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Irrationality exponent

Let ξ be an irrational, real number. The irrationality exponent
µ(ξ) of ξ is the supremum of the real numbers µ such that the
inequality
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has infinitely many solutions in rational numbers p/q.
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• Very difficult to determine µ(ξ) of a given transcendental real
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µ(π) ≤ 7.6063 Salikhov (2008)
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Irrationality exponent

Well known:

• µ(ξ) ≥ 2

• µ(ξ) = 2 if ξ is algebraic irrational number (Roth, 1955)

• µ(ξ) = 2 for almost all real numbers ξ (Lebesgue measure)

• µ(ξ) =∞ for Liouville numbers

• Very difficult to determine µ(ξ) of a given transcendental real
number ξ:

µ(π) ≤ 7.6063 Salikhov (2008)
µ(log(2)) ≤ 3.57455391 Marcovecchio (2009)

Today:

• µ(ξ) = 2 for some families of transcendental numbers
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Thue-Morse sequence

an infinite sequence t = (e0, e1, e2, . . .) on {1,−1}, defined by:

• Generating function

∞
∏

k=0

(1− x2k) =
∞
∑

n=0

enx
n = 1− x− x2 + x3 − x4 + x5 + · · ·

t = (1,−1,−1, 1,−1, 1, 1,−1, . . .)

• Recurrence relation

e0 = 1

e2n = en

e2n+1 = −en
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Bugeaud’s Result

Let

P2(x) =

∞
∏

k=0

(1− x2k).
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Bugeaud’s Result

Let

P2(x) =

∞
∏

k=0

(1− x2k).

P2(1/m) is transcendental for every integer m ≥ 2

Theorem [Bugeaud, 2011]

µ(P2(1/m)) = 2.

Proof. Using Theorem APWW on Hankel determinant, ...
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Hankel determinant

We identify a sequence

a = (a0, a1, a2, . . .)

and its generating function

f = f(x) = a0 + a1x+ a2x
2 + · · ·
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Hankel determinant

We identify a sequence

a = (a0, a1, a2, . . .)

and its generating function

f = f(x) = a0 + a1x+ a2x
2 + · · ·

H(k)
n (a) = H(k)

n (f) :=

∣

∣

∣
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∣

∣

ak ak+1 . . . ak+n−1

ak+1 ak+2 . . . ak+n
...

...
. . .

...
ak+n−1 ak+n . . . ak+2n−2
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∣

(constant skew-diagonals)
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Hankel determinant

Two notations. Using sequence and generating function

H(0)
n

(

(1, 1, 1, 1, 1, . . .)
)

= H(0)
n

( 1

1− x

)

Special case k = 0 :

Hn(f) = H(0)
n (f) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 a3 . . . an−1

a1 a2 a3 a4 . . . an
a2 a3 a4 a5 . . . an+1

a3 a4 a5 a6 . . . an+2
...

...
...

...
. . .

...
an−1 an an+1 an+2 . . . a2n−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Main Definition

An infinite ±1-sequence c = (ck)k≥0 is called Apwenian if
its Hankel determinant of order n divided by 2n−1 is an odd
number, i.e.,

Hn(c)

2n−1
≡ 1 (mod 2),

for all positive integer n.

• APWEN: to honor the four authors Allouche, Peyrière, Wen,
Wen

• Apwenian sequences are rather precious!
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1998

Allouche, Peyrière, Wen, Wen proved:

Theorem [APWW]. The Thue–Morse sequence on {1,−1} is
Apwenian.

• Thue–Morse sequence:

P2(x) =

∞
∏

k=0

(1− x2k).

• Hn(P2(x)) 6= 0 for every positive integer n.

19



First proof [Allouche, Peyrière, Wen, Wen]

• “Sudoku method”

• Sixteen recurrence relations between determinants

• 12 pages
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Sudoku method

· · ·

· · ·
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Sixteen relations

· · ·
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2011

Coons

Let

S2 = S2(x) =
1

x

∞
∑

n=0

x2n

1 + x2n
.

Then Hn(S2) ≡ 1 (mod 2).

• Same proof than APWW.

• The Gros sequence (1872)
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Regular paperfolding sequence

(Source: Wikipedia)

1= Left turn, 0=Right turn

r = (1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, . . .)
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• Generating function

G0,2(x) =
∑

n≥0

rnx
n =

∞
∑

n=0

x2n−1

1− x2n+2
.

• Recurrence relations:

r4n = 1, r4n+2 = 0, r2n+1 = rn
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Coons and Vrbik conjectured (2012) and Guo, Wu and Wen
proved

Theorem GWW (2014).

The parities of the Hankel determinants of the regular paper-
folding sequence r are periodic of period 10

(Hk(r))k=0,1,... ≡ (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)∗ (mod 2).
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Proof.
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plus

Source: GWW, Lin. Algebra Appl., (2014)
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New proofs for the Hankel determinants ?

