Suzy S. Maddah, Frédéric Chyzak

14 Nov. 2016, INRIA Saclay, Palaiseau

In the literature...

Maple sheet



In these slides...

The literature offers algorithms to detect and construct whether a second order differential equation has Bessel, Kummer, Gauss,... type solutions.

What about equations of orders 3, 4, ...?

What about systems of equations?



- Generalized hypergeometric series
- Transformations
- 2 Difficulties and possible scenarios
- 3 Our approach
- 4 Filtering the information: Removable singularities

**5** Treating the available information: Recovering the pullback function

- [*H*<sub>q,0</sub>]: Logarithmic case
- [H<sub>q,0</sub>]: Irrational case
- $[H_{q,0}]$ : Rational non-logarithmic case

4回 ト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 2 9 9 9
4/48
4/48



- Generalized hypergeometric series
- Transformations
- 2 Difficulties and possible scenarios
- 3 Our approach
- 4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function

- $[H_{q,0}]$ : Logarithmic case
- $\blacksquare$  [ $H_{q,0}$ ]: Irrational case
- $\blacksquare$  [ $H_{q,0}$ ]: Rational non-logarithmic case

Preliminaries

Generalized hypergeometric series

# Generalized hypergeometric series

$${}_{p}F_{q}(\mathbf{a};\mathbf{b};x) = {}_{p}F_{q}\begin{bmatrix}a_{1},a_{2},\ldots,a_{p}\\b_{1},b_{2},\ldots,b_{q}\end{bmatrix} = \sum_{k=0}^{\infty}\frac{(a_{1})_{k}\ldots(a_{p})_{k}}{(b_{1})_{k}\ldots(b_{q})_{k}}\frac{x^{k}}{k!},$$

- p and q are two natural integers;  $p \leq q + 1$ ;
- a<sub>1</sub>, a<sub>2</sub>,..., a<sub>p</sub> (resp. b<sub>1</sub>, b<sub>2</sub>,..., b<sub>q</sub>) are called numerator parameters (resp. denominator parameters);
- $(a)_0 = 1$  and  $(a)_k = a(a+1)\dots(a+k-1) = \frac{\Gamma(a+k)}{\Gamma(a)}$  is the Pochhammer symbol;
- With  $\theta = x \frac{d}{dx}$ , the series  ${}_{p}F_{q}(\mathbf{a}; \mathbf{b}; x)$  satisfies:

 $(\theta(\theta+b_1-1)(\theta+b_2-1)\dots(\theta+b_q-1)-x(\theta+a_1)(\theta+a_2)\dots(\theta+a_p))y=0.$ 

Preliminaries

Generalized hypergeometric series

# Generalized hypergeometric series

$${}_{p}F_{q}(\mathbf{a};\mathbf{b};x) = {}_{p}F_{q}\begin{bmatrix}a_{1},a_{2},\ldots,a_{p}\\b_{1},b_{2},\ldots,b_{q}\end{bmatrix} = \sum_{k=0}^{\infty}\frac{(a_{1})_{k}\ldots(a_{p})_{k}}{(b_{1})_{k}\ldots(b_{q})_{k}}\frac{x^{k}}{k!},$$

- p and q are two natural integers;  $p \leq q + 1$ ;
- a<sub>1</sub>, a<sub>2</sub>,..., a<sub>p</sub> (resp. b<sub>1</sub>, b<sub>2</sub>,..., b<sub>q</sub>) are called numerator parameters (resp. denominator parameters);
- $(a)_0 = 1$  and  $(a)_k = a(a+1)\dots(a+k-1) = \frac{\Gamma(a+k)}{\Gamma(a)}$  is the Pochhammer symbol;

• With 
$$\theta = x \frac{d}{dx}$$
, the series  ${}_{\rho}F_{q}(\mathbf{a}; \mathbf{b}; x)$  satisfies:

 $(\theta(\theta+b_1-1)(\theta+b_2-1)\ldots(\theta+b_q-1)-x(\theta+a_1)(\theta+a_2)\ldots(\theta+a_p))y=0.$ 

- Preliminaries

Generalized hypergeometric series

Matricial representation of the differential equation  $(C(x), \frac{d}{dx})$ 

$$[H_{q,g}] \frac{d}{dx} Y = H_{q,g}(x) Y = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ & & & \\ 0 & 0 & 1 & \\ -\frac{\alpha_0}{x^q(1-x)^g} & -\frac{\alpha_1 x + \beta_1}{x^q(1-x)^g} & -\frac{\alpha_q x + \beta_q}{x(1-x)^g} \end{bmatrix} Y$$

•  $Y = (y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^qy}{dx^q})^T$ 

the α<sub>k</sub>'s and the β<sub>k</sub>'s are parameters expressible explicitly as sums of products of the a<sub>j</sub>'s and b<sub>j</sub>'s.

 $g = \begin{cases} 0 & \text{if } p \le q: \ 0 \ (\text{resp. } \infty) \text{ is a regular (resp. irregular) singular point} \\ 1 & \text{if } p = q + 1: \ 0, 1, \infty \text{ are regular singular points} \end{cases}$ 

Preliminaries

Generalized hypergeometric series

Matricial representation of the differential equation  $(C(x), \frac{d}{dx})$ 

$$[H_{q,g}] \frac{d}{dx} Y = H_{q,g}(x) Y = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ & & & \\ 0 & 0 & 1 & \\ -\frac{\alpha_0}{x^q(1-x)^g} & -\frac{\alpha_1 x + \beta_1}{x^q(1-x)^g} & -\frac{\alpha_q x + \beta_q}{x(1-x)^g} \end{bmatrix} Y$$

• 
$$Y = (y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^qy}{dx^q})^T$$

the α<sub>k</sub>'s and the β<sub>k</sub>'s are parameters expressible explicitly as sums of products of the a<sub>j</sub>'s and b<sub>j</sub>'s.

 $g = \begin{cases} 0 & \text{if } p \le q: \ 0 \ (\text{resp. } \infty) \text{ is a regular (resp. irregular) singular point} \\ 1 & \text{if } p = q + 1: \ 0, 1, \infty \text{ are regular singular points} \end{cases}$ 

Preliminaries

Generalized hypergeometric series

Matricial representation of the differential equation  $(C(x), \frac{d}{dx})$ 

$$[H_{q,g}] \frac{d}{dx} Y = H_{q,g}(x) Y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \\ 0 & 0 & 1 & 0 \\ \\ 0 & 0 & 1 & 0 \\ \\ -\frac{\alpha_0}{x^q(1-x)^g} & -\frac{\alpha_1 x + \beta_1}{x^q(1-x)^g} & -\frac{\alpha_q x + \beta_q}{x(1-x)^g} \end{bmatrix} Y$$

• 
$$Y = (y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^qy}{dx^q})^T$$

the α<sub>k</sub>'s and the β<sub>k</sub>'s are parameters expressible explicitly as sums of products of the a<sub>j</sub>'s and b<sub>j</sub>'s.

$$g = \begin{cases} 0 & \text{if } p \le q: \ 0 \ (\text{resp. } \infty) \text{ is a regular (resp. irregular) singular point} \\ 1 & \text{if } p = q + 1: \ 0, 1, \infty \text{ are regular singular points} \end{cases}$$

$$\begin{bmatrix} S \end{bmatrix} \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x)) \\ \downarrow \\ \begin{bmatrix} \tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad \tilde{S}(x) \in \mathcal{M}_{q+1}(C(x)) \end{bmatrix}$$

Gauge transformation:  $T(x) \in GL_{q+1}(C(x))$  $Y = T(x)Z, \quad \tilde{S}(x) = T^{-1}(x)(S(x)T(x) - \frac{d}{dx}T(x))$ 

Exponential transformation  $\rightarrow_E$ :  $b(x) \in C(x)$  $Y = Z \exp(-\int \frac{b(x)}{x} dx), \quad \tilde{S}(x) = S(x) + \frac{b(x)}{x}$ 

Change of variable  $\rightarrow_C$  $Z(x) = Y(f(x)), \quad \tilde{S}(x) = (f'(x))^{-1}S(f(x))$  Maple sheet: Examples

Gauge transformation:  $T(x) \in GL_{q+1}(C(x))$  $Y = T(x)Z, \quad \tilde{S}(x) = T^{-1}(x)(S(x)T(x) - \frac{d}{dx}T(x))$ 

Exponential transformation  $\rightarrow_E$ :  $b(x) \in C(x)$  $Y = Z \exp(-\int \frac{b(x)}{x} dx), \quad \tilde{S}(x) = S(x) + \frac{b(x)}{x}$ 

Change of variable  $\rightarrow_C$  $Z(x) = Y(f(x)), \quad \tilde{S}(x) = (f'(x))^{-1}S(f(x))$  Maple sheet: Examples

Gauge transformation:  $T(x) \in GL_{q+1}(C(x))$  $Y = T(x)Z, \quad \tilde{S}(x) = T^{-1}(x)(S(x)T(x) - \frac{d}{dx}T(x))$ 

