
Automatic Asymptotics in Isabelle/HOL

Manuel Eberl

Technische Universität München

8 June 2017

Agenda

1. What is Isabelle?
2. My work

What is Isabelle?

Isabelle

I One of the most popular ITPs (others: Coq, HOL Light,
Mizar, PVS)

I Created in 1986 by Larry Paulson in Cambridge
I A generic proof assistant that can handle different kinds

of logics
I Nowadays mostly used with Higher-Order Logic

(Isabelle/HOL)

� HOL contains TND and choice, and many tools use them!

Isabelle

I One of the most popular ITPs (others: Coq, HOL Light,
Mizar, PVS)

I Created in 1986 by Larry Paulson in Cambridge

I A generic proof assistant that can handle different kinds
of logics

I Nowadays mostly used with Higher-Order Logic
(Isabelle/HOL)

� HOL contains TND and choice, and many tools use them!

Isabelle

I One of the most popular ITPs (others: Coq, HOL Light,
Mizar, PVS)

I Created in 1986 by Larry Paulson in Cambridge
I A generic proof assistant that can handle different kinds

of logics

I Nowadays mostly used with Higher-Order Logic
(Isabelle/HOL)

� HOL contains TND and choice, and many tools use them!

Isabelle

I One of the most popular ITPs (others: Coq, HOL Light,
Mizar, PVS)

I Created in 1986 by Larry Paulson in Cambridge
I A generic proof assistant that can handle different kinds

of logics
I Nowadays mostly used with Higher-Order Logic

(Isabelle/HOL)

� HOL contains TND and choice, and many tools use them!

Isabelle

I One of the most popular ITPs (others: Coq, HOL Light,
Mizar, PVS)

I Created in 1986 by Larry Paulson in Cambridge
I A generic proof assistant that can handle different kinds

of logics
I Nowadays mostly used with Higher-Order Logic

(Isabelle/HOL)

� HOL contains TND and choice, and many tools use them!

Isabelle

Isabelle developed out of the tradition of LCF theorem provers.

Idealised notion:
I Small kernel that implements basic logical inference

I Abstract type thm for proven facts
I Only the kernel can produce theorems
I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.
(Reality is a bit more complicated)

Isabelle

Isabelle developed out of the tradition of LCF theorem provers.

Idealised notion:
I Small kernel that implements basic logical inference
I Abstract type thm for proven facts

I Only the kernel can produce theorems
I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.
(Reality is a bit more complicated)

Isabelle

Isabelle developed out of the tradition of LCF theorem provers.

Idealised notion:
I Small kernel that implements basic logical inference
I Abstract type thm for proven facts
I Only the kernel can produce theorems

I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.
(Reality is a bit more complicated)

Isabelle

Isabelle developed out of the tradition of LCF theorem provers.

Idealised notion:
I Small kernel that implements basic logical inference
I Abstract type thm for proven facts
I Only the kernel can produce theorems
I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.
(Reality is a bit more complicated)

Isabelle

Isabelle developed out of the tradition of LCF theorem provers.

Idealised notion:
I Small kernel that implements basic logical inference
I Abstract type thm for proven facts
I Only the kernel can produce theorems
I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.

(Reality is a bit more complicated)

Isabelle

Isabelle developed out of the tradition of LCF theorem provers.

Idealised notion:
I Small kernel that implements basic logical inference
I Abstract type thm for proven facts
I Only the kernel can produce theorems
I Every proof procedure has to go through the kernel

This ensures high trustworthiness of proofs.
(Reality is a bit more complicated)

Isabelle

Important features:
I Proof IDE based on jEdit

I Structured proof language Isar
I Good automation
I Automatic counterexample search (QuickCheck, Nitpick)
I Big mathematical library
I Even bigger Archive of Formal Proofs
I Code export to SML/OCaml/Scala/Haskell

Isabelle

Important features:
I Proof IDE based on jEdit
I Structured proof language Isar

I Good automation
I Automatic counterexample search (QuickCheck, Nitpick)
I Big mathematical library
I Even bigger Archive of Formal Proofs
I Code export to SML/OCaml/Scala/Haskell

Isabelle

Important features:
I Proof IDE based on jEdit
I Structured proof language Isar
I Good automation

I Automatic counterexample search (QuickCheck, Nitpick)
I Big mathematical library
I Even bigger Archive of Formal Proofs
I Code export to SML/OCaml/Scala/Haskell

Isabelle

Important features:
I Proof IDE based on jEdit
I Structured proof language Isar
I Good automation
I Automatic counterexample search (QuickCheck, Nitpick)