An example:

F3(x) =
∏

k≥0

(1− x3k − x2·3k).

n 1 2 3 4 5 6 7 8 9

Hn(f) 1 −2 −4 8 16 −32 −64 128 4864

Hn(f)/2
n−1 1 −1 −1 1 1 −1 −1 1 19

Hn(f)
2n−1 (mod 2) 1 1 1 1 1 1 1 1 1

Hn(f) (mod 3) 1 1 2 2 1 1 2 2 1

Hn(f)
2n−1 (mod 6) 1 5 5 1 1 5 5 1 1
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New proofs for the Hankel determinants ?

We developed two computer assisted automatic proofs:

n 1 2 3 4 5 6 7 8 9

Hn(f) 1 −2 −4 8 16 −32 −64 128 4864

Automatic Proof 1:

Hn(f)
2n−1 (mod 2) 1 1 1 1 1 1 1 1 1

Automatic Proof 2:

Hn(f) (mod 3) 1 1 2 2 1 1 2 2 1

Hn(f)
2n−1 (mod 6) 1 5 5 1 1 5 5 1 1
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Automatic proof 1
[Bugeaud, H.(2014), Fu, H.(2016)]

Basic idea: Count the number of permutations of length n
modulo 2.

Theorem: The following sequence is Apwenian

F5(x; 1−z−z2−z3+z4) =
∏

k≥0

(1−x5k−x2·5k−x3·5k+x4·5k).

σ =

(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 3 2 7 15 0 13 1 11 10 14 8 12 6 5 9

)

w =

(

0 5 10 15

e a e e

∣

∣

∣

∣

1 6 11

d d d

∣

∣

∣

∣

2 7 12

c b c

∣

∣

∣

∣

3 8 13

c b b

∣

∣

∣

∣

4 9 14

a a a

)
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Classifying permutations by types
Consider m = ℓ = 5n+ 1 and the type adbca:

Jadbca
5n+1,5n+1

=

(

0 5̃ 10 15

e a e e

∣

∣

∣

∣

1 6 11

d d d

∣

∣

∣

∣

2 7̃ 12

c b c

∣

∣

∣

∣

3̃ 8 13

c b b

∣

∣

∣

∣

4 9 14

a a a

)

=

(

0 5̃ 10 15

e a e e

∣

∣

∣

∣

1 6 11

d d d

∣

∣

∣

∣

2 7̃ 12

c b c

∣

∣

∣

∣

3̃ 8 13

c b b

∣

∣

∣

∣

4 9 14 19

a a a 19

)

=

(

0 5̃ 10 15

e 19 e e

∣

∣

∣

∣

1 6 11

d d d

∣

∣

∣

∣

2 7̃ 12

c c c

∣

∣

∣

∣

3̃ 8 13

b b b

∣

∣

∣

∣

4 9 14 19

a a a a

)

=

(

0 5̃ 10 15

e 19 e e

)(

1 6 11

d d d

)(

2 7̃ 12

c c c

)(

3̃ 8 13

b b b

)(

4 9 14 19

a a a a

)

=Zn+1 × Yn ×Xn ×Xn × Zn+1.

product of atoms
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Evaluating the atoms

η 000 001 010 011 100 101 110 111
ΨG(η) X̄n Ȳn 0 Z̄n+1 Z̄n+1 0 X̄n+1 Ȳn+1

η 0000 0010 0100 0110 1000 1010 1100 1110
ΨZ(η) 0 Z̄n 0 0 X̄n Ȳn 0 Z̄n+1

η 0001 0011 0101 0111 1001 1011 1101 1111
ΨZ(η) 0 Z̄n 0 0 X̄n 0 0 Z̄n+1

η 0000 0010 0100 0110 1000 1010 1100 1110
ΨX(η) 0 X̄n 0 0 0 Z̄n+1 0 X̄n+1

η 0001 0011 0101 0111 1001 1011 1101 1111
ΨX(η) 0 X̄n 0 0 0 0 0 X̄n+1
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Output

v= [1, -1, -1, -1, 1]

1 ecbaed: Xn:0010 Xn:000 Xn:000 Xn:000 Xn:000

2 ecdabe: Xn:0011 Xn:000 Xn:000 Xn:000 Xn:000

...

---------

167 acdba: Zm:100 Xn:000 Xn:000 Yn:001 Zm:011

168 adbca: Zm:100 Yn:001 Xn:000 Xn:000 Zm:011

169 adcba: Zm:100 Yn:001 Yn:001 Yn:001 Zm:011

170 dcbaa: Zm:100 Xn:000 Xn:000 Xn:000 Zm:011

Y(5n+1) = Xn Zm + Yn Zm

---------

...

