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Context and goal

Alin Bostan Algorithmic proof for the transcendence of D-finite power series



4 / 53

Algebraic and transcendental power series

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f (t)) = 0, where P(x, y) ∈ Z[x, y] \ {0}.
A power series that is not algebraic is called transcendental.

. Task: Given a power series, either in explicit or in implicit form, determine
whether it is algebraic or transcendental.
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Stanley’s question

Given a linear differential equation with polynomial coefficients,
together with suitable initial conditions, satisfied by a power series y,
give an algorithm suitable for computer implementations for deciding

whether y is algebraic.

[Stanley, 1980]
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Motivations

Number theory: first step towards proving the transcendence of a
complex number is to prove that a power series is transcendental

Combinatorics: nature of generating series may reveal strong underlying
structures

Computer science: are algebraic power series (intrinsically) easier to
manipulate?

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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Quiz: is it algebraic, or transcendental?
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Classical transcendence criteria
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Two simple (though not very useful) criteria

Establishing transcendence of values at an algebraic point constitutes
in principle the most straightforward transcendence criterion for

functions, although it is almost invariably the most difficult to apply.

[Flajolet, 1987]

For f = ∑n antn ∈ Q[[t]], if one of the following holds

There exists a z ∈ Q such that f (z) /∈ Q

There exists a prime number p such that fp = f mod p is well-defined
in Fp[[t]] and fp is not algebraic over Fp(t)

then the power series f is transcendental

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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Main properties of algebraic series

Algebraic properties

Algebraic series are D-finite [Abel, 1827]

They are diagonals of bivariate rational functions [Furstenberg, 1967]

Their resolvents admit a basis of algebraic solutions [Singer, 1979]

Arithmetic properties

Algebraic series are globally bounded [Eisenstein, 1852]

Their resolvents have zero p-curvature for p� 0 [Katz, 1972]

The coefficient sequence of an algebraic series of degree > 2 is not p-Lucas
[Allouche, Gouyou-Beauchamps, Skordev, 1998]

Analytic properties

The coefficient sequence of an algebraic series has bounded gaps

It has “nice” asymptotics [Puiseux, 1850; Flajolet, 1987]

Resolvents of algebraic series are Fuchsian [Fuchs, 1865]

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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Transcendence criteria

For f = ∑n antn ∈ Q[[t]], if one of the following holds
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then the power series f is transcendental
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Transcendence criteria for D-finite series

If f = ∑n antn ∈ Q[[t]] is D-finite, and if one of the following holds

f is not globally bounded ∑
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Transcendence criteria for D-finite and globally bounded series

If f = ∑n antn ∈ Q[[t]] is D-finite and globally bounded†

and if one of the following holds

(an)n has “ugly” asymptotics ∑
n
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tn
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(1− x− y)(1− z− t)− xyzt

then the power series f is transcendental

† Conjecturally, f is then the diagonal of a rational function [Christol, 1990]
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Christol’s example

Christol’s conj. (1990): Is any D-finite glob. & bounded series a diagonal?

Concrete open problem: Is f (t) = 3F2

( 1
9

4
9

5
9

1
3 1

∣∣∣∣ 729 t
)

a diagonal?

f (t) = 1+ 60 t+ 20475 t2 + 9373650 t3 + 4881796920 t4 + 2734407111744 t5 + · · ·

Asymptotics

an ∼
2 sin(4π/9)√

3 Γ(1/9)Γ(2/3)
729n n−11/9

f is not p-Lucas for p > 3

Lmin
f = 3(729t− 1)t2∂3

t + t(8991t− 7)∂2
t + (5400t− 1)∂t + 60 has a

nilpotent, but non-zero, p-curvature, for p > 3

Lmin
f is irreducible and has a log singularity at t = 0

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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Rodriguez-Villegas’ example

Theorem [Rodriguez-Villegas, 2005]

f (t) = ∑
n

(30n)!n!
(15n)!(10n)!(6n)!

tn is algebraic of degree 483, 840 (!)

Asymptotics

un ∼
1

2
√

15 π

(
214 × 39 × 55

)n
n−1/2

f is not p-Lucas for p > 5
The p-curvatures of Lmin

f are zero for all p ≥ 29.