I Big mathematical library
I Even bigger Archive of Formal Proofs
I Code export to SML/OCaml/Scala/Haskell

Isabelle

Important features:
I Proof IDE based on jEdit
I Structured proof language Isar
I Good automation
I Automatic counterexample search (QuickCheck, Nitpick)
I Big mathematical library

I Even bigger Archive of Formal Proofs
I Code export to SML/OCaml/Scala/Haskell

Isabelle

Important features:
I Proof IDE based on jEdit
I Structured proof language Isar
I Good automation
I Automatic counterexample search (QuickCheck, Nitpick)
I Big mathematical library
I Even bigger Archive of Formal Proofs

I Code export to SML/OCaml/Scala/Haskell

Isabelle

Important features:
I Proof IDE based on jEdit
I Structured proof language Isar
I Good automation
I Automatic counterexample search (QuickCheck, Nitpick)
I Big mathematical library
I Even bigger Archive of Formal Proofs
I Code export to SML/OCaml/Scala/Haskell

Isar
Isar is a structured proof language that supports forward
reasoning.

Example

Isar
Isar is a structured proof language that supports forward
reasoning.

Example

Isar

Example

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:

I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers

I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients

I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory

I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals

I Measure and Probability theory
The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

The Library
The Isabelle distribution contains a large library of definitions
and facts in HOL:
I Natural numbers, integers, reals, complex numbers
I Lists, algebraic datatypes, recursive functions, quotients
I Basic algebra and number theory
I Topology, limits, derivatives, integrals
I Measure and Probability theory

The library is continuously extended and all old material
ported to new versions.

The Archive of Formal Proofs contains even more material
that is continuously kept up-to-date.

Big Applications

Isabelle/HOL has been used for some big projects:
I Gödel’s Incompleteness Theorems (Paulson, Isabelle,

2013)

I Kepler conjecture (Hales et al., HOL Light + Isabelle,
2014)

I seL4 microkernel (Klein et al., Isabelle, 2010)
I LTL model checker (Esparza et al., Isabelle, 2013)

Big Applications

Isabelle/HOL has been used for some big projects:
I Gödel’s Incompleteness Theorems (Paulson, Isabelle,

2013)
I Kepler conjecture (Hales et al., HOL Light + Isabelle,

2014)

I seL4 microkernel (Klein et al., Isabelle, 2010)
I LTL model checker (Esparza et al., Isabelle, 2013)

Big Applications

Isabelle/HOL has been used for some big projects:
I Gödel’s Incompleteness Theorems (Paulson, Isabelle,

2013)
I Kepler conjecture (Hales et al., HOL Light + Isabelle,

2014)
I seL4 microkernel (Klein et al., Isabelle, 2010)

I LTL model checker (Esparza et al., Isabelle, 2013)

Big Applications

Isabelle/HOL has been used for some big projects:
I Gödel’s Incompleteness Theorems (Paulson, Isabelle,

2013)
I Kepler conjecture (Hales et al., HOL Light + Isabelle,

2014)
I seL4 microkernel (Klein et al., Isabelle, 2010)
I LTL model checker (Esparza et al., Isabelle, 2013)

My Work

My main interests:
I Bringing more mathematics to Isabelle

I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem
I Solving linear recurrences
I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem
I Solving linear recurrences
I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem
I Solving linear recurrences
I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols

I Proof of the Akra–Bazzi theorem
I Solving linear recurrences
I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem

I Solving linear recurrences
I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem
I Solving linear recurrences

I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem
I Solving linear recurrences
I Euler–MacLaurin formula

I Asymptotics of factorial, Γ, ψ(n), erf, Hn

My main interests:
I Bringing more mathematics to Isabelle
I Making Isabelle easier to use for mathematics

My PhD thesis:

Formally Verified Real Asymptotics

Completed so far:
I Landau symbols
I Proof of the Akra–Bazzi theorem
I Solving linear recurrences
I Euler–MacLaurin formula
I Asymptotics of factorial, Γ, ψ(n), erf, Hn

Some nice things we can easily do with these tools:
I Analyse complexity of divide & conquer algorithms:

Merge Sort, Karatsuba multiplication, selection

I Complexity of QuickSort
I Ω(n log n) lower bound for comparison sorts
I Average number of integer divisors/co-primes/square-free

integers
What could be a suitable ambitious new project?

Some nice things we can easily do with these tools:
I Analyse complexity of divide & conquer algorithms:

Merge Sort, Karatsuba multiplication, selection
I Complexity of QuickSort

I Ω(n log n) lower bound for comparison sorts
I Average number of integer divisors/co-primes/square-free

integers
What could be a suitable ambitious new project?