Exponential transformation  $\rightarrow_E$ :  $b(x) \in C(x)$  $Y = Z \exp(-\int \frac{b(x)}{x} dx), \quad \tilde{S}(x) = S(x) + \frac{b(x)}{x}$ 

Change of variable  $\rightarrow_C$ 

 $Z(x) = Y(f(x)), \quad \tilde{S}(x) = (f'(x))^{-1}S(f(x))$  Maple sheet: Examples

$$\begin{bmatrix} S \end{bmatrix} \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x)) \\ \downarrow \\ \begin{bmatrix} \tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad \tilde{S}(x) \in \mathcal{M}_{q+1}(C(x)) \end{bmatrix}$$

Gauge transformation:  $T(x) \in GL_{q+1}(C(x))$  $Y = T(x)Z, \quad \tilde{S}(x) = T^{-1}(x)(S(x)T(x) - \frac{d}{dx}T(x))$ 

Exponential transformation  $\rightarrow_E$ :  $b(x) \in C(x)$  $Y = Z \exp(-\int \frac{b(x)}{x} dx), \quad \tilde{S}(x) = S(x) + \frac{b(x)}{x}$ 

Change of variable  $\rightarrow_C$  $Z(x) = Y(f(x)), \quad \tilde{S}(x) = (f'(x))^{-1}S(f(x))$  Maple sheet: Examples

- Preliminaries

L Transformations

# Reformulating our quest Equivalence problem [A] Algorithm to detect and construct

0

 $[H_{q,g}] \rightarrow_C [M_1] \rightarrow_E [M_2] \rightarrow_G [M_3] \rightarrow_E [M_4] \rightarrow_C \dots [A]$ 

4 ロ ト 4 団 ト 4 茎 ト 4 茎 ト 2 の Q C
8/48

Preliminaries

L Transformations

# Reformulating our quest Input system [A]

ロ > < 部 > < 言 > < 言 > こ き < つ へ ()</li>
 9/48

Preliminaries

L\_ Transformations

## Reformulating our quest

#### Input system

## [A]

#### Algorithm to detect and construct

$$[H_{q,g}] \rightarrow_{\mathcal{C}} [M_1] \rightarrow_{\mathcal{E}} [M_2] \rightarrow_{\mathcal{G}} [M_3] \rightarrow_{\mathcal{E}} [M_4] \rightarrow_{\mathcal{C}} \dots [\mathcal{A}]$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 9/48



- Generalized hypergeometric series
- Transformations
- 2 Difficulties and possible scenarios
- 3 Our approach
- 4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function

- $[H_{q,0}]$ : Logarithmic case
- $\blacksquare$  [ $H_{q,0}$ ]: Irrational case
- $\blacksquare$  [ $H_{q,0}$ ]: Rational non-logarithmic case

Dimension of the system (assumed irreducible- Barkatou'2007, van Hoeij'1996, van der hoeven'2007): *q*, *p*?

■ Singularity Structure: g?

• Order, number, kind of transformations:  $\rightarrow_G$ ,  $\rightarrow_E$ ,  $\rightarrow_C$ ?

Invariants under transformations?



Dimension of the system (assumed irreducible- Barkatou'2007, van Hoeij'1996, van der hoeven'2007): *q*, *p*?

■ Singularity Structure: g?

• Order, number, kind of transformations:  $\rightarrow_G$ ,  $\rightarrow_E$ ,  $\rightarrow_C$ ?

Invariants under transformations?



Dimension of the system (assumed irreducible- Barkatou'2007, van Hoeij'1996, van der hoeven'2007): *q*, *p*?

■ Singularity Structure: g?

• Order, number, kind of transformations:  $\rightarrow_G$ ,  $\rightarrow_E$ ,  $\rightarrow_C$ ?

Invariants under transformations?



- Dimension of the system (assumed irreducible- Barkatou'2007, van Hoeij'1996, van der hoeven'2007): q, p?
- Singularity Structure: g?
- Order, number, kind of transformations:  $\rightarrow_G$ ,  $\rightarrow_E$ ,  $\rightarrow_C$ ?
- Invariants under transformations?



#### Input system

# [A]

#### Proposition

Consider two systems  $[H_{q,g}]$  and [A] with  $H_{q,g}(x), A(x) \in \mathcal{M}_{q+1}(C(x))$ . If  $[H_{q,g}] \rightarrow [A]$ , then there exists an algebraic function f and a system [M] with  $M(x) \in \mathcal{M}_{q+1}(C(x))$  such that

 $[H_{q,g}] \xrightarrow{f}_C [M] \to_{EG} [A].$ 

f: pullback function

#### Input system

[A]

#### Consequence

$$[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$$

(Barkatou-Pfluegel'1998)

#### But!!

To construct [M], we need to construct  $[H_{q,g}]$  and  $\rightarrow C$  using information from [A]. So are there certain invariants under the transformations involved to give us some insight?

13 / 48

イロン スピン メヨン 一日

#### Input system

[A]

#### Consequence

$$[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$$

(Barkatou-Pfluegel'1998)

#### But!!

To construct [M], we need to construct  $[H_{q,g}]$  and  $\rightarrow C$  using information from [A]. So are there certain invariants under the transformations involved to give us some insight?

・ロン 人間 とくほ とくほ とうせい

Input system

[A]

Consequence

$$[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$$

(Barkatou-Pfluegel'1998)

#### But!!

To construct [M], we need to construct  $[H_{q,g}]$  and  $\rightarrow C$  using information from [A]. So are there certain invariants under the transformations involved to give us some insight?

13/48

イロン スピン メビン メビン 一日

## In the literature...

- *q* ≥ 1:
  - $\rightarrow_{EG}$  in a more general context: van Hoeij'1996, Barkatou-Pfluegel'1998
  - f = x, finding all hypergeometric solutions: Petkovsek-Salvy'1993
  - q = 2, f has a special form: Cheb Terrab-Roche'2008
- q = 1:
  - $\stackrel{f}{\rightarrow}_{C}$ : Bronstein-Lafaille'2002
  - ${}^{t}_{C} \rightarrow_{EG}$ , 2007-: W. Koepf., M. Van Hoeij, Q. Yuan, V. J. Kunwar, E. Imamoglu, R. Debeerst. ...

## In the literature...

- *q* ≥ 1:
  - $\rightarrow_{EG}$  in a more general context: van Hoeij'1996, Barkatou-Pfluegel'1998
  - f = x, finding all hypergeometric solutions: Petkovsek-Salvy'1993
  - q = 2, f has a special form: Cheb Terrab-Roche'2008
- *q* = 1:
  - $\xrightarrow{f}_{C}$ : Bronstein-Lafaille'2002
  - $\xrightarrow{f}_{C} \rightarrow_{EG}$ , 2007-: W. Koepf., M. Van Hoeij, Q. Yuan, V. J. Kunwar, E. Imamoglu, R. Debeerst, ...

Look for invarinats?

Input system

[A]

#### Proposition

Consider two systems  $[H_{q,g}]$  and [A] with  $H_{q,g}(x), A(x) \in \mathcal{M}_{q+1}(C(x))$ . If  $[H_{q,g}] \rightarrow [A]$ , then there exists an algebraic function f and a system [M] with  $M(x) \in \mathcal{M}_{q+1}(C(x))$  such that

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A].$ 

f: pullback function

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

• Let  $x_0 \in \bar{\mathcal{C}} \cup \{\infty\}$  be a pole of  $\mathcal{S}(x)$ :

The local parameter 
$$t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

A Fundamental Matrix of Formal Solutions (FMFS) is given by:

$$(Y =)$$
 Sol =  $\Phi(t) \exp^{\int U(t) + \Lambda t dt} dt$ 

- $\Phi$  lies in  $\mathcal{M}_{q+1}(\overline{C}((t^{1/r}))); r \in \mathbb{N}^*;$
- U(t) = diag(u<sub>1</sub>(t),..., u<sub>q+1</sub>(t)) is a diagonal matrix whose entries are polynomials from C
  [t<sup>-1/r</sup>] without constant terms;
- $\Lambda = D + N$ ,  $\Lambda$  commutes with E,
- $D = \text{diag}(\lambda_1, \dots, \lambda_{q+1})$  with entries in  $\mathcal{M}_{q+1}(\overline{C})$ , N is an upper triangular nilpotent matrix.

$$S$$
]  $\frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$ 

• Let  $x_0 \in \overline{C} \cup \{\infty\}$  be a pole of S(x):

The local parameter 
$$t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

A Fundamental Matrix of Formal Solutions (FMFS) is given by:

$$(Y =)$$
 Sol =  $\Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}$ 

- $\Phi$  lies in  $\mathcal{M}_{a+1}(\overline{C}((t^{1/r}))); r \in \mathbb{N}^*$ ;
- $U(t) = \text{diag}(u_1(t), \dots, u_{q+1}(t))$  is a diagonal matrix whose entries are polynomials from  $\bar{C}[t^{-1/r}]$  without constant terms;
- $\Lambda = D + N$ ,  $\Lambda$  commutes with E.
- $D = \operatorname{diag}(\lambda_1, \dots, \lambda_{q+1}) \text{ with entries in } \mathcal{M}_{q+1}(\bar{C}), N \text{ is an upper}$ triangular nilpotent matrix.