224 adcbab: Zm:100 Ym:111 Ym:111 Zm:Z1111 Zm:011

225 dcbbaa: Zm:100 Xm:110 Xm:110 Zm:Z1110 Zm:011

Z(5n+4) = Xm Ym Zm + Xm Zm + Ym Zm

36



Proof
By the output of the program, for each n ≥ 1 we have

X5n+0 ≡ Xn,

Y5n+0 ≡ Yn,

X5n+1 ≡ Zn+1Yn,

Y5n+1 ≡ Zn+1(Xn + Yn),

X5n+2 ≡ Zn+1(Xn + Yn),

Y5n+2 ≡ Zn+1Xn,

X5n+3 ≡ Zn+1(Xn+1 + Yn+1),

Y5n+3 ≡ Zn+1Xn+1,

X5n+4 ≡ Zn+1Yn+1,

Y5n+4 ≡ Zn+1(Xn+1 + Yn+1),
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Z5n+0 ≡ Zn(Xn +XnYn + Yn),

Z5n+1 ≡ Zn+1(Xn +XnYn + Yn),

Z5n+2 ≡ Zn+1(Xn +XnYn + Yn),

Z5n+3 ≡ Zn+1,

Z5n+4 ≡ Zn+1(Xn+1 +Xn+1Yn+1 + Yn+1).

From these relations, we can show that

Hn(F5)

2n−1
≡ Zn ≡ 1 (mod 2).
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Results from automatic proof 1
Let d be a positive integer and ǫ = (ǫ1, ǫ2, . . . ǫd−1) be a
{1,−1}-sequence of length d − 1. We define a power series
associated with ǫ by

Φ(1 +

d−1
∑

j=1

ǫjz
j) :=

∏

k≥0

(

1 +

d−1
∑

j=1

ǫjx
j·dk

)

.

For example,

Φ(1− z− z2− z3+ z4) =
∏

k≥0

(1−x5k −x2·5k −x3·5k +x4·5k).
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Results from automatic proof 1
The following power series are all Apwenian:

F2(x) = Φ(1− x), [APWW, 1998]

F3(x) = Φ(1− x− x2),

F5(x) = Φ(1− x− x2 − x3 + x4),

F11(x) = Φ(1− x− x2 + x3 − x4 + x5 + x6 + x7 + x8 − x9

− x10),

F13(x) = Φ(1− x− x2 + x3 − x4 − x5 − x6 − x7 − x8 + x9

− x10 − x11 + x12),

F17a(x) = Φ(1− x− x2 + x3 − x4 + x5 + x6 + x7 + x8 + x9

+ x10 + x11 − x12 + x13 − x14 − x15 + x16),

F17b(x) = Φ(1− x− x2 − x3 + x4 + x5 − x6 + x7 + x8 + x9

− x10 + x11 + x12 − x13 − x14 − x15 + x16).
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Conjecture/Problems

Conjecture 1. The following power series F19 is Apwenian

F19(x) = Φ(1− x− x2 − x3 + x4 − x5 + x6 − x7 − x8 + x9

+ x10 − x11 − x12 − x13 − x14 − x15 + x16 − x17 − x18).

• Apwenian sequences are rather precious! This is the only
Apwenian sequence of order 19 among the total of 131072 se-
quences!

• For the study of F11(x), there are 2274558 types to be con-
sidered!

• For proving that F17a(x) is Apwenian, our C program has
taken about one week by using 24 CPU cores. No hope for
F19(x).
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Conjecture/Problems

Problem 2. Find a human proof for Apwenian sequence with-
out computer assistance.

Problem 3. Characterize all the finite ±1-sequences v such
that Φ(ṽ(x)) is Apwenian.
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Proof by using Jacobi continued fraction (H. 2014)

• Using Jacobi continued fraction

• 1 page

43
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• 1 page
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Jacobi Continued Fraction

u = (u0, u1, u2, . . .)

v = (v0, v1, v2, . . .)

1

1− v0x−
u0x

2

1− v1x−
u1x

2

1− v2x−
u2x

2

. . .

,

Notation:

J
[

u

v

]

= J[u/v] = J
[

u0, u1, u2, · · ·
v0, v1, v2, · · ·

]

.
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How to find and prove the J-Fraction

Let

f =
(1− x)(1 + 2x)−

√

(1− x)(1− 2x)(1 + 3x)(1 + 2x− 4x2)

4x2(1− x)
.

Find: by computer
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Then the J-fraction of f is

f = J
[ ( 14 , 2, 2)

∗

( 12 ,
1
2 ,−2)∗

]

.

Proof. Since u and v are periodic of same type,

f =
1

1− 1
2x−

1
4x

2

1− 1
2x−

2x2

1 + 2x− 2x2f

.