Some nice things we can easily do with these tools:
I Analyse complexity of divide & conquer algorithms:

Merge Sort, Karatsuba multiplication, selection
I Complexity of QuickSort
I Ω(n log n) lower bound for comparison sorts

I Average number of integer divisors/co-primes/square-free
integers

What could be a suitable ambitious new project?

Some nice things we can easily do with these tools:
I Analyse complexity of divide & conquer algorithms:

Merge Sort, Karatsuba multiplication, selection
I Complexity of QuickSort
I Ω(n log n) lower bound for comparison sorts
I Average number of integer divisors/co-primes/square-free

integers

What could be a suitable ambitious new project?

Some nice things we can easily do with these tools:
I Analyse complexity of divide & conquer algorithms:

Merge Sort, Karatsuba multiplication, selection
I Complexity of QuickSort
I Ω(n log n) lower bound for comparison sorts
I Average number of integer divisors/co-primes/square-free

integers
What could be a suitable ambitious new project?

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1+

1

logε/2
(
bx + x

log1+ε x

)
−

(
1+

1
logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’
In Isabelle: 700 lines of messy proofs

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1+

1

logε/2
(
bx + x

log1+ε x

)
−

(
1+

1
logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’

In Isabelle: 700 lines of messy proofs

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1+

1

logε/2
(
bx + x

log1+ε x

)
−

(
1+

1
logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’
In Isabelle: 700 lines of messy proofs

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

by magic

This is what we would like to have.

Computer Algebra Systems can do this (sort of)

So why can’t we?

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top
by magic

This is what we would like to have.

Computer Algebra Systems can do this (sort of)

So why can’t we?

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top
by magic

This is what we would like to have.

Computer Algebra Systems can do this (sort of)

So why can’t we?

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1+ ε)) ˆ p) ∗

(1+ ln (b ∗ x + x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top
by magic

This is what we would like to have.

Computer Algebra Systems can do this (sort of)

So why can’t we?

Asymptotic Expansions

Disclaimer:
I None of this was invented by me.
I I will not show actual Isabelle code for better readability.

Asymptotic Expansions

Disclaimer:
I None of this was invented by me.

I I will not show actual Isabelle code for better readability.

Asymptotic Expansions

Disclaimer:
I None of this was invented by me.
I I will not show actual Isabelle code for better readability.

Related Work

I Asymptotic Expansions of exp–log Functions by
Richardson, Salvy, Shackell, van der Hoeven

I On Computing Limits in a Symbolic Manipulation System
by Gruntz

We’re looking for a compositional approach:

Given the limits of f (x) and g(x), what is the limit of
f (x) � g(x)? (for � ∈ {+,−, ·,/})

If the limits are ∈ R: Obvious.

But: ∞−∞ =? 0 ·∞ =?

We need to track more information than just the limit!

We need the full asymptotic information

We’re looking for a compositional approach:

Given the limits of f (x) and g(x), what is the limit of
f (x) � g(x)? (for � ∈ {+,−, ·,/})

If the limits are ∈ R: Obvious.

But: ∞−∞ =? 0 ·∞ =?

We need to track more information than just the limit!

We need the full asymptotic information

We’re looking for a compositional approach:

Given the limits of f (x) and g(x), what is the limit of
f (x) � g(x)? (for � ∈ {+,−, ·,/})

If the limits are ∈ R: Obvious.

But: ∞−∞ =? 0 ·∞ =?

We need to track more information than just the limit!

We need the full asymptotic information

We’re looking for a compositional approach:

Given the limits of f (x) and g(x), what is the limit of
f (x) � g(x)? (for � ∈ {+,−, ·,/})

If the limits are ∈ R: Obvious.

But: ∞−∞ =? 0 ·∞ =?

We need to track more information than just the limit!

We need the full asymptotic information

Asymptotic Expansions
For x → 0, we have:

ex ∼ 1+ x + 1
2x

2 + 1
6x

3 + . . .

1
1+ x

∼ 1− x + x2 − x3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → 0, we have:

ex ∼ 1+ x + 1
2x

2 + 1
6x

3 + . . .

1
1+ x

∼ 1− x + x2 − x3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → 0, we have:

ex ∼ 1+ x + 1
2x

2 + 1
6x

3 + . . .

1
1+ x

∼ 1− x + x2 − x3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → 0, we have:

ex ∼ 1+ x + 1
2x

2 + 1
6x

3 + . . .

