithmic case

[Hag] Doc [M] =6 [A]

B xp is a logarithmic singularity of [A] if and only if xg is a logarithmic
singularity of [M] if and only if zero is a logarithmic singularity of
[Hq.0l-

m If xo is a logarithmic singularity of [A] then there exists one-to-one
correspondence between the singularities of [A] and zeros of f

Method:

mf= cg, ceC
m Find B, da and S,

m For each possible degree configuration, find ¢: We always have
enough number of equations from S;,,!
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Treating the available information: Recovering the pullback function

[Hg,ol: Irrational case

[Hq,o]: Irrational case
Example: Maple file

[Hag] ¢ [M] = £ [A

m If at least one of the generalized exponents at xg lies in C\Q then
there exists at least one k € {1, ..., q} such that b, € C\Q.

m There exists one-to-one correspondence between the singularities of
[A] and zeros of f

45 /48



On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems

Treating the available information: Recovering the pullback function

L~ [Hyo]: Irrational case

[Hqo]: Irrational case

[Hag] B¢ [M] =6 [A]

m If at least one of the generalized exponents at xg lies in C\Q then
there exists at least one k € {1, ..., q} such that b, € C\Q.

m There exists one-to-one correspondence between the singularities of
[A] and zeros of f

Method:

mf= cg, ceC
m Find B, da, and Sy,
m We can also compute the multiplicities of the zeroes of f!

m Find c: We always have enough number of equations from S;,!
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Treating the available information: Recovering the pullback function

[Hg o] Rational non-logarithmic case

[Hq0]: Rational non-logarithmic case
[Hag] ¢ IM] s [A

m The zeros of f are regular singularities of [M].

m If the generalized exponents of the zeros of f in [M] are integers,
they might be removed by a gauge transformation.

m So, we do not have a one-to-one correspondence between the
singularities of [A] and zeros of f. Example: Maple file
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Treating the available information: Recovering the pullback function

I~ [Hyo]: Rational non-logarithmic case

[Hq0]: Rational non-logarithmic case
[Hag] = [M] —ec [A]

m The zeros of f are regular singularities of [M].

m If the generalized exponents of the zeros of f in [M] are integers,
they might be removed by a gauge transformation.

m So, we do not have a one-to-one correspondence between the
singularities of [A] and zeros of f.

Method:
AL AS

mf=c—p2% ceC
m Find B, da, and S,
m Find candidates for (d, A, deg(Ay)

m For each candidate, find c: We always have enough number of
equations from S;,,!

46
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Treating the available information: Recovering the pullback function

L[H

5,01 Rational non-logarithmic case

Summary and further investigations

We give an algorithm which detects and removes removable
singularities of an input first-order system

We apply this algorithm to detect whether an input differential
equation of an arbitrary order or a first-order system has generalized
hypergeometric solutions (p < g + 1)

We give a decision algorithm in the case p < g
We give a method to "filter’ the information in the case p=qg+1
MAPLE package GenHypSols

Further investigations:

Recovering f in the case p=qg +1
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Treating the available information: Recovering the pullback function

L[H

5,01 Rational non-logarithmic case
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