QED.
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Fundamental relation

Hn

(

J
[

u0, u1, u2, · · ·
v0, v1, v2, · · ·

])

= un−1
0 un−2

1 · · ·u2
n−3un−2.
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J-Fraction of P2

Thue–Morse sequence

P2(x) =

∞
∏

k=0

(1− x2k) = J
[

u

v

]

u = −2, 1,−1,−1,−1, 1,−1, 1,−3, 1/3,−1/3,−3, 1,−1, 1, 1,−3,
1,−1,−1/3,−5/3, 1/5,−1/5, 15,−17,−1/17, 1/17,−17, 15,
1/15,−1/15,−15, 13,−3/13, 3/13, 13/3,−19/3, 3/19,−3/19, . . .

v = 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, . . .
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J-Fraction of S2

S2 = S2(x) =
1

x

∞
∑

n=0

x2n

1 + x2n
= J

[

u

v

]

u = −3,−1/9,−63,−1/441,−63,−1,−35,−1/11025,−35,−1,
− 63,−1/49,−63,−49/81,−1395/49,−1/216225,−1395/49,
− 49/81,−63,−1/49,−63,−1,−35,−1/1225,−35,−1,
− 63,−1/81,−63, . . .

v = −2, 7/3, 23/3,−167/21,−169/21, 7, 7,−629/105,−631/105,
7, 7,−57/7,−55/7, 65/9, 391/63,−17663/3255,−17677/3255,
391/63, 65/9,−55/7,−57/7, 7, 7,−211/35,−209/35, 7, 7,
− 73/9,−71/9, . . .
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Too bad

No closed-form expression for un, rational numbers.

We cannot prove anything about the Hankel determinants.
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Main idea

let p be a prime number and f a sequence. We want to prove
that Hn(f) 6= 0 (mod p).

• No closed-form for the coefficients in the J-fraction of f ;

• We try to find a “nice” sequence g such that

• (1) f ≡ g (mod p)

• (2) g has simple J-fraction

By (2) we know H(g).

By (1) we know Hn(f) ≡ Hn(g) (mod p)
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• No closed-form for the coefficients in the J-fraction of f ;

• We try to find a “nice” sequence g such that

• (1) f ≡ g (mod p)

• (2) g has simple J-fraction

By (2) we know H(g).

By (1) we know Hn(f) ≡ Hn(g) (mod p)

56



Main idea
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Main idea

let p be a prime number and f a sequence. We want to prove
that Hn(f) 6= 0 (mod p).

• No closed-form for the coefficients in the J-fraction of f ;

• We try to find a “nice” sequence g such that

• (1) f ≡ g (mod p)

• (2) g has simple J-fraction

By (2) we know H(g).

By (1) we know Hn(f) ≡ Hn(g) (mod p)
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Question

How to find a nice sequence g such that

g ≡ f

for which each coefficient in the J-fraction of g has a closed-
form expression?
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J-Fraction of S2

S2 = S2(x) =
1

x

∞
∑

n=0

x2n

1 + x2n
= J

[

u

v

]

u = −3,−1/9,−63,−1/441,−63,−1,−35,−1/11025,−35,−1,
− 63,−1/49,−63,−49/81,−1395/49,−1/216225,−1395/49,
− 49/81,−63,−1/49,−63,−1,−35,−1/1225,−35,−1, . . .

v = −2, 7/3, 23/3,−167/21,−169/21, 7, 7,−629/105,−631/105,
7, 7,−57/7,−55/7, 65/9, 391/63,−17663/3255,−17677/3255,
391/63, 65/9,−55/7,−57/7, 7, 7,−211/35,−209/35, 7, 7 . . .

Only one even number in u and v. Let

g = J
[

1, 1, 1, 1, 1, . . .
0, 1, 1, 1, 1, 1, . . .

]
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J-Fraction of S2

Let

g = J
[

1, 1, 1, 1, 1, . . .
0, 1, 1, 1, 1, 1, . . .

]

, f = J
[

1, 1, 1, 1, 1, . . .
1, 1, 1, 1, 1, 1, . . .

]

g =
1

1− x2f
, f =

1

1− x− x2f

f = −1− x−
√
1− 2x− 3x2

2x2

g =
1−

√

1−3x
1+x

2x
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Proof of Coons’s Theorem

Let

S2 =
1

x

∞
∑

n=0

x2n

1 + x2n

g =
1−

√

1−3x
1+x

2x

Since
H(g) = (1)∗

(?) g ≡ S2 (mod 2)

We have
H(S2) ≡ (1)∗ (mod 2).
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Crucial Fact

(a+ x)p ≡ ap + xp (mod p)

So that
f(xp) ≡ f(x)p (mod p)
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Proof of Coons’s Theorem

x2S2(x
2) =

∞
∑

n=1

x2n

1 + x2n
= xS2(x)−

x

1 + x
(mod 2)

xS2(x)
2 ≡ S2(x)−

1

1 + x
(mod 2)

We get

S2(x) ≡
1−

√

1−3x
1+x

2x
(mod 2).