1
1+ x

∼ 1− x + x2 − x3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → 0, we have:

ex ∼ 1+ x + 1
2x

2 + 1
6x

3 + . . .

1
1+ x

∼ 1− x + x2 − x3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions

� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x
e0 + c1x

e1 + . . .

where e0 > e1 > . . .

Asymptotic Expansions

� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x
e0 + c1x

e1 + . . .

where e0 > e1 > . . .

Asymptotic Expansions

� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x
e0 + c1x

e1 + . . .

where e0 > e1 > . . .

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs+ ys
| e1 < e2 = (c1, e1) :: xs+ ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs+ ys
| e1 < e2 = (c1, e1) :: xs+ ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs+ ys
| e1 < e2 = (c1, e1) :: xs+ ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs

((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs+ ys
| e1 < e2 = (c1, e1) :: xs+ ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs+ ys
| e1 < e2 = (c1, e1) :: xs+ ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions – Multiplication

Multiplication with ‘atomic’ factor c ′xe
′
:

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []
((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =

(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys+ xs ∗ ((c2, e2) :: ys)

Asymptotic Expansions – Multiplication

Multiplication with ‘atomic’ factor c ′xe
′
:

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []

((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =
(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys+ xs ∗ ((c2, e2) :: ys)

Asymptotic Expansions – Multiplication

Multiplication with ‘atomic’ factor c ′xe
′
:

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []
((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =

(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys+ xs ∗ ((c2, e2) :: ys)

Asymptotic Expansions – Power Series
Many functions have local power series expansions:

g(x) =
∞

∑
n=0

cnx
n (for |x | < R)

e. g. cn := 1/n! for the exponential function.

If f (x)→ 0, one can substitute f into g :

g(f (x)) =
∞

∑
n=0

cnf (x)
n = c0 + f (x)

∞

∑
n=0

cn+1f (x)
n

powser : R llist→ Exp→ Exp
powser (c :: cs) xs = (c , 0) :: xs ∗ powser cs xs

Asymptotic Expansions – Power Series
Many functions have local power series expansions:

g(x) =
∞

∑
n=0

cnx
n (for |x | < R)

e. g. cn := 1/n! for the exponential function.

If f (x)→ 0, one can substitute f into g :

g(f (x)) =
∞

∑
n=0

cnf (x)
n

= c0 + f (x)
∞

∑
n=0

cn+1f (x)
n

powser : R llist→ Exp→ Exp
powser (c :: cs) xs = (c , 0) :: xs ∗ powser cs xs

Asymptotic Expansions – Power Series
Many functions have local power series expansions:

g(x) =
∞

∑
n=0

cnx
n (for |x | < R)

e. g. cn := 1/n! for the exponential function.

If f (x)→ 0, one can substitute f into g :

g(f (x)) =
∞

∑
n=0

cnf (x)
n = c0 + f (x)

∞

∑
n=0

cn+1f (x)
n

powser : R llist→ Exp→ Exp
powser (c :: cs) xs = (c , 0) :: xs ∗ powser cs xs

Asymptotic Expansions – Power Series
Many functions have local power series expansions:

g(x) =
∞

∑
n=0

cnx
n (for |x | < R)

e. g. cn := 1/n! for the exponential function.

If f (x)→ 0, one can substitute f into g :

g(f (x)) =
∞

∑
n=0

cnf (x)
n = c0 + f (x)

∞

∑
n=0

cn+1f (x)
n

powser : R llist→ Exp→ Exp
powser (c :: cs) xs = (c , 0) :: xs ∗ powser cs xs

Asymptotic Expansions – Reciprocal
Consider f (x) with expansion (c , e) :: xs where c 6= 0, i. e.

f (x) = c xe + g(x)

= c xe(1+ c−1x−eg(x))

where g(x) expands to xs.

Then:

f −1(x) ∼ c−1x−e (1+ c−1x−eg(x))−1

Note the geometric series:

(1+ x)−1 =
∞

∑
n=0

(−1)nxn

Therefore:
inv ((c , e) :: xs) = scale (1/c) (−e)

(powser (cycle [1,−1]) (scale (1/c) (−e) xs))

Asymptotic Expansions – Reciprocal
Consider f (x) with expansion (c , e) :: xs where c 6= 0, i. e.

f (x) = c xe + g(x) = c xe(1+ c−1x−eg(x))

where g(x) expands to xs.