Lmin
f is irreducible and only has algebraic singularities

Alin Bostan Algorithmic proof for the transcendence of D-finite power series



17 / 53

Properties of algebraic series
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Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite

Sizes (order, degree) of differential equations [B.-Chyzak-Lecerf-Salvy-Schost’07]

order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)

O(D^2)

Differential equation 
corresponding to recurrence of 

small order

order

degree

O(D)

O(D^3)

Minimal differential equation

O(D)

O(D^2)

Nice differential equation

O(D^2)

O(D^2)
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Asymptotics

Theorem [Flajolet, 1987]

If f (t) = ∑n antn ∈ Q[[t]] is algebraic, then an has an asymptotic equivalent

an =
ρnnα

Γ(α + 1)
·

m

∑
i=0

Ciω
n
i + O(ρnnβ),

where α ∈ Q \ {−1,−2,−3, . . .}; β < α; ρ ∈ Q>0; Ci, ωi ∈ Q and |ωi| = 1

. Consequence of Newton-Puiseux, transfer based on Cauchy’s formula
(from local behaviour at singularities to asymptotics of coefficients), and

[tn](1− t)d =

(
n + d− 1

d− 1

)
∼ nd−1

Γ(d)

Corollary

If an ∼ γρnnα and either
(i) α ∈ Z<0; (ii) α /∈ Q; (iii) ρ /∈ Q; (iv) γ · Γ(α + 1) /∈ Q

then f is transcendental.
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Transcendence using asymptotics

. ∑
n

antn = Diag
(

1
1− x− y− z

)
is transcendental: an =

(3n)!
n!3

∼ 33n
√

3
2πn

. f = ∑n pntn is transcendental by the prime number theorem pn ∼ n log n.

. The Apéry series ∑ antn with an = ∑n
k=0 (

n
k)

2
(n+k

k )
2

is transcendental, since

an ∼
(1 +

√
2)4n+2

29/4π3/2n3/2 , and
Γ(−1/2)

π3/2 = − 2
π

is transcendental

. If a0 = 0, a1 = 1, (2n + 1)an+2 − (7n + 11)an+1 + (2n + 1)an = 0, then

f = ∑n antn is transcendental, since an ∼ C
(

7+
√

33
4

)n
n
√

75/44 with C ≈ 0.56.

Alin Bostan Algorithmic proof for the transcendence of D-finite power series



21 / 53

Algebraic series have almost integer coefficients

Theorem [Eisenstein, 1852], [Heine, 1853]

Any algebraic power series f = ∑n≥0 antn in Q[[t]] is globally bounded:
there exists an integer C > 0 such that anCn is an integer for all n ≥ 1.

. The smallest possible constant C is called Eisenstein constant of f .

. Best current bound [Dwork, van der Poorten 1992]

C ≤ 4.8
(

8 e−3 D4+2.74 log D e1.22D
)D
· H2D−1 = eO(D2) · H2D−1

where D is the algebraicity degree of f , and H is its height.

. Research problems:

Is this bound (asymptotically) tight?

Find a (fast) algorithm for computing C.

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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Algebraic series with p-Lucas coefficients

A sequence (an)n of rational numbers is called p-Lucas (p prime number) if

all the denominators of the an’s are prime to p;

api+j ≡ aiaj mod p for all i ≥ 0 and 0 ≤ j < p.

Theorem [Allouche, Gouyou-Beauchamps, Skordev, 1998]

For f = ∑n antn in Q[[t]] \ {0}, the following conditions are equivalent:
1 f is algebraic and (an) has the p-Lucas property for all large primes p;
2 f = 1√

P(t)
for some P ∈ Q[t] of degree at most 2, with P(0) = 1.

. Corollary: if r1, . . . , rm are positive integers, then

f = ∑
n≥0

(
2n
n

)r1
(

3n
n

)r2

· · ·
(
(m + 1)n

n

)rm

tn

is algebraic if and only if m = 1 and r1 = 1.
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Examples: Diagonal sequences

Theorem [Rowland, Yassawi, 2015]

If P(x1, . . . , xd) ∈ Q[x1, . . . , xd] has degree at most 1 in each xi, and if
P(0, . . . , 0) = 1, then the diagonal sequence

an = [xn
1 · · · xn

d ]
1
P

is p-Lucas for any prime p.