Classification of singularities

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

Let  $x_0 \in \overline{C} \cup \{\infty\}$  with FMFS:

$$Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}, \quad \text{where} \quad t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

- If  $x_0 \in \overline{C} \cup \{\infty\}$  is not a pole of S(x) then Y is analytic in some neighborhood of  $x_0$ . We say that  $x_0$  is an ordinary point of [S].
- If  $x_0 \in \overline{C} \cup \{\infty\}$  is a pole of S(x):
  - x<sub>0</sub> is said to be an apparently singular point of [S] if Y is analytic in some nbhd of x<sub>0</sub>;
  - $x_0$  is said to be a regular singular point of [S] if U(t) is null;
  - otherwise,  $x_0$  is said to be an irregular singular point.

Classification of singularities

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

Let  $x_0 \in \overline{C} \cup \{\infty\}$  with FMFS:

$$Y = \Phi(t) \, \exp^{\frac{\int U(t) + \Lambda}{t} \, dt}, \quad \text{where} \quad t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

- If x<sub>0</sub> ∈ C̄ ∪ {∞} is not a pole of S(x) then Y is analytic in some neighborhood of x<sub>0</sub>. We say that x<sub>0</sub> is an ordinary point of [S].
- If  $x_0 \in \overline{C} \cup \{\infty\}$  is a pole of S(x):
  - x<sub>0</sub> is said to be an apparently singular point of [S] if Y is analytic in some nbhd of x<sub>0</sub>;
  - $x_0$  is said to be a regular singular point of [S] if U(t) is null;
  - otherwise, x<sub>0</sub> is said to be an irregular singular point.

Classification of singularities

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

Let  $x_0 \in \overline{C} \cup \{\infty\}$  with FMFS:

$$Y = \Phi(t) \, \exp^{\frac{\int U(t) + \Lambda}{t} \, dt}, \quad \text{where} \quad t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

- If x<sub>0</sub> ∈ C̄ ∪ {∞} is not a pole of S(x) then Y is analytic in some neighborhood of x<sub>0</sub>. We say that x<sub>0</sub> is an ordinary point of [S].
- If  $x_0 \in \overline{C} \cup \{\infty\}$  is a pole of S(x):
  - x<sub>0</sub> is said to be an apparently singular point of [S] if Y is analytic in some nbhd of x<sub>0</sub>;
  - $x_0$  is said to be a regular singular point of [S] if U(t) is null;
  - otherwise, x<sub>0</sub> is said to be an irregular singular point.

Classification of singularities

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

Let  $x_0 \in \overline{C} \cup \{\infty\}$  with FMFS:

$$Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}, \quad \text{where} \quad t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

If x<sub>0</sub> ∈ C
 (∞) is not a pole of S(x) then Y is analytic in some neighborhood of x<sub>0</sub>. We say that x<sub>0</sub> is an ordinary point of [S].

• If 
$$x_0 \in \overline{C} \cup \{\infty\}$$
 is a pole of  $S(x)$ :

 x<sub>0</sub> is said to be an apparently singular point of [S] if Y is analytic in some nbhd of x<sub>0</sub>;

•  $x_0$  is said to be a regular singular point of [S] if U(t) is null;

• otherwise,  $x_0$  is said to be an irregular singular point.

Classification of singularities

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

Let  $x_0 \in \overline{C} \cup \{\infty\}$  with FMFS:

$$Y = \Phi(t) \, \exp^{\frac{\int U(t) + \Lambda}{t} \, dt}, \quad \text{where} \quad t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

If x<sub>0</sub> ∈ C
 (∞) is not a pole of S(x) then Y is analytic in some neighborhood of x<sub>0</sub>. We say that x<sub>0</sub> is an ordinary point of [S].

• If 
$$x_0 \in \overline{C} \cup \{\infty\}$$
 is a pole of  $S(x)$ :

- x<sub>0</sub> is said to be an apparently singular point of [S] if Y is analytic in some nbhd of x<sub>0</sub>;
- $x_0$  is said to be a regular singular point of [S] if U(t) is null;

• otherwise,  $x_0$  is said to be an irregular singular point.
# A closer look: Formal Solutions

Classification of singularities

$$[S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

Let  $x_0 \in \overline{C} \cup \{\infty\}$  with FMFS:

$$Y = \Phi(t) \, \exp^{\frac{\int U(t) + \Lambda}{t} \, dt}, \quad \text{where} \quad t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

If x<sub>0</sub> ∈ C
 (∞) is not a pole of S(x) then Y is analytic in some neighborhood of x<sub>0</sub>. We say that x<sub>0</sub> is an ordinary point of [S].

• If 
$$x_0 \in \overline{C} \cup \{\infty\}$$
 is a pole of  $S(x)$ :

- x<sub>0</sub> is said to be an apparently singular point of [S] if Y is analytic in some nbhd of x<sub>0</sub>;
- $x_0$  is said to be a regular singular point of [S] if U(t) is null;
- otherwise,  $x_0$  is said to be an irregular singular point.

# A closer look: Formal Solutions Invariants?

$$S] \qquad \frac{d}{dx}Y = S(x)Y, \quad S(x) \in \mathcal{M}_{q+1}(C(x))$$

• Let  $x_0 \in \overline{C} \cup \{\infty\}$  be a pole of S(x):

The local parameter 
$$t = \begin{cases} x - x_0 & \text{if } x_0 \in \bar{C} \\ 1/x & \text{if } x_0 = \infty \end{cases}$$

A Fundamental Matrix of Formal Solutions (FMFS) is given by:

$$Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}$$

- $\Phi$  lies in  $\mathcal{M}_{q+1}(\overline{C}((t^{1/r})))$ ;  $r \in \mathbb{N}^*$  called ramification index;
- U(t) = diag(u₁(t),..., u<sub>q+1</sub>(t)) is a diagonal matrix whose entries are polynomials from C
  [t<sup>-1/r</sup>] without constant terms;
- $\Lambda = D + N$ ,  $\Lambda$  commutes with E,
- $D = \text{diag}(\lambda_1, \ldots, \lambda_{q+1})$  with entries in  $\mathcal{M}_{q+1}(\overline{C})$ , N is an upper riangular nilpotent matrix.

# A closer look: Formal Solutions

Equivalence transformations: Two lemmas

$$[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}$$
$$\downarrow_{EG}$$
$$\tilde{S}] \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{U}(t) + \tilde{\Lambda}}{t} dt}$$

| Gauge                                                  | Exp-product                                        |
|--------------------------------------------------------|----------------------------------------------------|
| $T(x) \in GL_{q+1}(C(x))$                              | $b(x) \in C(x)$                                    |
| Y = TZ                                                 | $Y = Z \exp(-\int \frac{b(x)}{x} dx)$              |
| $\tilde{r} = r$                                        | $\tilde{r} = r$                                    |
| $	ilde{U}(t) = U(t)$                                   | $	ilde{U}(t) = U(t) + b(t)I_{q+1}$                 |
| $\tilde{\Lambda} = \Lambda \mod \frac{1}{r}\mathbb{Z}$ | $	ilde{\Lambda} = \Lambda + bl_{q+1}$ if $b \in C$ |
| singularity structure can be tracked                   | singularity structure can be tracked               |

Maple sheet: Examples on effect of gauge and exp-product

# Recall that...

Input system

#### [A]

What about  $\xrightarrow{f}_{C}$ ?

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$ 

# Singularity tracking under $\stackrel{t}{\rightarrow}_{C}$ ?

 $[H_{q,g}] \xrightarrow{f} C [M]: Sol(x) \xrightarrow{f} C Sol(f)$ 

If  $x_0$  is a zero of f(x) then it is a regular singularity of [M]

If  $x_0$  is a pole of f(x) then it is an irregular singularity of [M]

Maple sheet: The inverse is not necessarily true, possible scenarios

イロン 人間 とくほ とくほ とうほ

# Recall that...

Input system

#### [A]

What about  $\xrightarrow{f}_{C}$ ?

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$ 

Singularity tracking under  $\xrightarrow{t}_{C}$ ?

$$[H_{q,g}] \xrightarrow{f} C [M]: Sol(x) \xrightarrow{f} C Sol(f)$$

• If  $x_0$  is a zero of f(x) then it is a regular singularity of [M]

If  $x_0$  is a pole of f(x) then it is an irregular singularity of [M]

Maple sheet: The inverse is not necessarily true, possible scenarios



- Generalized hypergeometric series
- Transformations
- 2 Difficulties and possible scenarios

#### 3 Our approach

4 Filtering the information: Removable singularities

5 Treating the available information: Recovering the pullback function

- $[H_{q,0}]$ : Logarithmic case
- $\blacksquare$  [ $H_{q,0}$ ]: Irrational case
- $\blacksquare$  [ $H_{q,0}$ ]: Rational non-logarithmic case

# $[H_{q,g}] \rightarrow [A]$ for $g \in \{0,1\}$ ?

Step 0. Fix the order:

$$[H_{q,g}] \xrightarrow{f: \text{ pullback function}}_C [M] \rightarrow_{EG} [A];$$

- Step 1. Recover the poles and zeros of f from the singularity structure of [A]:
  - Step 1.1. Filter the information: Distinguish between removable singularities and zeroes and poles of f, determine g from the structure of singularities;
  - Step 1.2. Recover the lost information about the zeroes and/or poles of f, and determine p;
- Step 2. Compute candidates for the coefficients of  $[H_{q,g}]$ , once a candidate for f is computed;
- Step 3. Compute [*M*] for each candidate *f* and set of candidates for the coefficients of  $[H_{q,g}]$ . Then test whether  $[M] \rightarrow_{EG} [A]$ .