Then:

f −1(x) ∼ c−1x−e (1+ c−1x−eg(x))−1

Note the geometric series:

(1+ x)−1 =
∞

∑
n=0

(−1)nxn

Therefore:
inv ((c , e) :: xs) = scale (1/c) (−e)

(powser (cycle [1,−1]) (scale (1/c) (−e) xs))

Asymptotic Expansions – Reciprocal
Consider f (x) with expansion (c , e) :: xs where c 6= 0, i. e.

f (x) = c xe + g(x) = c xe(1+ c−1x−eg(x))

where g(x) expands to xs. Then:

f −1(x) ∼ c−1x−e (1+ c−1x−eg(x))−1

Note the geometric series:

(1+ x)−1 =
∞

∑
n=0

(−1)nxn

Therefore:
inv ((c , e) :: xs) = scale (1/c) (−e)

(powser (cycle [1,−1]) (scale (1/c) (−e) xs))

Asymptotic Expansions – Reciprocal
Consider f (x) with expansion (c , e) :: xs where c 6= 0, i. e.

f (x) = c xe + g(x) = c xe(1+ c−1x−eg(x))

where g(x) expands to xs. Then:

f −1(x) ∼ c−1x−e (1+ c−1x−eg(x))−1

Note the geometric series:

(1+ x)−1 =
∞

∑
n=0

(−1)nxn

Therefore:
inv ((c , e) :: xs) = scale (1/c) (−e)

(powser (cycle [1,−1]) (scale (1/c) (−e) xs))

Asymptotic Expansions – Reciprocal
Consider f (x) with expansion (c , e) :: xs where c 6= 0, i. e.

f (x) = c xe + g(x) = c xe(1+ c−1x−eg(x))

where g(x) expands to xs. Then:

f −1(x) ∼ c−1x−e (1+ c−1x−eg(x))−1

Note the geometric series:

(1+ x)−1 =
∞

∑
n=0

(−1)nxn

Therefore:
inv ((c , e) :: xs) = scale (1/c) (−e)

(powser (cycle [1,−1]) (scale (1/c) (−e) xs))

Asymptotic Expansions – Other operations
Problem: Remember: ln x and exp x have no power series
expansion for x → ∞!

Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x
∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x
∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Problem: Remember: ln x and exp x have no power series
expansion for x → ∞!

Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x
∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x
∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Problem: Remember: ln x and exp x have no power series
expansion for x → ∞!

Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x
∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x
∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Problem: Remember: ln x and exp x have no power series
expansion for x → ∞!

Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x
∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x
∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Problem: Remember: ln x and exp x have no power series
expansion for x → ∞!

Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x
∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x
∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)
e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
I Limit is 0 if ei < 0
I Limit is sgn(c) ·∞ if ei > 0
I Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)
e1 . . . bn(x)en + . . .

Just determine first non-zero ei :

I Limit is 0 if ei < 0
I Limit is sgn(c) ·∞ if ei > 0
I Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)
e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
I Limit is 0 if ei < 0

I Limit is sgn(c) ·∞ if ei > 0
I Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)
e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
I Limit is 0 if ei < 0
I Limit is sgn(c) ·∞ if ei > 0

I Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)
e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
I Limit is 0 if ei < 0
I Limit is sgn(c) ·∞ if ei > 0
I Limit is c if all ei = 0

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list

datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c

negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Logarithm
Same trick as before: Given

f (x) = c(x) xe + g(x) with g(x) ∼ xs

we rearrange

ln(f (x)) = ln(c(x) xe(1+ c(x)−1x−eg(x)))

= ln c(x) + e ln x + ln
(
1+ c(x)−1x−eg(x)

)
and t 7→ ln(1+ t) has a power series expansion. :)

� We might have to add ln x to our basis!

Asymptotic Expansions – Logarithm
Same trick as before: Given

f (x) = c(x) xe + g(x) with g(x) ∼ xs

we rearrange

ln(f (x)) = ln(c(x) xe(1+ c(x)−1x−eg(x)))

= ln c(x) + e ln x + ln
(
1+ c(x)−1x−eg(x)

)
and t 7→ ln(1+ t) has a power series expansion. :)

� We might have to add ln x to our basis!

Asymptotic Expansions – Logarithm
Same trick as before: Given

f (x) = c(x) xe + g(x) with g(x) ∼ xs

we rearrange

ln(f (x)) = ln(c(x) xe(1+ c(x)−1x−eg(x)))

= ln c(x) + e ln x + ln
(
1+ c(x)−1x−eg(x)

)

and t 7→ ln(1+ t) has a power series expansion. :)

� We might have to add ln x to our basis!