QED.
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J-Fraction of P2

P2(x) =

∞
∏

k=0

(1− x2k) = J
[

u

v

]

u = −2, 1,−1,−1,−1, 1,−1, 1,−3, 1/3,−1/3,−3, 1,−1, 1, 1,−3,
1,−1,−1/3,−5/3, 1/5,−1/5, 15,−17,−1/17, 1/17,−17, 15, . . .

v = 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, . . .

Let

g = J
[

0, 1, 1, 1, 1, . . .
1, 1, 1, 1, 1, 1, . . .

]
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J-Fraction of P2

P2(x) =
∞
∏

k=0

(1− x2k) = J
[

u

v

]

Let

g = J
[

0, 1, 1, 1, 1, . . .
1, 1, 1, 1, 1, 1, . . .

]

We have

P2 ≡ g (mod 2), Hn(g) = 0, so that Hn(P2) ≡ 0 (mod 2).

But we want to prove Hn(P2)/2
n−1 ≡ 1 (mod 2) !
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J-Fraction of P2

P2(x) = J
[−2, 1,−1,−1,−1, 1,−1, 1,−3, 1

3 ,− 1
3 ,−3 · · ·

−1, (1,−1)∗
]

.

Delete −2 in u and −1 in v. Let

g = J
[

1,−1,−1,−1, 1,−1, 1,−3, 1
3 ,− 1

3 ,−3, 1,−1, 1, 1,−3, · · ·
(1,−1)∗

]

,

Then
Hn(P2) = (−2)n−1Hn−1(g)

It suffices to prove that Hn(g) ≡ 1 (mod 2).
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Proof of APWW’s Theorem

Define g by

P2 =
1

1 + x+ 2x2g
, g =

1

2x2
(
1

P2
− 1− x).

We have
Hn(P2) = (−2)n−1Hn−1(g)

(?)
1

P2
≡

√

(1− x)(1 + 3x) (mod 4),

g ≡ 1

2x2

(

1 + x−
√

(1− x)(1 + 3x)
)

(mod 2).

g = J
[

(1)∗

(−1)∗
]

,

so that Hn(g) ≡ 1 (mod 2). Hence, Hn(P2) 6= 0.
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Crucial Lemma

Lemma:
√
1− 4x ≡ 1 + 2

∞
∑

k=0

x2k (mod 4).
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Proof of APWW’s Theorem

Let

f =

√

1

(1− x)(1 + 3x)

Then

(1−x)f(x) =
√

1− 4x

1 + 3x
≡ 1+2

∞
∑

k=0

( x

1 + 3x

)2k

(mod 4)

(1− x)f(x) ≡ 1 + 2

∞
∑

k=0

( x

1 + x

)2k

(mod 4)

and

(1− x2)f(x2) ≡ (1− x)f(x)− 2x

1 + x
(mod 4).
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Proof of APWW’s Theorem

On the other hand,

(1− x)P2(x
2) = P2(x),

P2(x) =
1

1 + x
(mod 2),

(1− x2)P2(x
2) = (1 + x)(1− x)P2(x

2) = (1 + x)P2(x).

(1− x2)P2(x
2) ≡ (1− x)P2(x) +

2x

1 + x
(mod 4).

Hence,
f ≡ P2 (mod 4).

QED
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New results

Theorem. Let

P3 = P3(x) =
∏

k≥0

(1− x3k).

Then Hn(P3) ≡ (−1)n−1 (mod 3)
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New results

Proof. We successively have

P3(x) = (1− x)P3(x
3) ≡ (1− x)P3(x)

3 (mod 3),

P3(x)
2 ≡ 1

1− x
(mod 3),

P3(x) ≡
√

1

1− x
(mod 3).

√

1

1− x
= J

[

1/8, (1/16)∗

(1/2)∗

]

≡ J
[−1, (1)∗

(−1)∗
]

(mod 3)

QED
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New results

Theorem.

(3.6) f = f(x) =
∏

k≥0

(1− x3k − x2·3k).

Then Hn(f) 6= 0.
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New results

Proof. We successively have

f = f(x) =
∏

k≥0

(1− x3k − x2·3k) = (1− x− x2)f(x3);

f ≡
√

1

1− x− x2
(mod 3).

√

1

1− x− x2
= J

[

5/8, (5/16)∗

(1/2)∗

]

≡ J
[

1, (−1)∗
(−1)∗

]

(mod 3).

So that
H(f) ≡ (1, (1, 1, 2, 2)∗) (mod 3).

QED
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Automatic proof 2 (H. 2015)

Results from automatic proof 2.

