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Introduction: Gessel sequence

I In 2001 Ira Gessel conjectured the number
of walks with 2n steps ∈ {N,S ,SW ,NE}
in the quadrant starting and ending at 0 to
be

16n (5/6)n(1/2)n
(2)n(5/3)n

= 2, 11, 85, 782, . . .

I Proving this turned out to be hard, but by now we have. . .
I . . . a computer-aided proof. [Kauers, Koutschan, Zeilberger, ’08]

I . . . a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, ’13]

I . . . an elementary (algebraic) proof. [Bousquet-Mélou, ’15]

I As we will see, counting walks by winding angle provides a natural
alternative route.
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Introduction: Winding angle of a walk

I To a walk w on Z2 avoiding 0 we can
naturally associate a winding angle

θw :=

|w |∑
i=1

](wi−1, 0,wi ).

I Extends unambiguously to excursions
from the origin.

I Natural interpretation as walks in the
universal cover of Z2 \ {0}.

I First goal today is to determine the GF
for simple excursions from origin

F (t, b) :=
∑
w

t |w |e ib θw

= 4t2 + (12 + 4e−ib
π
2 + 4e ib

π
2 )t4 + . . .
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Decomposing into walks on the slit plane

I The general idea: decompose into a
sequence of walks on the slit plane.

I Denote by H(p,l)(t) the GF for
walks (p, 0)→ (−l , 0) that hit the
slit from above (counted by t length).

I This GF can be deduced from
[Bousquet-Mélou, Schaeffer, ’00].

I

H(l,p) = l
pH

(p,l), so introduce symmetric “matrix” H :=
(√

l
pH

(p,l)
)
p,l≥1

I Then
√

p
l 2N(HN)pl counts composite walks (p, 0)→ (±l , 0) that

alternate between axes N times.

I To incorporate a weight e ibθw in GF just replace 2→ e ibπ + e−ibπ.

∑
such walks

t |w |e ibθw =

√
p

l

∞∑
N=1

(2 cos(πb))N
(
HN
)
pl

=

√
p

l

(
2 cos(πb)H

I − 2 cos(πb)H

)
pl
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Relation with planar maps
I Planar map = a multigraph properly embedded in the plane up to

homeomorphism. Take it to be rooted on the outer face.

I W (p,l)(q1, q2, . . .) is the GF for planar maps with outer degree
p ≥ 1, a marked face of degree l ≥ 1, weighted by

∏
faces qdegree.

I For quasi-bipartite maps (q1 = q3 = · · · = 0) it takes a universal
form (see e.g. [Collet, Fusy, ’12])

W (p,l) =
1

l

2

p + l
α(l)α(p)

(ρq
4

)(p+l)/2

α(p) :=
p!

b p2 c!b
p−1

2 c!

I Remarkably H(p,l)(t) = W (p,l)
∣∣
ρq→ρ(t):= 1−

√
1−16t2

8t2 −1
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A bijective explanation
Proposition

For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0)→ (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0)→ (−2, 0) above x-axis
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For any step set S ⊂ , there exists a bijection

Φ(p,l) : {S-walks (p, 0)→ (−l , 0) hitting slit from above}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .
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·
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From walks to (rigid) loop-decorated maps
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with outer and marked face degrees p, l carrying a weight

(2 cos(πb))#loops+1
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regular faces
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Planar maps coupled to a rigid O(n) loop model

I Rigid O(n) model: a planar map + disjoint
loops, that intersect solely quadrangles
through opposite sides. Enumerated with

weight n#loopsg#loop faces
∏

regular faces

qdegree

I An exact solution of a closely related model was obtained by [Eynard,

Kristjansen, ’95] in terms of elliptic functions.

I Made more precise in [Borot, Eynard, ’09], and in [Borot, Bouttier, Guitter, ’11]

for this “rigid” setting.

I Recently in [Borot, Bouttier, Duplantier, ’16] (for triangulations) exact statistics for
the nesting of loops was obtained, i.e. distribution of # loops
surrounding a marked vertex/face.

I Importantly: the form of the GF G(p,l)(n, g ,q) is universal and is not
affected by suppressing loops that do not surround the marked face.
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I We know that (with n = 2 cos(πb) and appropriate g ,q)

∑
p,l≥1

xp1 x
l
2

√
p

l

(
H

I − nH

)
pl

=

∑
p,l≥1

xp1 x
l
2

G(p,l)(n, g ,q)

I Adapting GF from [Borot, Bouttier, Duplantier, ’16] and computing a series
expansion:

= 4
∞∑

m=1

1

qm + q−m − n

cos(2πmv(x2)) x1
∂
∂x1

cos(2πmv(x1))

m(q−m − qm)

where q = q(4t) = t2 + 8t4 + · · · is the nome of modulus 4t and

v(x) := cd−1(−x/√ρ, ρ)/(4K (ρ)), ρ(t) =
1−
√

1− 16t2

8t2
− 1

Proposition (Diagonalization of H)

H = UT · Λq · U in the sense of operators on `2(R) with

Λq = diag

(
1

qm + q−m

)
m≥1

, Ump =

√
4p

m(q−m − qm)
[xp] cos(2πmv(x))
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Refinement: increase winding angle resolution

I Up to now: decomposed walk into
sequence of walks on slit plane,
each numerated by

√
p
l Hpl .