. ∑n (
n
k)

2
(n+k

k )
2

is the diagonal sequence of
1

(1− x− y)(1− z− t)− xyzt

. ∑n (
n
k)

d is the diag. seq. of
1

(1− x1)(1− x2) · · · (1− xd)− x1x2 · · · xd

. ∑n (
n
k)

2
(n+k

k )
3

is the diag. seq. of
1

1− (xyz + xy + xz + yz + z)(uv + u + v)
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The Grothendieck–Katz p-curvatures conjecture

Conjecture [Grothendieck, 1960’s, unpublished; Katz, 1972]

Let A ∈ Q(t)r×r and (S) : y′ = Ay. The following assertions are equivalent:

(S) has a basis of algebraic solutions

(Sp) : y′ = (A mod p)y has a basis of algebraic solutions over Fp(t)
for all primes p� 0,

Ap = 0 mod p for all primes p� 0, where Ap = p-curvature of (S):

A0 = Ir, and A`+1 = A′` + A`A for ` ≥ 0.

. Proved by [Katz, 1982] for Picard-Fuchs systems, but still open in general

. For each p, the last condition can be checked algorithmically

. [B., Caruso, Schost, 2015] Fast algorithms for the p-curvature

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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Combinatorial examples
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Lattice walks with small steps in the quarter plane

. Small step walks in the quarter plane: walks in N2 starting at (0, 0) and
using steps in a fixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. Counting sequence: fn;i,j = number of walks of length n ending at (i, j).

. Specializations:

fn;0,0 = number of walks of length n returning to origin (“excursions”);

fn = ∑i,j≥0 fn;i,j = number of walks with prescribed length n.

Alin Bostan Algorithmic proof for the transcendence of D-finite power series
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using steps in a fixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. Counting sequence: fn;i,j = number of walks of length n ending at (i, j).

. Specializations:

fn;0,0 = number of walks of length n returning to origin (“excursions”);

fn = ∑i,j≥0 fn;i,j = number of walks with prescribed length n.
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Nature of generating functions

. Complete generating function:

F(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]].

. Specializations:

Walks returning to the origin (“excursions”): F(t; 0, 0);

Walks with prescribed length: F(t; 1, 1) = ∑
n≥0

fntn;

Walks ending on the horizontal axis: F(t; 1, 0);

Walks ending on the diagonal: “F(t; 0, ∞)“ :=
[
x0] F(t; x, 1/x).

Question:

Given S, what can be said about F(t; x, y) and its specializations?

Are they algebraic or transcendental?
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Small-step models of interest

From the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, simple, intrinsic to the
half plane,

symmetrical.

One is left with 79 interesting distinct models.
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The 79 models
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The 79 models
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“Special” models

Pólya: �
�@
?
6
@
-�

Kreweras: �
�@
?@
��

Gessel: �	
�@
@
-��

Gouyou-Beauchamps: �
�@I
@R
-�

King: �	
�@I
?
6
@R
-��

Tandem: �
�@6
@R
�

Trident: �
@I
?
6
@
��

Scarecrow: �	
@I6
@R
-�
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A difficult model: Gessel’s question

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}
• gn;i,j = number of walks from (0, 0) to (i, j) with n steps in S

Question: Find the nature of the generating function

G(t; x, y) =
∞

∑
i,j,n=0

gn;i,j xiyjtn ∈ Q[[x, y, t]]

Theorem [B. & Kauers 2010] G(x, y, t) is an algebraic power series†.

→ Effective, computer-driven discovery and proof
→ Key step in discovery: p-curvature computation of two 11th order
(guessed) differential operators for G(t; x, 0), and G(t; 0, y)

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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Algebraic reformulation: solving a functional equation

Generating function: G(t; x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

gn;i,jtnxiyj ∈ Q[x, y][[t]]

“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: Solve this functional equation!
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“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: For the other models: solve 78 similar equations!
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Transcendence of 79− 23 = 56 models
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For non-singular models: FS(t; 0, 0) transcendental [B., Raschel, Salvy, 2013]
. Proof uses asymptotics
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Transcendence of 79− 23 = 56 models
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For singular models: FS(t; 1, 1) transcendental [Melczer & Mishna, 2013] .
Proof uses: infinite number of singularities
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Transcendence of 79− 23 = 56 models
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For all 56 cases: FS(t; x, y) is even non-D-finite!
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Example: the scarecrows

[B., Raschel & Salvy 2013]: FS(t; 0, 0) is transcendental for the models

For the 1st and the 3rd, the excursions sequence [tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is ∼ K · 5n · n−α, with α = 1 + π/ arccos(1/4) = 3.383396 . . .