Maple file: Example on our approach

#### **1** Preliminaries

- Generalized hypergeometric series
- Transformations
- 2 Difficulties and possible scenarios
- 3 Our approach

#### 4 Filtering the information: Removable singularities

#### 5 Treating the available information: Recovering the pullback function

- [*H*<sub>q,0</sub>]: Logarithmic case
- $\blacksquare$  [ $H_{q,0}$ ]: Irrational case
- $\blacksquare$  [ $H_{q,0}$ ]: Rational non-logarithmic case

Definition

#### Definition

A pole  $x_0$  of S(x) is said to be a removable singularity of  $[S] \frac{d}{dx}Y = S(x)Y$  if there exists a system  $[\tilde{S}]$  such that:

- $[S] \rightarrow_{EG} [\tilde{S}];$
- $x_0$  is an ordinary (non-singular) point of  $[\tilde{S}]$ .

Shanin-Craster'2002, Chen-Kauers-Singer'2014, Bostan-Chyzak-Van Hoeij-Pech,...

Definition

#### Definition

A pole  $x_0$  of S(x) is said to be a removable singularity of  $[S] \frac{d}{dx}Y = S(x)Y$  if there exists a system  $[\tilde{S}]$  such that:

- $[S] \rightarrow_{EG} [\tilde{S}];$
- $x_0$  is an ordinary (non-singular) point of  $[\tilde{S}]$ .

Shanin-Craster'2002, Chen-Kauers-Singer'2014, Bostan-Chyzak-Van Hoeij-Pech,...

イロン 不良 とくほど 不良 とうほう

# Removable singularities

Detection for possible removal: a singular point

$$[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}$$
$$\downarrow_{EG}$$
$$\tilde{S}] \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{U}(t) + \tilde{\Lambda}}{t} dt}$$

| Gauge                                                  | Exp-product                            |
|--------------------------------------------------------|----------------------------------------|
| $T(x) \in GL_{q+1}(C(x))$                              | $b(x) \in C(x)$                        |
| Y = TZ                                                 | $Y = Z \exp(-\int \frac{b(x)}{x} dx)$  |
| $\tilde{r} = r$                                        | $\tilde{r} = r$                        |
| $	ilde{U}(t) = U(t)$                                   | $	ilde{U}(t) = U(t) + b(t)I_{q+1}$     |
| $\tilde{\Lambda} = \Lambda \mod \frac{1}{r}\mathbb{Z}$ | $	ilde{A} = A + bl_{q+1}$ if $b \in C$ |
| singularity structure can be tracked                   | singularity structure can be tracked   |

# Removable singularities

Detection for possible removal: Irregular singular point

$$\begin{bmatrix} S \end{bmatrix} \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}$$
$$\downarrow_{E}$$
$$\tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{U}(t) + \tilde{\Lambda}}{t} dt}$$

| Gauge | Exp-product                                        |
|-------|----------------------------------------------------|
|       | $b(x) \in C(x)$                                    |
|       | $Y = Z \exp(-\int \frac{b(x)}{x} dx)$              |
|       | $\tilde{r} = r$                                    |
|       | $\tilde{U}(t) = U(t) + b(t)I_{q+1}$                |
|       | $	ilde{\Lambda} = \Lambda + bl_{q+1}$ if $b \in C$ |

# Removable singularities

Detection for possible removal: Irregular singular point

$$\begin{bmatrix} S \end{bmatrix} \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t) + \Lambda}{t} dt}$$
$$\downarrow_{E}$$
$$\begin{bmatrix} \tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{U}(t) + \tilde{\Lambda}}{t} dt}$$

| Gauge | Exp-product                           |
|-------|---------------------------------------|
|       | $b(x) \in C(x)$                       |
|       | $Y = Z \exp(-\int \frac{b(x)}{x} dx)$ |
|       |                                       |
|       | $\tilde{U}(t) = U(t) + b(t)I_{q+1}$   |
|       |                                       |

・ロト・日本・ キャー キー うくぐ

Removal of a (partially) removable irregular singular point

Input system: 
$$[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t)+\Lambda}{t}dt}$$
  
 $U(t) = \tilde{U}(t) - b(t)I_{q+1}$   
some  $b(t) \in C(x)$  then  
Input system:  $[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t)+\Lambda}{t}dt}$   
 $\downarrow_E \quad Y = Z \exp(-\int \frac{b(x)}{x}dx) \qquad \uparrow_E \quad Y = Z \exp(+\int \frac{b(x)}{x}dx)$   
Output system:  $[\tilde{S}] \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{U}(t)+\Lambda}{t}dt}$ 

If  $\tilde{U}(t) \neq 0$  then  $x_0$  is partially removable. If  $\tilde{U}(t) = 0$  then  $x_0$  is totally removable, and we continue.

Removal of a (partially) removable irregular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp \frac{\int U(t)+\Lambda}{t} dt$   
f  
 $U(t) = \tilde{U}(t) - b(t)I_{q+1}$ 

for some  $b(t) \in C(x)$  then

Input system: 
$$[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp \frac{\int U(t) + \Lambda}{t} dt$$
  
 $\downarrow_E \quad Y = Z \exp(-\int \frac{b(x)}{x} dx) \qquad \uparrow_E \quad Y = Z \exp(+\int \frac{b(x)}{x} dx)$   
Dutput system:  $[\tilde{S}] \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp \frac{\int \tilde{U}(t) + \tilde{\Lambda}}{t} dt$ 

If  $\tilde{U}(t) \neq 0$  then  $x_0$  is partially removable. If  $\tilde{U}(t) = 0$  then  $x_0$  is totally removable, and we continue.

Removal of a (partially) removable irregular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{\int U(t)+\Lambda}{t}dt}$   
if  
 $U(t) = \tilde{U}(t) - b(t)I_{a+1}$ 

for some  $b(t) \in C(x)$  then

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp \frac{\int U(t) + \Lambda}{t} dt$$
  
 $\downarrow_E Y = Z \exp(-\int \frac{b(x)}{x} dx) \quad \uparrow_E Y = Z \exp(+\int \frac{b(x)}{x} dx)$   
Dutput system: [ $\tilde{S}$ ]  $\frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp \frac{\int \tilde{U}(t) + \tilde{\Lambda}}{t} dt$ 

If  $\tilde{U}(t) \neq 0$  then  $x_0$  is partially removable. If  $\tilde{U}(t) = 0$  then  $x_0$  is totally removable, and we continue:

Removal of a (partially) removable irregular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{\int U(t)+\Lambda}{t}dt}$   
f  
 $U(t) = \tilde{U}(t) - b(t)I_{a+1}$ 

for some  $b(t) \in C(x)$  then

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int U(t)+\Lambda}{t}dt}$$
  
 $\downarrow_E Y = Z \exp(-\int \frac{b(x)}{x}dx) \quad \uparrow_E Y = Z \exp(+\int \frac{b(x)}{x}dx)$   
Dutput system: [ $\tilde{S}$ ]  $\frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{U}(t)+\Lambda}{t}dt}$ 

If U
(t) ≠ 0 then x<sub>0</sub> is partially removable.
If U
(t) = 0 then x<sub>0</sub> is totally removable, and we continue..

# Removable singularities

Detection for possible removal: Regular singular point

$$\begin{bmatrix} S \end{bmatrix} \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$$
$$\downarrow_E$$
$$\begin{bmatrix} \tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\frac{\int \tilde{\Lambda}}{t} dt}$$

| Gauge | Exp-product                                         |
|-------|-----------------------------------------------------|
|       | $b\in C$                                            |
|       | $Y = Z \exp(-\int \frac{b}{x} dx)$                  |
|       |                                                     |
|       |                                                     |
|       | $\tilde{\Lambda} = \Lambda + bl_{q+1}$ if $b \in C$ |

Removal of a (partially) removable regular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{f\Lambda}{t}dt}$   
f  
f  
For some  $b \in C(x)$  then  
Input system: [S]  $\frac{d}{dx}Y = S(x)Y$ ,  $Y = \Phi(t) \exp^{\frac{f\Lambda}{t}dt}$   
 $\downarrow_E Y = Z \exp(-\int \frac{b}{x}dx)$   $\uparrow_E Y = Z \exp(+\int \frac{b}{x}dx)$   
Output system: [ $\tilde{S}$ ]  $\frac{d}{dx}Z = \tilde{S}(x)Z$ ,  $Z = \tilde{\Phi}(t) \exp^{\frac{f\Lambda}{t}dt}$ 

#### $x_0$ is not an ordinary point yet:

We now have to investigate  $\Lambda$  with a gauge transformation!