Theorem. For each pair of positive intergers a, b, let

Ga,b(x) =
1

x2a

∞
∑

n=0

x2n+a

1− x2n+b
.

Then H(Ga,b) is periodic modulo 2.

76



New results (H, 2015)

The following relations are calculated and proved by a com-

puter program automatically.

H(G0,0) ≡ (1)∗ (mod 2);

Michael Coons, 2013

H(G0,1) ≡ 1, 1, (0)∗ (mod 2);

H(G1,0) ≡ (1)∗ (mod 2);

H(G0,2) ≡ (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)∗ (mod 2);

Guo, Wu, Wen, 2013

H(G1,1) ≡ (1, 1, 0, 0, 1, 1)∗ (mod 2);

H(G2,0) ≡ (1, 1, 0, 0)∗ (mod 2);
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New results (H, 2015)

H(G0,3) ≡
(

1502110613021202120411041102110211

041104120212021306110214
)∗

(mod 2);

[period is 74]

H(G1,2) ≡ 1, 1, 1, (0)∗ (mod 2);

H(G2,1) ≡ (1, 1, 1, 1, 1, 1, 0, 0)∗ (mod 2);

H(G3,0) ≡ (1, 1, 0, 0, 0, 0, 0, 0)∗ (mod 2);
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New results (H, 2015)

H(G0,4) ≡ (19021102 · · · 110218)∗ [period is 1078];
Oh là là

H(G1,3) ≡ (1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1)∗ (mod 2);

H(G2,2) ≡ (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)∗ (mod 2);

H(G3,1) ≡ (1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)∗ (mod 2);

H(G4,0) ≡ (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∗ (mod 2).

79



Real number and continued fraction

Real numbers ←→ Continued fractions
√
2 1 +

1

2 +
1

2 +
1

2 +
1

2 +
. . .
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Real number and continued fraction

Real numbers ←→ Continued fractions
√
2 1 +

1

2 +
1

2 +
1

2 +
1

2 +
. . .

Quadratic numbers ←→ Periodic continued fractions

(Euler, Lagrange, Galois)
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Similar result for J-fraction ?

Real numbers ←→ Continued fractions
√
2 1 +

1

2 +
1

2 +
1

2 +
1

2 +
. . .

Quadratic numbers ←→ Periodic continued fractions

Formal power series ←− Jacobi continued fractions
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Similar result for J-fraction ?

Real numbers ←→ Continued fractions

Quadratic numbers ←→ Periodic continued fractions

Formal power series ←− Jacobi continued fractions

Remark: The −→ in the third relation is missing.

Condition: The Jacobi continued fraction of a power series
F (x) exists if and only if all the Hankel determinants of F (x)
are nonzero.
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Hankel Continued fraction

A Hankel continued fraction (H-fraction) is a continued fraction
of the following form

F (x) =
v0x

k0

1 + u1(x)x−
v1x

k0+k1+2

1 + u2(x)x−
v2x

k1+k2+2

1 + u3(x)x−
. . .

where
• vj 6= 0 are contants,
• kj are nonnegative integers
• uj(x) are polynomials of degree less than or equal to kj−1.
By convention, 0 is of degree −1.
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Hankel Continued fraction

P -Fractions : Arne Magnus (1962)

P -Paths: Emmanuel Roblet (1994), PhD thesis
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Fundamental Theorem

(i) Each H-fraction defines a power series, and conversely, for
each power series F (x), theH-fraction expansion of F (x) exists
and is unique.

power series ←→ H-fraction
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Fundamental Theorem

(i) Each H-fraction defines a power series, and conversely, for
each power series F (x), theH-fraction expansion of F (x) exists
and is unique.

power series ←→ H-fraction

(ii) All non-vanishing Hankel determinants of F (x) are given by

Hsj (F (x)) = (−1)ǫvsj0 v
sj−s1
1 v

sj−s2
2 · · · vsj−sj−1

j−1 ,

where ǫ =
∑j−1

i=0 ki(ki + 1)/2 and sj = k0+k1+ · · ·+kj−1+j
for every j ≥ 0.
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Example
Let

f(x) =
1−

√

1− 4x4

1+x

2x4
∈ Q[[x]].

Then

f(x) =
1

1 + x− x4

1− x4

1 + x− x4

1− x4

1 + x− x4

. . .

.

Hence
H(f) = (1, 1, 0, 0,−1,−1, 0, 0)∗.
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Theorem (H., 2014)

Let p be a prime number and F (x) ∈ Fp[[x]] be a power series
satisfying the following quadratic equation

A(x) +B(x)F (x) + C(x)F (x)2 = 0,

where A(x), B(x), C(x) ∈ Fp[x] are three polynomials. Then,
the Hankel continued fraction expansion of F (x) exists and
is ultimately periodic. Also, the Hankel determinant sequence
H(F ) is ultimately periodic.