Irrationality of α prevents FS(t; 0, 0) from being algebraic (even D-finite).

. Open: show that FS(t; 1, 1) is also transcendental!
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Models with D-Finite F(t; 1, 1) [B. & Kauers ’09, ’10], [Bousquet-Mélou & Mishna ’10]

OEIS S nature OEIS S nature

1 A005566 T 13 A151275 T
2 A018224 T 14 A151314 T
3 A151312 T 15 A151255 T
4 A151331 T 16 A151287 T
5 A151266 T 17 A001006 A
6 A151307 T 18 A129400 A
7 A151291 T 19 A005558 T
8 A151326 T
9 A151302 T 20 A151265 A

10 A151329 T 21 A151278 A
11 A151261 T 22 A151323 A
12 A151297 T 23 A060900 A

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Transcendence (1–19) proved in [B., Chyzak, van Hoeij, Kauers & Pech ’16]
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Models with D-Finite F(t; 1, 1) [B. & Kauers ’09, ’10], [Bousquet-Mélou & Mishna ’10]

OEIS S nature asympt OEIS S nature asympt

1 A005566 T 4
π

4n

n 13 A151275 T 12
√

30
π

(2
√

6)n

n2

2 A018224 T 2
π

4n

n 14 A151314 T
√

6λµC5/2

5π
(2C)n

n2

3 A151312 T
√

6
π

6n

n 15 A151255 T 24
√

2
π

(2
√

2)n

n2

4 A151331 T 8
3π

8n

n 16 A151287 T 2
√

2A7/2

π
(2A)n

n2

5 A151266 T 1
2

√
3
π

3n

n1/2 17 A001006 A 3
2

√
3
π

3n

n3/2

6 A151307 T 1
2

√
5

2π
5n

n1/2 18 A129400 A 3
2

√
3
π

6n

n3/2

7 A151291 T 4
3
√

π
4n

n1/2 19 A005558 T 8
π

4n

n2

8 A151326 T 2√
3π

6n

n1/2

9 A151302 T 1
3

√
5

2π
5n

n1/2 20 A151265 A 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 T 1
3

√
7

3π
7n

n1/2 21 A151278 A 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 T 12
√

3
π

(2
√

3)n

n2 22 A151323 A
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 T
√

3B7/2

2π
(2B)n

n2 23 A060900 A 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Transcendence (1–19) proved in [B., Chyzak, van Hoeij, Kauers & Pech ’16]

. Asymptotics guessed in [B., Kauers ’09], proved in [Melczer, Wilson ’15]
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Transcendence, and explicit expressions, for models 1–19

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let S be one of the models 1-19. Then

FS is expressible using iterated integrals of 2F1 expressions.

Among the 19× 4 specializations of FS(t; x, y) at (x, y) ∈ {0, 1}2, only 4

are algebraic: for S = at (1, 1), and S = at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A151331)

F

�	
�@I
?
6
@R
-��

(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·
is transcendental.

. Computer-driven discovery and proof; no human proof yet

. Proof uses creative telescoping, ODE factorization & solving, Kovacic algo
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Two very interesting models with repeated steps

Case A Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

FA(t; x, y) is D-finite and transcendental.

FB(t; x, y) is algebraic.

. Computer-driven discovery and proof; no human proof yet.

. Proof uses Guess’n’Prove and new algorithm for transcendence.
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Existing Algorithms
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Recurrences of order 1
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Algebraic and Gauss hypergeometric series

Theorem [Schwarz, 1873]

Let a, b, c ∈ Q, s.t. a, b, c− a, c− b /∈ Z. Set (λ, µ, ν) = (1− c, c− a− b, b− a).
Up to permutations and sign changes of λ, µ, ν, and addition to (λ, µ, ν) of

(`, m, n) ∈ Z3 with `+ m + n even, a table gives all algebraic 2F1

(
a b

c

∣∣∣∣ t
)

’s.