Removal of a (partially) removable regular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$   
If  $\Lambda = \tilde{\Lambda} - bl_{q+1}$ 

for some  $b \in C(x)$  then

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp \frac{\int h}{t} dt$$
  
 $\downarrow_E Y = Z \exp(-\int \frac{b}{x} dx) \quad \uparrow_E Y = Z \exp(+\int \frac{b}{x} dx)$   
Output system: [ $\tilde{S}$ ]  $\frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp \frac{\int h}{t} dt$ 

#### $x_0$ is not an ordinary point yet:

We now have to investigate  $\Lambda$  with a gauge transformation!

Removal of a (partially) removable regular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$   
If  $\Lambda = \tilde{\Lambda} - bl_{a+1}$ 

for some  $b \in C(x)$  then

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\int A t t}$$
  
 $\downarrow_E Y = Z \exp(-\int \frac{b}{x} dx) \quad \uparrow_E Y = Z \exp(+\int \frac{b}{x} dx)$   
Output system: [ $\tilde{S}$ ]  $\frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\int A t t}$ 

#### $x_0$ is not an ordinary point yet:

We now have to investigate  $\Lambda$  with a gauge transformation!

Removal of a (partially) removable regular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$   
If  $\Lambda = \tilde{\Lambda} - bl_{a+1}$ 

for some  $b \in C(x)$  then

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\int \Lambda t dt}$$
  
 $\downarrow_E Y = Z \exp(-\int \frac{b}{x} dx) \quad \uparrow_E Y = Z \exp(+\int \frac{b}{x} dx)$   
Output system: [ $\tilde{S}$ ]  $\frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) \exp^{\int \Lambda t dt}$ 

#### $x_0$ is not an ordinary point yet:

We now have to investigate  $\Lambda$  with a gauge transformation!

On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems — Filtering the information: Removable singularities

# Removable singularities

Removal of a removable regular singular point

Input system: 
$$[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) \exp^{\frac{\int A}{t} dt}$$
  
sing:  
Input system:  $[S] \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) x^{A}$ 

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
31 / 48

On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems Filtering the information: Removable singularities

# Removable singularities

Removal of a removable regular singular point

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t) \exp^{\frac{\int A}{t} dt}$   
Rewriting:

Input system: [S] 
$$\frac{d}{dx}Y = S(x)Y$$
,  $Y = \Phi(t)x^{\Lambda}$ 

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 31 / 48

Filtering the information: Removable singularities

# Removable singularities

Removal of a removable regular singular point

$$\begin{bmatrix} S \end{bmatrix} \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) x^{\Lambda}$$
$$\downarrow_{G}$$
$$\begin{bmatrix} \tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) x^{\tilde{\Lambda}}$$

| Gauge                                       | Exp-product |
|---------------------------------------------|-------------|
| $T(x) \in GL_{q+1}(C(x))$                   |             |
| Y = TZ                                      |             |
| $\tilde{r} = r = 1$                         |             |
| $\tilde{\Lambda} = \Lambda \mod \mathbb{Z}$ |             |

Λ can be altered: Only by integers!!

Filtering the information: Removable singularities

# Removable singularities

Removal of a removable regular singular point

$$\begin{bmatrix} S \end{bmatrix} \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) x^{\Lambda}$$
$$\downarrow_{G}$$
$$\begin{bmatrix} \tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) x^{\tilde{\Lambda}}$$

| Gauge                                       | Exp-product |
|---------------------------------------------|-------------|
| $T(x) \in GL_{q+1}(C(x))$                   |             |
| Y = TZ                                      |             |
| $\tilde{r} = r = 1$                         |             |
| $\tilde{\Lambda} = \Lambda \mod \mathbb{Z}$ |             |

Λ can be altered:
Only by integers!!

# Removable singularities

Removal of a removable regular singular point

$$\begin{bmatrix} S \end{bmatrix} \quad \frac{d}{dx}Y = S(x)Y, \quad Y = \Phi(t) x^{\Lambda}$$
$$\downarrow_{G}$$
$$\tilde{S} \end{bmatrix} \qquad \frac{d}{dx}Z = \tilde{S}(x)Z, \quad Z = \tilde{\Phi}(t) x^{\tilde{\Lambda}}$$

 $\Lambda = D + N:$ 

- If N = 0 and D has integer entries, singularity can be removed by a Gauge transformation;
- Otherwise the singularity is nonremovable;
- Special case of N = 0 and D has non-negative integer entries: Apparent singularity (Barkatou-Maddah'2015).

#### **1** Preliminaries

- Generalized hypergeometric series
- Transformations
- 2 Difficulties and possible scenarios
- 3 Our approach
- 4 Filtering the information: Removable singularities

**5** Treating the available information: Recovering the pullback function

- $[H_{q,0}]$ : Logarithmic case
- $[H_{q,0}]$ : Irrational case
- $[H_{q,0}]$ : Rational non-logarithmic case

# Available information

Input system [A]

Recovering  $\xrightarrow{f}_{C}$ ?

# $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$

< □ > < @ > < 注 > < 注 > □ ≥

35 / 48

Singularities of [A] are classified into  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ .

- The information from the generalized exponents is filtered;
- one-to-one correspondence between  $S_{irr}$  and poles of f;
- the points of  $S_{reg}$  are zeroes of f;

#### The points of $S_{reg}$ are zeroes of f

But are they the only zeroes?!

How to recover f from the filtered information?!

Maple sheet: recall possible scenarios

# Available information

Input system [A]

Recovering  $\xrightarrow{f}_{C}$ ?

# $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$

Singularities of [A] are classified into  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ .

- The information from the generalized exponents is filtered;
- one-to-one correspondence between  $S_{irr}$  and poles of f;
- the points of  $S_{reg}$  are zeroes of f;

#### The points of $S_{reg}$ are zeroes of f

But are they the only zeroes?!

How to recover f from the filtered information?!

#### Maple sheet: recall possible scenarios

35 / 48

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$ p = q + 1, num-param:  $\{a_1, \dots, a_p\}$ , denom-param:  $\{b_1, \dots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\int t dt} dt$ 

$$\Lambda = \mathsf{diag}(0, 1 - b_1, \dots, 1 - b_q)$$

 $[H_{q,1}]$ : Generalized exponents at  $\infty$ 

$$\Lambda = \operatorname{diag}(a_1, a_2, \ldots, a_p)$$

#### $[H_{q,1}]$ : Generalized exponents at 1

$$\Lambda = \operatorname{diag}(0, 1, \dots, q-1, \sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)$$

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$  p = q + 1, num-param:  $\{a_1, \dots, a_p\}$ , denom-param:  $\{b_1, \dots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$  $[H_{q,1}]$ : Generalized exponents at zero

$$\mathsf{\Lambda} = \mathsf{diag}(0, 1 - b_1, \dots, 1 - b_q)$$

 $[H_{q,1}]$ : Generalized exponents at  $\infty$ 

 $\Lambda = \operatorname{diag}(a_1, a_2, \ldots, a_p)$ 

 $[H_{q,1}]$ : Generalized exponents at 1

$$\Lambda = \operatorname{diag}(0, 1, \dots, q-1, \sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)$$

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$  p = q + 1, num-param:  $\{a_1, \dots, a_p\}$ , denom-param:  $\{b_1, \dots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$  $[H_{q,1}]$ : Generalized exponents at zero

$$\Lambda = \mathsf{diag}(0, 1-b_1, \dots, 1-b_q)$$

 $[H_{q,1}]$ : Generalized exponents at  $\infty$ 

$$\Lambda = \mathsf{diag}(a_1, a_2, \ldots, a_p)$$

# $[H_{q,1}]$ : Generalized exponents at 1 $\Lambda = \operatorname{diag}(0, 1, \dots, q-1, \sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)$

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$  p = q + 1, num-param:  $\{a_1, \dots, a_p\}$ , denom-param:  $\{b_1, \dots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\frac{\int \Lambda}{t} dt}$  $[H_{q,1}]$ : Generalized exponents at zero

$$\Lambda = \mathsf{diag}(0, 1 - b_1, \dots, 1 - b_q)$$

 $[H_{q,1}]$ : Generalized exponents at  $\infty$ 

$$\Lambda = \mathsf{diag}(a_1, a_2, \ldots, a_p)$$

 $[H_{q,1}]$ : Generalized exponents at 1

$$\Lambda = \operatorname{diag}(0, 1, \dots, q-1, \sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)$$

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{t}_{C} [M]$ p = q + 1, num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int \Lambda}{t} dt$ 

[M]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1), \dots, \boldsymbol{m}(q-1), \boldsymbol{m}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k))$$

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$  p = q + 1, num-param:  $\{a_1, \dots, a_p\}$ , denom-param:  $\{b_1, \dots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int A dt}{t}$ [M]: Generalized exponents at a zero of f of multiplicity m

$$\Lambda = \mathsf{diag}(0, \boldsymbol{m}(1-b_1), \dots, \boldsymbol{m}(1-b_q))$$