Power series analog of Euler-Lagrange Theorem for real num-
bers.
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Algorithm NextABC

Prototype: (A∗, B∗, C∗; k,Ak, D) = NextABC(A,B,C)

Input: A(x), B(x), C(x) ∈ F[x] three polynomials such that
B(0) = 1, C(0) = 0, C(x) 6= 0, A(x) 6= 0;

Output: A∗(x), B∗(x), C∗(x) ∈ F[x], k ∈ N
+, Ak 6= 0 ∈ F,

D(x) ∈ F[x] a polynomial of degree less than or equal to k+1
such that D(0) = 1.
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Lemma

If F (x) is the power series defined by

A(x) +B(x)F (x) + C(x)F (x)2 = 0,

Then, F (x) can be written as

F (x) =
−Akx

k

D(x)− xk+2G(x)

where G(x) is a power series satisfying

A∗(x) +B∗(x)G(x) + C∗(x)G(x)2 = 0.

./..
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Lemma (continued)

Furthermore, A∗(x), B∗(x), C∗(x) are three polynomials in F[x]
such that B∗(0) = 1, C∗(0) = 0, C∗(x) 6= 0 and

deg(A∗) ≤ d; deg(B∗) ≤ d+ 1; deg(C∗) ≤ d+ 2,

where

d = d(A,B,C) = max(deg(A), deg(B)− 1, deg(C)− 2).
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Notation

v0
u1 +

v1
u2 +

v2
u3 +

v3
u4 +

· · · = v0

u1 +
v1

u2 +
v2

u3 +
v3

u4 +
. . .

.
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Example 1
Let p = 5 and

F =
1−

√

1− 4x
1−x4

2x
∈ F 5[[x]]

or
−1 + (1− x4)F + (−x+ x5)F 2 = 0.

A := −1; B := 1− x4; C := −x+ x5;

B(0) = 1, C(0) = 0, C(x) 6= 0
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By Algorithm HFrac, F has the following H-fraction expansion

1

1 + 4x +

( 4x2

1 + 3x +

3x2

1 + x +

4x3

1 + 3x+ 2x2

+

4x3

1 + x +

3x2

1 + 3x +

4x2

1 + 3x +

4x2

1 + 3x +

)∗

.

H(g) = (1, 1, 1, 2, 0, 2, 4, 1, 4, 1, 4, 2, 0, 2, 1, 1)∗.
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Example 2

Same F as Example 1, but with p = 2

F =
1−

√

1− 4x
1−x4

2x
∈ F 2[[x]]

F =
1

1 + x +

(x2

1 +

x4

1 +

x6

1 +

x4

1 +

x2

1 +

x2

1 +

)∗

.

H(F ) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)∗.
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Theorem [H, 2014].

For each pair of positive intergers a, b, let

Ga,b(x) =
1

x2a

∞
∑

n=0

x2n+a

1− x2n+b
.

Then H(Ga,b) (mod 2) is periodic.
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Proof

Let f(x) = Ga,b(x) ∈ F2[[x]]. Then

x2af(x) =

∞
∑

n=0

x2n+a

1− x2n+b
;

x2a+1

f(x2) =

∞
∑

n=1

x2n+a

1− x2n+b
;

x2af(x2) = f(x)− 1

1− x2b
;

1 + (1 + x2b)f(x) + x(1 + x2b)x2a−1f(x)2 = 0.

By the Main Theorem, the Hankel determinant sequence H(f)
is ultimately periodic.
QED.
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Stern sequence (1858)

(an)n=0,1,... is defined by a0 = 0, a1 = 1 and for n ≥ 1

a2n = an, a2n+1 = an + an+1.

The generating function for Stern’s sequence is denoted by

S(x) =

∞
∑

n=0

an+1x
n
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Stern sequence (1858)

(an)n=0,1,... is defined by a0 = 0, a1 = 1 and for n ≥ 1

a2n = an, a2n+1 = an + an+1.

The generating function for Stern’s sequence is denoted by

S(x) =

∞
∑

n=0

an+1x
n

Theorem

Hn(S)/2
n−2 ≡ (0, 0, 1, 1)∗ (mod 2).
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Proof
Define G(x) by

S(x) =
1

1− x− x2

1 + 2x+ 2x2G(x)

.

The power series G(x) satisfies the following relation

(1 + x+ x2) + (1 + x+ x2)G(x) + x4G(x2) ≡ 0 (mod 2).

By Algorithm HFrac, we get H(G) ≡ (1, 1, 0, 0)∗ (mod 2).
Hence

Hn(S)/2
n−2 ≡ (0, 0, 1, 1)∗ (mod 2).