. Proof based on geometric arguments (sphere tilings by spherical triangles)

. Basic case: 2F1

(
r 1− r

1
2

∣∣∣∣ t
)
=

cos((1− 2r) · arcsin(
√

t))√
1− t

, r ∈ Q + sporadic cases
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Algebraic and Gauss hypergeometric series

Whatever the beauty of Schwarz’s result, one must recognize that it
is achieved through a long detour. [Kampé de Fériet, 1937]

Theorem [Landau, 1904], [Stridsberg, 1911], [Landau, 1911], [Errera, 1913]

Assume a, b, c ∈ Q such that a, b, c− a, c− b /∈ Z. Then 2F1

(
a b

c

∣∣∣∣ t
)

is

algebraic if and only if for every r coprime with the denominators of a, b

and c, either {ra} ≤ {rc} < {rb} or {rb} ≤ {rc} < {ra}. ({x} def
= x− bxc)

. Proof based on Eisenstein’s theorem.

.
2F1

(
− 1

2 −
1
6

2
3

∣∣∣∣ 16 t
)
− 1

2t
= 1 + 2 t + 11 t2 + 85 t3 + 782 t4 + · · · is algebraic

. 2F1

( 1
12

5
12

1

∣∣∣∣ 1728 t
)
= 1 + 60 t + 39780 t2 + 38454000 t3 + · · · not algebraic
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Algebraic and generalized hypergeometric series

Theorem [Beukers, Heckman, 1989]

Let {a1, . . . , ak} and {b1, . . . , bk−1, bk = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

is algebraic iff {e2iπraj , j ≤ k} and {e2iπrbj , j < k}

interlace on the unit circle for all 1 ≤ r < D with gcd(r, D) = 1.

. ∑
n

(30n)!n!
(15n)!(10n)!(6n)!

tn = 8F7

( 1
30

7
30

11
30

13
30

17
30

19
30

23
30

29
30

1
5

1
3

2
5

1
2

3
5

2
3

4
5

∣∣∣∣ 214 39 55 t
)

is algebraic
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Differential equations of order 2
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Differential equations of order 2 with algebraic solutions

Problem: Decide if all solutions of a given equation L of order 2 are algebraic

• invariant theory: [Liouville, 1839], [Pépin, 1863, 1881], [Fuchs 1876, 1878],
[Brioschi, 1877], [Singer & Ulmer 1993]
. Starting point: there exists a “Primform” of degree ≤ 12 whose evaluation
at some solution basis of L(y) = 0 is some root of a rational function

• Klein pullback method: [Klein, 1876, 1877, 1913], [Baldassarri & Dwork
1979], [Baldassarri, 1980], [Berkenbosch 2004], [van Hoeij & Weil 2005]
. Starting point: L has only algebraic solutions iff it is a weak pullback by a
rational map of an element in the Schwarz list

. [Marotte, 1887], [Kovacic, 1986], [Singer 1981], [Singer & Ulmer 1998],
[Ulmer & Weil, 1996]: generalization to Liouvillian solutions
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Singer’s algorithm

Problem: Decide if all solutions of a given equation L of order n are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y′/y
has alg. degree at most (49n)n2

and satisfies a Ricatti equation of order n− 1

Algorithm [Singer, 1979]

1 Decide if the Ricatti equation has an algebraic solution of degree at
most (49n)n2

degree bounds + algebraic elimination
2 (Abel’s problem) Given algebraic u, decide if y′/y = u has an algebraic

solution y [Risch 1970], [Baldassarri & Dwork 1979]

. [Painlevé, 1887], [Boulanger, 1898]: Same for n = 3 and L irreducible

. Impractical bound: 92236816 for n = 2; approx. 10330 for n = 11

. [Singer, 2014]: generalization to computing Lalg, whose solution space is
spanned by the algebraic solutions of L
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The new method
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A first version

Input: f (t) ∈ Q[[t]], given as the generating function of an explicit binomial
sum, or as the diagonal of an explicit rational function
Output: T if f (t) is transcendental, A if it is algebraic

1 Compute an ODE L for f (t) Creative telescoping
2 Compute Lmin

f Bounds + diff. Hermite-Padé

3 Decide if Lmin
f has only algebraic solutions; if so return A, else return T.

[Singer, 1979]

. Steps 2 and 3 can (in principle) be replaced by:
2 Compute Lalg and decide if it annihilates f [Singer, 2014]

. Lmin
f and Lalg can (in principle) be found using ODE factorization

[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990]

. Astronomic degree bound [Grigoriev, 1990]: exp
(
(bitsize(L)2n)2n

)
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An efficient version

Input: f (t) ∈ Q[[t]], given as the generating function of an explicit binomial
sum, or as the diagonal of an explicit rational function
Output: T if f (t) is transcendental, A if it is algebraic