[*M*]: Generalized exponents at a pole of *f* of multiplicity *m* 

$$\Lambda = \operatorname{diag}(ma_1, ma_2, \ldots, ma_p)$$

[M]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = diag(0, m(1), \dots, m(q-1), m(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k))$$
Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$  p = q + 1, num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int A}{t} dt$ [M]: Generalized exponents at a zero of f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1-b_1), \ldots, \boldsymbol{m}(1-b_q))$$

[M]: Generalized exponents at a pole of f of multiplicity m

$$\Lambda = \operatorname{diag}(ma_1, ma_2, \ldots, ma_p)$$

[*M*]: Generalized exponents at a zero of 1-f of multiplicity *m* 

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1), \dots, \boldsymbol{m}(q-1), \boldsymbol{m}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k))$$

Consequences on generalized exponents  $[H_{q,1}] \xrightarrow{f} C[M]$  p = q + 1, num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int A}{t} dt$ [M]: Generalized exponents at a zero of f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1-b_1), \ldots, \boldsymbol{m}(1-b_q))$$

[M]: Generalized exponents at a pole of f of multiplicity m

$$\Lambda = \mathsf{diag}(\mathbf{m}a_1, \mathbf{m}a_2, \ldots, \mathbf{m}a_p)$$

[M]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \operatorname{\textit{\textbf{m}}}(1), \ldots, \operatorname{\textit{\textbf{m}}}(q-1), \operatorname{\textit{\textbf{m}}}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k))$$

Consequences on generalized exponents  $[H_{a,1}] \rightarrow [A]$ p = q + 1, num-param:  $\{a_1, ..., a_p\}$ , denom-param:  $\{b_1, ..., b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int \Lambda}{t} dt$ 

[A]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1), \dots, \boldsymbol{m}(q-1), \boldsymbol{m}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)) \mod \mathbb{Z}$$

Consequences on generalized exponents  $[H_{q,1}] \rightarrow [A]$  p = q + 1, num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\int A t t} dt$ [A]: Generalized exponents at a zero of f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1-b_1), \dots, \boldsymbol{m}(1-b_q)) \mod \mathbb{Z}$$

[A]: Generalized exponents at a pole of f of multiplicity m

$$\Lambda = \operatorname{diag}(ma_1, ma_2, \dots, ma_p) \mod \mathbb{Z}$$

[A]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1), \dots, \boldsymbol{m}(q-1), \boldsymbol{m}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)) \mod \mathbb{Z}$$

Consequences on generalized exponents  $[H_{q,1}] \rightarrow [A]$  p = q + 1, num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\int A t t} dt$ [A]: Generalized exponents at a zero of f of multiplicity m

$$\Lambda = \operatorname{diag}(0, m(1-b_1), \ldots, m(1-b_q)) \mod \mathbb{Z}$$

[A]: Generalized exponents at a pole of f of multiplicity m

$$\Lambda = \operatorname{diag}(ma_1, ma_2, \ldots, ma_p) \mod \mathbb{Z}$$

[A]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1), \dots, \boldsymbol{m}(q-1), \boldsymbol{m}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)) \mod \mathbb{Z}$$

Consequences on generalized exponents  $[H_{q,1}] \rightarrow [A]$  p = q + 1, num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp^{\int A t t} dt$ [A]: Generalized exponents at a zero of f of multiplicity m

$$\Lambda = \operatorname{diag}(0, m(1-b_1), \dots, m(1-b_q)) \mod \mathbb{Z}$$

[A]: Generalized exponents at a pole of f of multiplicity m

$$\Lambda = \operatorname{diag}(ma_1, ma_2, \ldots, ma_p) \mod \mathbb{Z}$$

[A]: Generalized exponents at a zero of 1 - f of multiplicity m

$$\Lambda = \operatorname{diag}(0, \boldsymbol{m}(1), \dots, \boldsymbol{m}(q-1), \boldsymbol{m}(\sum_{k=1}^{q} b_k - \sum_{k=1}^{p} a_k)) \mod \mathbb{Z}$$

Consequences on generalized exponents  $[H_{q,0}] \xrightarrow{f} C[M]$  $p \le q$ , num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int U(t) + \Lambda}{t} dt$ 

 $[H_{q,0}]$ : Generalized exponents at zero

$$U(t) = 0, \quad \Lambda = \operatorname{diag}(0, 1 - b_1, \dots, 1 - b_q)$$

 $[H_{q,0}]$ : Generalized exponents at  $\infty$ :  $t = 1/x = (-T)^{q-p+1}$ 

$$U(t) = \operatorname{diag}(0, \dots, 0, \frac{1}{T}, \dots, \frac{1}{T})$$
$$\Lambda = \operatorname{diag}(a_1, \dots, a_p, \alpha, \dots, \alpha), \quad \alpha = \frac{q - p - 2(\sum_{k=1}^p a_k + \sum_{k=1}^q b_k)}{q - p + 1}.$$

Consequences on generalized exponents  $[H_{q,0}] \xrightarrow{f} C[M]$  $p \le q$ , num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \left[\frac{\int U(t) + \Lambda}{t} dt\right]$ 

M]: Generalized exponents at a zero x<sub>0</sub> of t of multiplicity m

$$U(t)=0, \quad \Lambda=\mathsf{diag}(0, \pmb{m}(1-b_1), \dots, \pmb{m}(1-b_q))$$

[M]: Generalized exponents at a pole  $x_0$  of f of multiplicity m $f = t^{-m} \sum_{i=0}^{\infty} f_i t^i$ ,  $f_i \in \overline{C}$ ,  $f_0 \neq 0$ ,  $s = \max_{k \in \mathbb{N}} \{k < \frac{m}{q-p+1}\}$ ,

 $U(t) = diag(0, ..., 0, \beta, ..., \beta), \quad \beta = \sum_{i=0}^{s} (i(q-p+1)-m)g_i T^{i(q-p+1)-m}$ 

where  $t = T^{q-p+1}$ ,  $g = T^{-m} \sum_{i=0}^{\infty} g_i T^i$ , and  $f = (-g)^{(q-p+1)}$ .

 $\Lambda = \operatorname{diag}(\boldsymbol{m}\boldsymbol{a}_1,\ldots,\boldsymbol{m}\boldsymbol{a}_p,\boldsymbol{m}\boldsymbol{\alpha},\ldots,\boldsymbol{m}\boldsymbol{\alpha})$ 

Consequences on generalized exponents  $[H_{q,0}] \xrightarrow{f} C[M]$   $p \leq q$ , num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int U(t) + A}{t} dt$ [M]: Generalized exponents at a zero  $x_0$  of f of multiplicity m

$$U(t) = 0, \quad \Lambda = diag(0, m(1 - b_1), \dots, m(1 - b_q))$$

[M]: Generalized exponents at a pole  $x_0$  of f of multiplicity m $f = t^{-m} \sum_{i=0}^{\infty} f_i t^i$ ,  $f_i \in \overline{C}$ ,  $f_0 \neq 0$ ,  $s = \max_{k \in \mathbb{N}} \{k < \frac{m}{q-p+1}\}$ ,

 $U(t) = diag(0, ..., 0, \beta, ..., \beta), \quad \beta = \sum_{i=0}^{s} (i(q-p+1)-m)g_i T^{i(q-p+1)-m}$ 

where  $t = T^{q-p+1}$ ,  $g = T^{-m} \sum_{i=0}^{\infty} g_i T^i$ , and  $f = (-g)^{(q-p+1)}$ .

 $\Lambda = \operatorname{diag}(\boldsymbol{m}\boldsymbol{a}_1,\ldots,\boldsymbol{m}\boldsymbol{a}_p,\boldsymbol{m}\boldsymbol{\alpha},\ldots,\boldsymbol{m}\boldsymbol{\alpha})$ 

Consequences on generalized exponents  $[H_{q,0}] \xrightarrow{f} C[M]$   $p \leq q$ , num-param:  $\{a_1, \ldots, a_p\}$ , denom-param:  $\{b_1, \ldots, b_q\}$ ,  $b_0 = 1$ ,  $\Phi(t) \exp \frac{\int U(t) + A}{t} dt$ [M]: Generalized exponents at a zero  $x_0$  of f of multiplicity m

$$U(t) = 0, \quad \Lambda = diag(0, m(1 - b_1), \dots, m(1 - b_q))$$

[*M*]: Generalized exponents at a pole  $x_0$  of f of multiplicity m $f = t^{-m} \sum_{i=0}^{\infty} f_i t^i$ ,  $f_i \in \overline{C}$ ,  $f_0 \neq 0$ ,  $s = \max_{k \in \mathbb{N}} \{k < \frac{m}{q-p+1}\}$ ,

$$U(t) = diag(0, ..., 0, \beta, ..., \beta), \quad \beta = \sum_{i=0}^{s} (i(q-p+1)-m)g_i T^{i(q-p+1)-m}$$

where  $t = T^{q-p+1}$ ,  $g = T^{-m} \sum_{i=0}^{\infty} g_i T^i$ , and  $f = (-g)^{(q-p+1)}$ .