Asymptotic Expansions – Logarithm
Same trick as before: Given

f (x) = c(x) xe + g(x) with g(x) ∼ xs

we rearrange

ln(f (x)) = ln(c(x) xe(1+ c(x)−1x−eg(x)))

= ln c(x) + e ln x + ln
(
1+ c(x)−1x−eg(x)

)
and t 7→ ln(1+ t) has a power series expansion. :)

� We might have to add ln x to our basis!

Asymptotic Expansions – Logarithm
Same trick as before: Given

f (x) = c(x) xe + g(x) with g(x) ∼ xs

we rearrange

ln(f (x)) = ln(c(x) xe(1+ c(x)−1x−eg(x)))

= ln c(x) + e ln x + ln
(
1+ c(x)−1x−eg(x)

)
and t 7→ ln(1+ t) has a power series expansion. :)

� We might have to add ln x to our basis!

Asymptotic Expansions – Exponential

Exponential is much more complicated – too complicated for
these slides.

I Lots of case distinctions
I Can introduce ugly new basis elements like exp(x + 1/x)
I Lots of opportunities for implementation bugs
I Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential

Exponential is much more complicated – too complicated for
these slides.
I Lots of case distinctions

I Can introduce ugly new basis elements like exp(x + 1/x)
I Lots of opportunities for implementation bugs
I Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential

Exponential is much more complicated – too complicated for
these slides.
I Lots of case distinctions
I Can introduce ugly new basis elements like exp(x + 1/x)

I Lots of opportunities for implementation bugs
I Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential

Exponential is much more complicated – too complicated for
these slides.
I Lots of case distinctions
I Can introduce ugly new basis elements like exp(x + 1/x)
I Lots of opportunities for implementation bugs

I Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential

Exponential is much more complicated – too complicated for
these slides.
I Lots of case distinctions
I Can introduce ugly new basis elements like exp(x + 1/x)
I Lots of opportunities for implementation bugs
I Luckily, the Isabelle kernel caught them, of course. :)

What this looks like in Isabelle

Type α ms for multiseries with coefficients of type α

datatype α ms = MS ”(α× real) llist” ”real⇒ real”

E.g. expansion of order 3 would be ‘real ms ms ms’.

Operations on ms are defined with corecursion,
proven correct with coinduction

How do we turn this into a proof method?

What this looks like in Isabelle

Type α ms for multiseries with coefficients of type α

datatype α ms = MS ”(α× real) llist” ”real⇒ real”

E.g. expansion of order 3 would be ‘real ms ms ms’.

Operations on ms are defined with corecursion,
proven correct with coinduction

How do we turn this into a proof method?

What this looks like in Isabelle

Type α ms for multiseries with coefficients of type α

datatype α ms = MS ”(α× real) llist” ”real⇒ real”

E.g. expansion of order 3 would be ‘real ms ms ms’.

Operations on ms are defined with corecursion,
proven correct with coinduction

How do we turn this into a proof method?

Computing Expansions
in Isabelle

Evaluation

So far, we can write down expansions as HOL terms

– but how do we evaluate them?

Isabelle has tools to evaluate terms strictly, but we need lazy
evaluation.

I had to implement lazy evaluation of HOL terms.

Evaluation

So far, we can write down expansions as HOL terms
– but how do we evaluate them?

Isabelle has tools to evaluate terms strictly, but we need lazy
evaluation.

I had to implement lazy evaluation of HOL terms.

Evaluation

So far, we can write down expansions as HOL terms
– but how do we evaluate them?

Isabelle has tools to evaluate terms strictly, but we need lazy
evaluation.

I had to implement lazy evaluation of HOL terms.

Evaluation

So far, we can write down expansions as HOL terms
– but how do we evaluate them?

Isabelle has tools to evaluate terms strictly, but we need lazy
evaluation.

I had to implement lazy evaluation of HOL terms.

Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors

I set of supported functions
I set of function equations of the form f (r , s, t) = . . .

The framework can
I determine whether a pattern matches a term (modulo

rewriting)
I bring a term into head-normal form
I produce an Isabelle theorem of the form

original term = reduced term
Does not support sharing

Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors
I set of supported functions

I set of function equations of the form f (r , s, t) = . . .
The framework can
I determine whether a pattern matches a term (modulo

rewriting)
I bring a term into head-normal form
I produce an Isabelle theorem of the form

original term = reduced term
Does not support sharing

Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors
I set of supported functions
I set of function equations of the form f (r , s, t) = . . .

The framework can
I determine whether a pattern matches a term (modulo

rewriting)
I bring a term into head-normal form
I produce an Isabelle theorem of the form

original term = reduced term
Does not support sharing

Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors
I set of supported functions
I set of function equations of the form f (r , s, t) = . . .

