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I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.
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The Isabelle distribution contains a large library of definitions
and facts in HOL:

I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.
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Some nice things we can easily do with these tools:
I Analyse complexity of divide & conquer algorithms:

Merge Sort, Karatsuba multiplication, selection

I Complexity of QuickSort
I Ω(n log n) lower bound for comparison sorts
I Average number of integer divisors/co-primes/square-free

integers
What could be a suitable ambitious new project?
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Example: Lemma required for Akra–Bazzi
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)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’
In Isabelle: 700 lines of messy proofs
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lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

by magic

This is what we would like to have.

Computer Algebra Systems can do this (sort of)

So why can’t we?
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Related Work

I Asymptotic Expansions of exp–log Functions by
Richardson, Salvy, Shackell, van der Hoeven

I On Computing Limits in a Symbolic Manipulation System
by Gruntz



We’re looking for a compositional approach:

Given the limits of f (x) and g(x), what is the limit of
f (x) � g(x)? (for � ∈ {+,−, ·,/})

If the limits are ∈ R: Obvious.

But: ∞−∞ =? 0 ·∞ =?

We need to track more information than just the limit!

We need the full asymptotic information
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Asymptotic Expansions
For x → 0, we have:

ex ∼ 1+ x + 1
2x

2 + 1
6x

3 + . . .

1
1+ x

∼ 1− x + x2 − x3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’
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� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x
e0 + c1x

e1 + . . .

where e0 > e1 > . . .
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How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs+ ys
| e1 < e2 = (c1, e1) :: xs+ ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys
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Asymptotic Expansions – Multiplication

Multiplication with ‘atomic’ factor c ′xe
′
:

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []
((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =

(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys+ xs ∗ ((c2, e2) :: ys)
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Multiplication of two expansions:
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Asymptotic Expansions – Power Series
Many functions have local power series expansions:

g(x) =
∞

∑
n=0

cnx
n (for |x | < R)

e. g. cn := 1/n! for the exponential function.

If f (x)→ 0, one can substitute f into g :

g(f (x)) =
∞

∑
n=0

cnf (x)
n = c0 + f (x)

∞

∑
n=0

cn+1f (x)
n

powser : R llist→ Exp→ Exp
powser (c :: cs) xs = (c , 0) :: xs ∗ powser cs xs
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Asymptotic Expansions – Reciprocal
Consider f (x) with expansion (c , e) :: xs where c 6= 0, i. e.

f (x) = c xe + g(x)

= c xe(1+ c−1x−eg(x))

where g(x) expands to xs.

Then:

f −1(x) ∼ c−1x−e (1+ c−1x−eg(x))−1

Note the geometric series:

(1+ x)−1 =
∞

∑
n=0

(−1)nxn

Therefore:
inv ((c , e) :: xs) = scale (1/c) (−e)

(powser (cycle [1,−1]) (scale (1/c) (−e) xs))
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Asymptotic Expansions – Other operations
Problem: Remember: ln x and exp x have no power series
expansion for x → ∞!

Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x
∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x
∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))
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Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)
e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
I Limit is 0 if ei < 0
I Limit is sgn(c) ·∞ if ei > 0
I Limit is c if all ei = 0
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Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]
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Asymptotic Expansions – Logarithm
Same trick as before: Given

f (x) = c(x) xe + g(x) with g(x) ∼ xs

we rearrange

ln(f (x)) = ln(c(x) xe(1+ c(x)−1x−eg(x)))

= ln c(x) + e ln x + ln
(
1+ c(x)−1x−eg(x)

)
and t 7→ ln(1+ t) has a power series expansion. :)

� We might have to add ln x to our basis!
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Asymptotic Expansions – Exponential

Exponential is much more complicated – too complicated for
these slides.

I Lots of case distinctions
I Can introduce ugly new basis elements like exp(x + 1/x)
I Lots of opportunities for implementation bugs
I Luckily, the Isabelle kernel caught them, of course. :)
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What this looks like in Isabelle

Type α ms for multiseries with coefficients of type α

datatype α ms = MS ”(α× real) llist” ”real⇒ real”

E.g. expansion of order 3 would be ‘real ms ms ms’.

Operations on ms are defined with corecursion,
proven correct with coinduction

How do we turn this into a proof method?
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Computing Expansions
in Isabelle



Evaluation

So far, we can write down expansions as HOL terms

– but how do we evaluate them?

Isabelle has tools to evaluate terms strictly, but we need lazy
evaluation.

I had to implement lazy evaluation of HOL terms.
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Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors

I set of supported functions
I set of function equations of the form f (r , s, t) = . . .

The framework can
I determine whether a pattern matches a term (modulo

rewriting)
I bring a term into head-normal form
I produce an Isabelle theorem of the form

original term = reduced term
Does not support sharing
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functions
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Evaluation

Solution: Heuristic approach using Isabelle’s automation

I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible
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Proof method

At this point, we have all the ingredients:
I Parse and pre-process input expression

I Compute expansions bottom-up
I Use evaluation framework to trim expansions/determine

signs whenever necessary
I In the end: Trim expansion to determine leading term
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Proof method

With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) ∈ L(g(x)) for any Landau symbol L
as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.
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Proof method

Example
lemma (λn. (1+ 1/n) ˆ n) −→ exp 1

by exp_log_asymptotics

Example
lemma ((λx . (1+ y/x) ˆ x) −→ exp y) at_top
proof (cases y = 0)

case False
thus ?thesis by exp_log_asymptotics

qed simp_all
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Proof methodExample
lemma
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23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:
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In general, of course, Mathematica/Maple are much better in
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But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.
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I Incomplete support for Γ, ψ(n), arctan

I Cannot handle oscillating functions or complex-valued
asymptotics

I User interaction for zeroness tests could be improved
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Questions? Demo?