 $\Lambda = \mathsf{diag}(\mathbf{m}\mathbf{a}_1, \ldots, \mathbf{m}\mathbf{a}_p, \mathbf{m}\alpha, \ldots, \mathbf{m}\alpha)$ 

 $[H_{q,g}] \xrightarrow{f}_C [M] \to_{EG} [A]$ 

For [A], we compute  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ , and the generalized exponents:

If  $x_0 \in S_{reg}$  then  $x_0$  is a zero of f (however, the multiplicity had been shifted by an integer);

If  $x_0$  is a zero of f then  $x_0 \in S_{remov}$  or  $x_0 \in S_{reg}$ ;

- $x_0 \in S_{irr}$  iff  $x_0$  is a pole of f. The generalized exponents of [A] and [M] are equal modulo  $\frac{1}{q-p+1}\mathbb{Z}$  (p can be calculated from the rmaification index).
- If  $S_{irr} = \emptyset$  then g = 1.
- If  $S_{irr} \neq \emptyset$  then g = 0.

 $[H_{q,g}] \xrightarrow{f}_C [M] \to_{EG} [A]$ 

For [A], we compute  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ , and the generalized exponents:

- If  $x_0 \in S_{reg}$  then  $x_0$  is a zero of f (however, the multiplicity had been shifted by an integer);
- If  $x_0$  is a zero of f then  $x_0 \in S_{remov}$  or  $x_0 \in S_{reg}$ ;
- $x_0 \in S_{irr}$  iff  $x_0$  is a pole of f. The generalized exponents of [A] and [M] are equal modulo  $\frac{1}{q-p+1}\mathbb{Z}$  (p can be calculated from the rmaification index).
- If  $S_{irr} = \emptyset$  then g = 1.
- If  $S_{irr} \neq \emptyset$  then g = 0.

 $[H_{q,g}] \xrightarrow{f}_C [M] \to_{EG} [A]$ 

For [A], we compute  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ , and the generalized exponents:

If  $x_0 \in S_{reg}$  then  $x_0$  is a zero of f (however, the multiplicity had been shifted by an integer);

If  $x_0$  is a zero of f then  $x_0 \in S_{remov}$  or  $x_0 \in S_{reg}$ ;

•  $x_0 \in S_{irr}$  iff  $x_0$  is a pole of f. The generalized exponents of [A] and [M] are equal modulo  $\frac{1}{q-p+1}\mathbb{Z}$  (p can be calculated from the rmaification index).

If 
$$S_{irr} = \emptyset$$
 then  $g = 1$ .

• If  $S_{irr} \neq \emptyset$  then g = 0.

 $[H_{q,g}] \xrightarrow{f}_C [M] \to_{EG} [A]$ 

For [A], we compute  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ , and the generalized exponents:

If  $x_0 \in S_{reg}$  then  $x_0$  is a zero of f (however, the multiplicity had been shifted by an integer);

If  $x_0$  is a zero of f then  $x_0 \in S_{remov}$  or  $x_0 \in S_{reg}$ ;

•  $x_0 \in S_{irr}$  iff  $x_0$  is a pole of f. The generalized exponents of [A] and [M] are equal modulo  $\frac{1}{q-p+1}\mathbb{Z}$  (p can be calculated from the rmaification index).

If 
$$S_{irr} = \emptyset$$
 then  $g = 1$ .

• If  $S_{irr} \neq \emptyset$  then g = 0.

### $[H_{q,g}] \xrightarrow{f}_C [M] \to_{EG} [A]$

For [A], we compute  $S_{reg}$ ,  $S_{irr}$ , and  $S_{remov}$ , and the generalized exponents:

- If  $x_0 \in S_{reg}$  then  $x_0$  is a zero of f (however, the multiplicity had been shifted by an integer);
- If  $x_0$  is a zero of f then  $x_0 \in S_{remov}$  or  $x_0 \in S_{reg}$ ;
- $x_0 \in S_{irr}$  iff  $x_0$  is a pole of f. The generalized exponents of [A] and [M] are equal modulo  $\frac{1}{q-p+1}\mathbb{Z}$  (p can be calculated from the rmaification index).
- If  $S_{irr} = \emptyset$  then g = 1.
- If  $S_{irr} \neq \emptyset$  then g = 0.
- If q = p then we can recover the polar part of  $f = (-g)^{q-p+1}$  from the generalized exponents at a point in  $S_{irr}!$

# $[H_{a,0}]$ : Recovering f $[H_{q,g}] \xrightarrow{f} [M] \rightarrow_{EG} [A]$ For [A], we compute $S_{reg}$ , $S_{irr}$ , and $S_{remov}$ , and the generalized exp: • $f \in C(x)$ Let $f = \frac{A}{B}$ where $A, B \in C[x]$ , B is monic, and gcd(A, B) = 1. • We compute *B* from $S_{irr}$ : • We compute a bound $d_A$ for the degree of $A = \sum_{i=0}^{d_A} a_i x^i$ . Set If $\infty \in S_{reg}$ then $deg(A) < d_A$ . If $\infty \in S_{irr}$ then $deg(A) = d_A$ . • Otherwise $deg(A) < d_A$ . Either insure that there is one-to-one correspondence by poles of f

and  $S_{reg}$  or find  $d_A + 1$  equations to compute A!!

ク Q (~ 43 / 48

# $[H_{a,0}]$ : Recovering f $[H_{q,g}] \xrightarrow{f} [M] \rightarrow_{EG} [A]$ For [A], we compute $S_{reg}$ , $S_{irr}$ , and $S_{remov}$ , and the generalized exp: • $f \in C(x)$ • Let $f = \frac{A}{B}$ where $A, B \in C[x]$ , B is monic, and gcd(A, B) = 1. • We compute *B* from $S_{irr}$ : • We compute a bound $d_A$ for the degree of $A = \sum_{i=0}^{d_A} a_i x^i$ . Set If $\infty \in S_{reg}$ then $deg(A) < d_A$ . If $\infty \in S_{irr}$ then $deg(A) = d_A$ . • Otherwise $deg(A) < d_A$ . Either insure that there is one-to-one correspondence btw poles of f

and  $S_{reg}$  or find  $d_A + 1$  equations to compute A!!

# $\begin{bmatrix} H_{q,0} \end{bmatrix}: \text{ Recovering } f \\ \begin{bmatrix} H_{q,g} \end{bmatrix} \xrightarrow{f}_{C} \begin{bmatrix} M \end{bmatrix} \to_{EG} \begin{bmatrix} A \end{bmatrix} \\ \text{ For } \begin{bmatrix} A \end{bmatrix}, \text{ we compute } S_{reg}, S_{irr}, \text{ and } S_{remov}, \text{ and the generalized exp:} \\ \bullet f \in C(x) \\ \bullet \text{ Let } f = \frac{A}{B} \text{ where } A, B \in C[x], B \text{ is monic, and } gcd(A, B) = 1. \\ \bullet \text{ We compute } B \text{ from } S_{irr}: \\ B = \prod_{x_0 \in S_{irr}} (x - x_0)^{m_{x_0}}, \quad x_0 \neq \infty.$

• We compute a bound  $d_A$  for the degree of  $A = \sum_{i=0}^{d_A} a_i x^i$ . Set

$$d_A = \begin{cases} \deg(B) + m_{\infty} & \text{if} \infty \in S_{irr} \\ \deg(B) & \text{otherwise} \end{cases}$$

If  $\infty \in S_{reg}$  then  $deg(A) < d_A$ .

- If  $\infty \in S_{irr}$  then  $deg(A) = d_A$ .
- Otherwise  $deg(A) \leq d_A$ .
- Either insure that there is one-to-one correspondence by poles of  $f_{3/48}$ and  $S_{rer}$  or find  $d_A + 1$  equations to compute A!!

# $\begin{bmatrix} H_{q,0} \end{bmatrix}: \text{ Recovering } f \\ \begin{bmatrix} H_{q,g} \end{bmatrix} \xrightarrow{f}_{C} \begin{bmatrix} M \end{bmatrix} \rightarrow_{EG} \begin{bmatrix} A \end{bmatrix} \\ \text{ For } \begin{bmatrix} A \end{bmatrix}, \text{ we compute } S_{reg}, S_{irr}, \text{ and } S_{remov}, \text{ and the generalized exp:} \\ \bullet f \in C(x) \\ \bullet \text{ Let } f = \frac{A}{B} \text{ where } A, B \in C[x], B \text{ is monic, and } gcd(A, B) = 1. \\ \bullet \text{ We compute } B \text{ from } S_{irr}: \\ B = \prod (x - x_0)^{m_{x_0}}, \quad x_0 \neq \infty.$

$$x_0 \in S_{irr}$$

• We compute a bound  $d_A$  for the degree of  $A = \sum_{i=0}^{d_A} a_i x^i$ . Set

$$d_A = egin{cases} deg(B) + m_\infty & ext{if} \infty \in \mathcal{S}_{irr} \ deg(B) & ext{otherwise} \end{cases}$$

• If 
$$\infty \in S_{reg}$$
 then  $deg(A) < d_A$ 

- If  $\infty \in S_{irr}$  then  $deg(A) = d_A$ .
- Otherwise  $deg(A) \leq d_A$ .