I Why not decompose into walks on
half plane?

I Denote GF for half-plane walks
(p, 0)→ (0, l) by

√
p
l Jpl . Then

2H = (2J )(J+J ·2H), J =

√
4H

I + 2H

I Hence J has same eigenmodes as H but eigenvalues are 1
qm/2+q−m/2

instead of 1
qm+q−m . Such an operation q → √q on elliptic functions

is called a “Landen transformation” and is thus connected to angle
doubling.
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Winding angle of excursions
I Wish to enumerate excursions from origin

by length and winding angle:

F (t, b) :=
∑
w

t |w |e ib θw

= 4t2 + (12 + 4e−ib
π
2 + 4e ib

π
2 )t4 + . . .

I Flip last step away from last axis
intersection, and first step oppositely.

I θw now measures angle to penultimate
axis intersection.

I This maps excursions 4-to-2 onto sequences of half-plane walks with
p = l = 2 and a restriction on first and last step.

I Enumerated by

F (t, b) = 2
∑
N≥1

(
2 cos

(
πb
2

))N−1
[

(J N)22 −

√
4
2 (J N)42 +

√
6
2 (J N)62 − · · ·

]

= sec
(
πb
2

) [
1−

π tan
(
πb
4

)
2K (4t)

θ′1(πb4 ,
√
q)

θ1(πb4 ,
√
q)

]
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Application: walks in cones
Theorem (Excursions in the nπ

4
-cone.)

For any set of integers −n < m− n < p < m < n the generating function
Fn,m,p(t) for excursions from the origin with winding angle pπ

2 staying

strictly inside angular region ( p+m−n
4 π, p+m

4 π) is given by

Fn,m,p(t) =
1

4n

n−1∑
k=1

(e−2iπ pk
n − e−2iπ mk

n )F
(
t, 4k

n

)

,

which is algebraic, i.e. P(t,Fn,m,p(t)) = 0 for some P(t, x) ∈ Z[t, x ].

I The proof uses the reflection
principle.

I Thanks to a hint of Killian
Raschel: for b ∈ Q, F (t, b) is
expressible in Jacobi elliptic
functions at rational angles,
which are algebraic in t.
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Application: walks in cones (Gessel case)

I Special case: (n,m, p) = (3, 2, 0)

I Gessel-type excursions in the quadrant are
enumerated by

1

t2
F3,2,0(t) =

1

4t2
F (t, 4

3 )

=
1

2t2

[ √
3π

2K (4t)

θ′1(π3 ,
√
q)

θ1(π3 ,
√
q)
− 1

]
= 1 + 2t2 + 11t4 + 85t6 + · · ·

,

which is an algebraic series.

I Can reproduce the known formula

∞∑
n=0

t2n 16n (5/6)n(1/2)n
(2)n(5/3)n

=
1

2t2

[
2F1

(
− 1

2 ,−
1
6 ; 2

3 ; (4t)2
)
− 1

]
.

by checking that both solve same algebraic equation. . .

or by
comparing modular properties of both as suggested by Alin Bostan.
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Application: winding field of a random loop

I Consider a uniform loop of length 2n
on Z2.

I One may color each square according
to the total winding angle of the loop
around it.

I What is the expected area of squares
with winding angle 2πk?

I It can be expressed in terms of the
spectrum of H and is

2n

k
(

2n
n

)2 [t2n]
1

q−2k − q2k

∼ n

4πk2

I The n→∞ asymptotics reproduces
result of Brownian motion.
[Garban, Ferreras,’06]
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Jacobi elliptic functions are characteristic functions

I Let np ≥ 1 be a geometric random
variable with parameter p ∈ (0, 1).

I Let θnp be the winding angle around

(− 1
2 ,

1
2 ) of an SSRW at time np − 1

2 .

I Denote by [ · ]πZ resp. [ · ]π(Z+ 1
2 )

rounding to nearest integer resp.
half-integer multiple of π.

I Then

E exp
(
ib [θnp ]π(Z+ 1

2 )

)
= cn(u; p), u := K (p)b

E exp
(
ib [θnp−1]πZ

)
= dn(u; p),

with cn, dn Jacobi elliptic functions.
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Concluding remarks

I It is still mysterious why some of the generating functions are so
simple.

I Is there a combinatorial explanation of: Landen transformation ↔
angle doubling?

I Counting by winding angle is possible for other walks with small
steps (∈ {−1, 0, 1}2).

I Note: This does not necessarily help in counting such walks in the
quadrant, since the reflection principle relies on symmetry in the
steps.

Thanks for your attention!
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