QED
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Irrationality exponents

Theorem (Bugeaud, H., Wen, Yao; 2016)

Let f(z) ∈ Z[[z]] be the power series defined by

f(z) =
∏

n≥0

(

1 + uz2
n

+ 2z2
n+1 C(z2

n

)

D(z2n)

)

,

where u ∈ Z, and C(z), D(z) ∈ Z[z] with D(0) = 1.
Let b ≥ 2 be an integer such that D

(

1
b2m

)

f
(

1
b2m

)

6= 0 for all
integers m ≥ 0. If f(z) (mod 4) is not a rational function, then
f(1/b) is transcendental and its irrationality exponent is equal
to 2.
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For all integers α, β ≥ 0, define

Fα,β(z) =
1

z2α

∞
∑

n=0

z2
n+α

1 + z2n+β
, Gα,β(z) =

1

z2α

∞
∑

n=0

z2
n+α

1− z2n+β

Theorem (Bugeaud, H., Wen, Yao; 2016)

Let α, β ≥ 0 be integers such that β 6= α+ 1. Let b ≥ 2 be an
integer. Then both Fα,β(1/b) and Gα,β(1/b) are transcenden-
tal, and their irrationality exponent are equal to 2.

Special cases:

α = 0 and β = 0: Coons (2013)

α = 0 and β = 2: Guo, Wu, Wen (2014)
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Recall that Stern’s sequence (an)n≥0 and its twisted version
(bn)n≥0 are defined, respectively, by

{

a0 = 0, a1 = 1,
a2n = an, a2n+1 = an + an+1, (n ≥ 1),

and

{

b0 = 0, b1 = 1,
b2n = −bn, b2n+1 = −(bn + bn+1), (n ≥ 1).

Put S(z) =
∞
∑

n=0
an+1z

n and T (z) =
∞
∑

n=0
bn+1z

n.
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Theorem (Bundschuh and Väänänen; 2013)

µ(S(1/b)) ≤ 2.929

and
µ(T (1/b)) ≤ 3.555

for all integers b ≥ 2.

Theorem (Bugeaud, H., Wen, Yao; 2016)

For all integers b ≥ 2, both S(1/b) and T (1/b) are transcen-
dental and their irrationality exponents are equal to 2.
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Theorem (Bugeaud, H., Wen, Yao; 2016)

Let f(z) ∈ Z[[z]] be a power series defined by

f(z) =
∞
∏

n=0

C(z3
n

)

D(z3n)
,

with D(z), C(z) ∈ Z[z] such that C(0) = D(0) = 1. Let b ≥ 2
be an integer such that C( 1

b3m
)D( 1

b3m
) 6= 0 for all integers

m ≥ 0. If f(z) (mod 3) is not a rational function, then f(1/b)
is transcendental and its irrationality exponent is equal to 2.
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Theorem (Bugeaud, H., Wen, Yao; 2016)

Let
F5(z) := (1− z − z2 − z3 + z4)F5(z

5).

For all integers b ≥ 2, all the F5(1/b) are transcendental and
their irrationality exponents are equal to 2.
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Conjectures
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Conjecture. Let

f(x) := Φ(1− x− x2 − x3 + x4 − x5 + x6 − x7 − x8 + x9

+ x10 − x11 − x12 − x13 − x14 − x15 + x16 − x17 − x18)

Then,
Hn(f)/2

n−1 ≡ 1 (mod 2).
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P1 = 3
∞
∏

n=1

(1− x3n)− 2

1− x
.

Proposition. Hk(P1) 6= 0 for all k.

C2 = 3

∞
∏

n=1

(1 + x3n)− 2

1− x
.

Conjecture. Hk(C2) 6= 0 for all k.
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P3 =
1

x

∞
∑

n=0

x2n

1− x2n
.

Proposition. Hk(P3) 6= 0 for all k.

C4 = 1 +

∞
∑

n=0

x2n

1− x2n
.

Conjecture. Hk(C4) 6= 0 for all k.
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F5 =
1

x

∞
∑

n=0

x2n

1− x2n+2

Proposition. H(F5) (mod 2) is periodic.

Conjecture. H(F5) (mod p) is not periodic for prime in-

teger p ≥ 3.
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P7 =
∏

n≥0

(1− x5n − x2·5n − x3·5n + x4·5n)

Proposition. Hk(P7) 6= 0 for all k.

C8 =
∏

n≥0

(1− x6n − x2·6n − x3·6n + x4·6n − x5·6n)

Conjecture. Hk(C8) 6= 0 for all k.
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C9 =
∏

n≥0

(1− xn)3 =
∞
∑

n=0

(−1)n(2n+ 1)xn(n+1)/2.

Conjecture. Hk(C9) 6= 0 for all k.

C10 =

∞
∑

n=0

(−1)nxn(n+1)/2.

Conjecture. Hk(C10) 6= 0 for all k.
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Thank you all for your attention!
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