**•** Either insure that there is one-to-one correspondence, by poles of fand  $S_{re\sigma}$  or find  $d_A + 1$  equations to compute A!!

# $\begin{bmatrix} H_{q,0} \end{bmatrix}: \text{ Recovering } f \\ \begin{bmatrix} H_{q,g} \end{bmatrix} \xrightarrow{f}_{C} \begin{bmatrix} M \end{bmatrix} \to_{EG} \begin{bmatrix} A \end{bmatrix} \\ \text{ For } \begin{bmatrix} A \end{bmatrix}, \text{ we compute } S_{reg}, S_{irr}, \text{ and } S_{remov}, \text{ and the generalized exp:} \\ \bullet f \in C(x) \\ \bullet \text{ Let } f = \frac{A}{B} \text{ where } A, B \in C[x], B \text{ is monic, and } gcd(A, B) = 1. \\ \bullet \text{ We compute } B \text{ from } S_{irr}: \\ B = \prod (x - x_0)^{m_{x_0}}, \quad x_0 \neq \infty.$

$$x_0 \in S_{irr}$$

• We compute a bound  $d_A$  for the degree of  $A = \sum_{i=0}^{d_A} a_i x^i$ . Set

$$d_A = egin{cases} deg(B) + m_\infty & ext{if} \infty \in S_{irr} \ deg(B) & ext{otherwise} \end{cases}$$

• If 
$$\infty \in S_{reg}$$
 then  $deg(A) < d_A$ 

• If 
$$\infty \in S_{irr}$$
 then  $deg(A) = d_A$ .

• Otherwise 
$$deg(A) \leq d_A$$
.

• Either insure that there is one-to-one correspondence by poles of  $f_{3/48}$ and  $S_{reg}$  or find  $d_A + 1$  equations to compute A!!

Treating the available information: Recovering the pullback function

 $[H_{q,0}]$ : Logarithmic case

 $[H_{q,0}]$ : Logarithmic case Example: Maple file

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$ 

- x<sub>0</sub> is a logarithmic singularity of [A] if and only if x<sub>0</sub> is a logarithmic singularity of [M] if and only if zero is a logarithmic singularity of [H<sub>q,0</sub>].
- If x<sub>0</sub> is a logarithmic singularity of [A] then there exists one-to-one correspondence between the singularities of [A] and zeros of f

### Method:

- $\bullet f = c\frac{A}{B}, \quad c \in C$
- Find *B*, *d*<sub>A</sub> and *S*<sub>reg</sub>
- For each possible degree configuration, find *c*: We always have enough number of equations from *S*<sub>*irr*</sub>!

Treating the available information: Recovering the pullback function

 $[H_{q,0}]$ : Logarithmic case

 $[H_{q,0}]$ : Logarithmic case Example: Maple file

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$ 

- $x_0$  is a logarithmic singularity of [A] if and only if  $x_0$  is a logarithmic singularity of [M] if and only if zero is a logarithmic singularity of  $[H_{q,0}]$ .
- If x<sub>0</sub> is a logarithmic singularity of [A] then there exists one-to-one correspondence between the singularities of [A] and zeros of f

### Method:

- $\bullet f = c\frac{A}{B}, \quad c \in C$
- Find *B*, *d*<sub>A</sub> and *S*<sub>reg</sub>
- For each possible degree configuration, find *c*: We always have enough number of equations from *S*<sub>*irr*</sub>!

On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems  $\Box$  Treating the available information: Recovering the pullback function  $\Box$  [ $H_{\sigma,0}$ ]: Irrational case

 $[H_{q,0}]$ : Irrational case Example: Maple file

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$ 

- If at least one of the generalized exponents at  $x_0$  lies in  $C \setminus \mathbb{Q}$  then there exists at least one  $k \in \{1, ..., q\}$  such that  $b_k \in C \setminus \mathbb{Q}$ .
- There exists one-to-one correspondence between the singularities of [A] and zeros of f

### Method:

- $\bullet f = c\frac{A}{B}, \quad c \in C$
- Find B,  $d_A$ , and  $S_{reg}$
- We can also compute the multiplicities of the zeroes of *f*!
- Find c: We always have enough number of equations from S<sub>irr</sub>!

On Generalized Hypergeometric Solutions of First-Order Linear Differential Systems  $\Box$  Treating the available information: Recovering the pullback function  $\Box$  [ $H_{\sigma,0}$ ]: Irrational case

 $[H_{q,0}]$ : Irrational case Example: Maple file

 $[H_{q,g}] \xrightarrow{f} C [M] \to_{EG} [A]$ 

- If at least one of the generalized exponents at  $x_0$  lies in  $C \setminus \mathbb{Q}$  then there exists at least one  $k \in \{1, ..., q\}$  such that  $b_k \in C \setminus \mathbb{Q}$ .
- There exists one-to-one correspondence between the singularities of
  [A] and zeros of f

### Method:

- $f = c\frac{A}{B}, \quad c \in C$
- Find B,  $d_A$ , and  $S_{reg}$
- We can also compute the multiplicities of the zeroes of f!
- Find c: We always have enough number of equations from S<sub>irr</sub>!

Treating the available information: Recovering the pullback function

└─ [H<sub>q,0</sub>]: Rational non-logarithmic case

## $[H_{q,0}]$ : Rational non-logarithmic case $[H_{q,g}] \xrightarrow{f} C [M] \rightarrow_{EG} [A]$

- The zeros of f are regular singularities of [M].
- If the generalized exponents of the zeros of f in [M] are integers, they might be removed by a gauge transformation.
- So, we do not have a one-to-one correspondence between the singularities of [*A*] and zeros of *f*. Example: Maple file

### Method:

- $\bullet f = c \frac{A_1 A_2^d}{B}, \quad c \in C$
- Find B, d<sub>A</sub>, and S<sub>reg</sub>
- Find candidates for  $(d, A_1, deg(A_2))$
- For each candidate, find *c*: We always have enough number of equations from *S*<sub>*irr*</sub>!

Treating the available information: Recovering the pullback function

└─ [H<sub>q,0</sub>]: Rational non-logarithmic case

## $[H_{q,0}]$ : Rational non-logarithmic case $[H_{q,g}] \xrightarrow{f} C [M] \rightarrow_{EG} [A]$

- The zeros of f are regular singularities of [M].
- If the generalized exponents of the zeros of f in [M] are integers, they might be removed by a gauge transformation.
- So, we do not have a one-to-one correspondence between the singularities of [*A*] and zeros of *f*. Example: Maple file

### Method:

- $\bullet f = c \frac{A_1 A_2^d}{B}, \quad c \in C$
- Find B,  $d_A$ , and  $S_{reg}$
- Find candidates for  $(d, A_1, deg(A_2))$
- For each candidate, find *c*: We always have enough number of equations from *S*<sub>*irr*</sub>!

Treating the available information: Recovering the pullback function

[Ha,0]: Rational non-logarithmic case

### Summary and further investigations

- We give an algorithm which detects and removes removable singularities of an input first-order system
- We apply this algorithm to detect whether an input differential equation of an arbitrary order or a first-order system has generalized hypergeometric solutions ( $p \le q + 1$ )
- $\blacksquare$  We give a decision algorithm in the case  $p \leq q$
- We give a method to "filter" the information in the case p = q + 1

イロン 不良 とくほど 不良 とうほう

47 / 48

MAPLE package GenHypSols

Further investigations:

• Recovering f in the case p = q + 1

Treating the available information: Recovering the pullback function

└- [H<sub>a,0</sub>]: Rational non-logarithmic case

- Harry Bateman. Higher Transcendental Functions [Volumes I-III]. 1953.
- Yury A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas. CRC Press, 2008.
- E. S. Cheb-Terrab and A. D. Roche. Hypergeometric solutions for third order linear ODEs. ArXiv preprint.
- R. Debeerst. Solving differential equations in terms of Bessel functions. Master Thesis, University of Kassel, 2007.
- R. Debeerst, M. van Hoeij, and W. Koepf. Solving differential equations in terms of Bessel functions. In *Proceedings of ISSAC*,pp. 39-46, ACM, 2008.
- E. Imamoglu and M. van Hoeij. Computing hypergeometric solutions of second order linear differential equations using quotients of formal solutions. In *Proceedings of ISSAC*, pp. 235-242, ACM, 2015.
- V. J. Kunwar and M. van Hoeij. Second order differential equations with hypergeometric solutions of degree three. In *Proceedings of ISSAC*, pp. 235-242, ACM 2013.
- V. J. Kunwar. Hypergeometric solutions of Second Order Differential Equations. Ph.D. Thesis, Florida State University, 2014.
- M. Van Hoeij and Q. Yuan. Finding all Bessel type solutions for linear differential equations with rational function coefficients. In *Proceedings of ISSAC*, pp. 37-44, ACM 2010.
- W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover Phoenix Editions, 2002.

### Thank you