The framework can
I determine whether a pattern matches a term (modulo

rewriting)

I bring a term into head-normal form
I produce an Isabelle theorem of the form

original term = reduced term
Does not support sharing

Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors
I set of supported functions
I set of function equations of the form f (r , s, t) = . . .

The framework can
I determine whether a pattern matches a term (modulo

rewriting)
I bring a term into head-normal form

I produce an Isabelle theorem of the form
original term = reduced term

Does not support sharing

Evaluation
Lazy evaluation framework:
I set of supported (co-)datatypes and their constructors
I set of supported functions
I set of function equations of the form f (r , s, t) = . . .

The framework can
I determine whether a pattern matches a term (modulo

rewriting)
I bring a term into head-normal form
I produce an Isabelle theorem of the form

original term = reduced term
Does not support sharing

Evaluation

Problem:
I Addition of expansions involves comparisons of real

numbers

I ‘Trimming’ expansions involves zeroness tests of real
functions

I Both of these are difficult or even undecidable

Evaluation

Problem:
I Addition of expansions involves comparisons of real

numbers
I ‘Trimming’ expansions involves zeroness tests of real

functions

I Both of these are difficult or even undecidable

Evaluation

Problem:
I Addition of expansions involves comparisons of real

numbers
I ‘Trimming’ expansions involves zeroness tests of real

functions
I Both of these are difficult or even undecidable

Evaluation

Solution: Heuristic approach using Isabelle’s automation

I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible

Evaluation

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail

I Use automation to determine if function is identically zero
– might cause non-termination

I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible

Evaluation

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination

I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible

Evaluation

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible

Evaluation

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible

Evaluation

Solution: Heuristic approach using Isabelle’s automation
I Use automation to determine signs – might fail
I Use automation to determine if function is identically zero

– might cause non-termination
I User may have to supply additional facts

This works surprisingly well

Additional backends (user input/Mathematica/Maple) possible

Proof method

At this point, we have all the ingredients:
I Parse and pre-process input expression

I Compute expansions bottom-up
I Use evaluation framework to trim expansions/determine

signs whenever necessary
I In the end: Trim expansion to determine leading term

Proof method

At this point, we have all the ingredients:
I Parse and pre-process input expression
I Compute expansions bottom-up

I Use evaluation framework to trim expansions/determine
signs whenever necessary

I In the end: Trim expansion to determine leading term

Proof method

At this point, we have all the ingredients:
I Parse and pre-process input expression
I Compute expansions bottom-up
I Use evaluation framework to trim expansions/determine

signs whenever necessary

I In the end: Trim expansion to determine leading term

Proof method

At this point, we have all the ingredients:
I Parse and pre-process input expression
I Compute expansions bottom-up
I Use evaluation framework to trim expansions/determine

signs whenever necessary
I In the end: Trim expansion to determine leading term

Proof method

With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) ∈ L(g(x)) for any Landau symbol L
as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.

Proof method

With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) ∈ L(g(x)) for any Landau symbol L
as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.

Proof method

With some pre-processing, we can automatically prove
statements of the form
I f (x) −→ c

I f (x) ∼ g(x)

I f (x) ∈ L(g(x)) for any Landau symbol L
as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n
√
·

without restrictions

sin, cos, tan at finite points also possible.

Proof method

Example
lemma (λn. (1+ 1/n) ˆ n) −→ exp 1

by exp_log_asymptotics

Example
lemma ((λx . (1+ y/x) ˆ x) −→ exp y) at_top
proof (cases y = 0)

case False
thus ?thesis by exp_log_asymptotics

qed simp_all

Proof method

Example
lemma (λn. (1+ 1/n) ˆ n) −→ exp 1

by exp_log_asymptotics

Example
lemma ((λx . (1+ y/x) ˆ x) −→ exp y) at_top
proof (cases y = 0)

case False
thus ?thesis by exp_log_asymptotics

qed simp_all

Proof methodExample
lemma

assumes c > 1 and k > 0
shows (λn. n ˆ k) ∈ o(λn. c ˆ n)

using assms by exp_log_asymptotics

Example
lemma akra_bazzi_aux:

assumes b ∈ {0< ..<1} and ε > 0
shows filterlim (λx .