1 Compute an ODE L for f (t) Creative telescoping
2 Compute Lmin

f Bounds + diff. Hermite-Padé

3 If Lmin
f has a logarithmic singularity, return T

4 Compute a bound B [Dwork, van der Poorten 1992]
Set p := nextprime(B). Repeat:

1 p := nextprime(2p)
2 if p-curvature of Lmin

f is 6= 0, return T [B., Caruso, Schost, 2015]
3 guess Pp(x, y) ∈ Z[x, y] such that Pp(t, f (t)) = 0 mod tp alg. Hermite-Padé

until either p-curvature is 6= 0, or non-trivial candidate Pp(x, y) found.
5 Certify the candidate and return A, or goto 4 algeqtodiffeq

. Termination ensured by Grothendieck-Katz for diagonals

. Conjecture: Steps 4–5 are not necessary
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Computing Lmin
f

. Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

1 Lmin
f is Fuchsian

2 Lmin
f can be written

Lmin
f = ∂n

t +
an−1(t)

A(t)
∂n−1

t + · · ·+ a0(t)
A(t)n , n ≤ ord(L)

with A(t) squarefree and deg(an−i) ≤ deg(Ai)− i.
3 deg(A) can be bounded in terms of n and of local information of L

(via apparent singularities and Fuchs’ relation)
4 Guess and Prove: For n = 1, 2, . . . ,

1 Guess differential equation of order n for f (use bounds and differential
Hermite-Padé)

2 Once found a nontrivial candidate, certify it, or go to previous step.
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Bounds for Lmin
f

Lmin
f = ∂n

t +
an−1(t)

A(t)
∂n−1

t + · · ·+ a0(t)
A(t)n , n ≤ ord(L)

Task: get a bound on deg(A) in terms of n and of local information of L

• A(t) = Asing(t)Aapp(t), where the roots of Asing, resp. of Aapp, are the
finite true singular points, resp. the finite apparent singular points, of Lmin

f .

• Trivial: deg(Asing) ≤ #{finite true singularities of L}
• Fuchs’ relation

∑
p∈C∪{∞}

Sp(Lmin
f ) = ∑

p singularity of Lmin
f

Sp(Lmin
f ) = −n(n− 1),

with Sp(Lmin
f )=(sum of local exponents of Lmin

f at p)− (0+1+· · ·+(n− 1))

• Main point: If p is an apparent singularity of Lmin
f then Sp(Lmin

f ) ≥ 1, thus:

deg(Aapp) ≤ −n(n− 1)− ∑
p true singularity of L

min(0, S(n)
p (L)),

where S(n)
p (L) := (sum of the smallest n exponents of L at p) −(n

2)
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Example: a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
FA(t; 1, 0) = 1 + t + 4t2 + 8t3 + 39t4 + 98t5 + 520t6 + · · · is transcendental.
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Example: a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
FA(t; 1, 0) = 1 + t + 4t2 + 8t3 + 39t4 + 98t5 + 520t6 + · · · is transcendental.

1 FA(t; x, y) is D-finite in its three variables High-tech Guess’n’Prove
(+ kernel method, non-commutative Gröbner bases, desingularisation.)

. Discovers and proves a differential equation L for f (t) = FA(t; 1, 0) of
order 11 and degree 73

2 L is Fuchsian, 6 finite sing, 55 apparent sing., has a log sing. at t = 0
3 If ord(Lmin

f ) ≤ 10, then Lmin
f has coefficients of degrees at most 580

4 Differential Hermite-Padé approximants rule out this possibility.
5 Thus, Lmin

f = L, and so f is transcendental

. All other criteria fail
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Summary and Questions

• Simple, efficient and robust algorithm for transcendence / algebraicity

• Basic theoretical tool: Fuchs relation

• Basic algorithmic tool: Guess’n’Prove via Hermite-Padé approximants +
efficient computer algebra

• Brute-force / naive algorithms = hopeless on combinatorial examples

. generalization to algebraic independence of D-finite series?

. bounds for p-curvatures (effective Grothendieck conjecture)?

. transcendental diagonals with algebraic singularities?

. many open questions on transcendence of 2D and 3D lattice walks
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The End

Thanks for your attention!
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