(1− H/(b ∗ ln x ˆ(1+ ε))) ˆ p ∗
(1+ ln (b ∗ x +H ∗ x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top
by (exp_log_asymptotics simp: mult_neg_pos)

Proof methodExample
lemma

assumes c > 1 and k > 0
shows (λn. n ˆ k) ∈ o(λn. c ˆ n)

using assms by exp_log_asymptotics

Example
lemma akra_bazzi_aux:

assumes b ∈ {0< ..<1} and ε > 0
shows filterlim (λx .

(1− H/(b ∗ ln x ˆ(1+ ε))) ˆ p ∗
(1+ ln (b ∗ x +H ∗ x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top

by (exp_log_asymptotics simp: mult_neg_pos)

Proof methodExample
lemma

assumes c > 1 and k > 0
shows (λn. n ˆ k) ∈ o(λn. c ˆ n)

using assms by exp_log_asymptotics

Example
lemma akra_bazzi_aux:

assumes b ∈ {0< ..<1} and ε > 0
shows filterlim (λx .

(1− H/(b ∗ ln x ˆ(1+ ε))) ˆ p ∗
(1+ ln (b ∗ x +H ∗ x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1+ ln x ˆ(−ε/2)))

(at_right 0) at_top
by (exp_log_asymptotics simp: mult_neg_pos)

Discussion

What works well:
I Surprisingly, all examples I tried take no more than a few

seconds

I Algorithm copes very well with free variables that don’t
affect result

Problems:
I If several cancellations occur, performance gets very bad
I Getting zeroness/sign tests to work can be trial & error
I Case distinctions have to be done manually
I Somewhat ‘ad-hoc’ formalisation

Discussion

What works well:
I Surprisingly, all examples I tried take no more than a few

seconds
I Algorithm copes very well with free variables that don’t

affect result

Problems:
I If several cancellations occur, performance gets very bad
I Getting zeroness/sign tests to work can be trial & error
I Case distinctions have to be done manually
I Somewhat ‘ad-hoc’ formalisation

Discussion

What works well:
I Surprisingly, all examples I tried take no more than a few

seconds
I Algorithm copes very well with free variables that don’t

affect result
Problems:
I If several cancellations occur, performance gets very bad

I Getting zeroness/sign tests to work can be trial & error
I Case distinctions have to be done manually
I Somewhat ‘ad-hoc’ formalisation

Discussion

What works well:
I Surprisingly, all examples I tried take no more than a few

seconds
I Algorithm copes very well with free variables that don’t

affect result
Problems:
I If several cancellations occur, performance gets very bad
I Getting zeroness/sign tests to work can be trial & error

I Case distinctions have to be done manually
I Somewhat ‘ad-hoc’ formalisation

Discussion

What works well:
I Surprisingly, all examples I tried take no more than a few

seconds
I Algorithm copes very well with free variables that don’t

affect result
Problems:
I If several cancellations occur, performance gets very bad
I Getting zeroness/sign tests to work can be trial & error
I Case distinctions have to be done manually

I Somewhat ‘ad-hoc’ formalisation

Discussion

What works well:
I Surprisingly, all examples I tried take no more than a few

seconds
I Algorithm copes very well with free variables that don’t

affect result
Problems:
I If several cancellations occur, performance gets very bad
I Getting zeroness/sign tests to work can be trial & error
I Case distinctions have to be done manually
I Somewhat ‘ad-hoc’ formalisation

Discussion

I 5000 lines of Isabelle theory

I 3000 lines of (untrusted) ML code
I About 5 months of work so far
I Implementation was tricky to get right

Discussion

I 5000 lines of Isabelle theory
I 3000 lines of (untrusted) ML code

I About 5 months of work so far
I Implementation was tricky to get right

Discussion

I 5000 lines of Isabelle theory
I 3000 lines of (untrusted) ML code
I About 5 months of work so far

I Implementation was tricky to get right

Discussion

I 5000 lines of Isabelle theory
I 3000 lines of (untrusted) ML code
I About 5 months of work so far
I Implementation was tricky to get right

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996

(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996
(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996
(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996
(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x

)
log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically

Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x

)
log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x

)
log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x

)
log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x

)
log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x

)
log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Future Work

I Incomplete support for Γ, ψ(n), arctan

I Cannot handle oscillating functions or complex-valued
asymptotics

I User interaction for zeroness tests could be improved

Future Work

I Incomplete support for Γ, ψ(n), arctan
I Cannot handle oscillating functions or complex-valued

asymptotics

I User interaction for zeroness tests could be improved

Future Work

I Incomplete support for Γ, ψ(n), arctan
I Cannot handle oscillating functions or complex-valued

asymptotics
I User interaction for zeroness tests could be improved

Questions? Demo?

