Compacted Binary Trees

Asymptotic Enumeration of Compacted Binary Trees with

Height Restrictions
INRIA 12/2017

Michael Wallner

joint work with Antoine Genitrini, Bernhard Gittenberger and Manuel Kauers

Laboratoire d’Informatique de Paris Nord, Université Paris Nord, France

December 11t", 2017

Based on the paper:
Asymptotic Enumeration of Compacted Binary Trees,
submitted to a journal.
ArXiv:1703.10031

Michael Wallner LIPN 11.12.2017

https://arxiv.org/abs/1703.10031

Compacted Binary Trees = Creating a compacted tree

Creating a compacted tree

Michael Wallner LIPN 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0)), (2,(x,1,1))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0)), (2,(x,1,1))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0)), (2,(x,1,1)), (3,(y,0,0))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0)), (2,(x,1,1)), (3,(y,0,0))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0)), (2,(x,1,1)), (3,(y,0,0))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0)), (2,(x,1,1)), (3,(y,0,0))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)). (4,(x,3,3))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)). (4,(x,3,3))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

(1,(x,0,0), (2,(x,1,1)), (3,(y,0,0)), (4,(x,3,3)). (5,(2,4))

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Ex,O,O)), (2,0 11), (3,(y,0,0)), (4(x,3,3)). (5,(=2,4)),

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

Ex,O,O)), (2,0 11), (3,(y,0,0)), (4(x,3,3)). (5,(=2,4)),

Michael Wallner LIPN ~ 11.12.2017

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

))))' (3’ ()/7070))v (4,(><,3,3)), (5’(_’2a4))v

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

))))' (3’ ()/7070))v (4,(><,3,3)), (5’(_’2a4))v

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

))))' (3’ ()/7070))v (4,(><,3,3)), (5’(_’2a4))v

Definition

Compacted tree is the DAG computed by this procedure.

Michael Wallner LIPN 11.12.2017

Compacted trees

m Applications: XML-Compression, Compilers, LISP, Data storage, etc.

Michael Wallner LIPN ~ 11.12.2017

Compacted trees

m Applications: XML-Compression, Compilers, LISP, Data storage, etc.
m Restrict to unlabeled binary tree

Michael Wallner LIPN ~ 11.12.2017

Compacted trees

m Applications: XML-Compression, Compilers, LISP, Data storage, etc.
m Restrict to unlabeled binary tree
m Important property: Subtrees are unique

Michael Wallner LIPN ~ 11.12.2017

Compacted trees

Applications: XML-Compression, Compilers, LISP, Data storage, etc.
Restrict to unlabeled binary tree
Important property: Subtrees are unique
Efficient algorithm to compute compacted tree
m Bijection
m Traverse tree post-order

m If subtree appears twice, delete second one and replace by pointer
— directed acyclic graph (DAG)

Michael Wallner LIPN ~ 11.12.2017

Compacted trees

Applications: XML-Compression, Compilers, LISP, Data storage, etc.
Restrict to unlabeled binary tree
Important property: Subtrees are unique
Efficient algorithm to compute compacted tree
m Bijection
m Traverse tree post-order

m If subtree appears twice, delete second one and replace by pointer
— directed acyclic graph (DAG)

Analyzed by Flajolet, Sipala, Steyaert: A tree of size n has a compacted form

of expected size that is asymptotically equal to
n

C
Viegn’

where C is explicit related to the type of trees and the statistical model.

Michael Wallner LIPN ~ 11.12.2017

Compacted trees

Applications: XML-Compression, Compilers, LISP, Data storage, etc.
Restrict to unlabeled binary tree
Important property: Subtrees are unique
Efficient algorithm to compute compacted tree
m Bijection
m Traverse tree post-order

m If subtree appears twice, delete second one and replace by pointer
— directed acyclic graph (DAG)

Analyzed by Flajolet, Sipala, Steyaert: A tree of size n has a compacted form

of expected size that is asymptotically equal to
n

C
Viegn’

where C is explicit related to the type of trees and the statistical model.

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner LIPN 11.12.2017

Goals of this talk

Goals

Understand compacted trees

Michael Wallner LIPN 11.12.2017

Goals of this talk

Goals
Understand compacted trees
Find a recurrence relation for compacted trees

Michael Wallner LIPN 11.12.2017

Goals of this talk

Goals
Understand compacted trees
Find a recurrence relation for compacted trees

Use exponential generating functions to count DAGs

Michael Wallner LIPN 11.12.2017

Goals of this talk

Goals
Understand compacted trees
Find a recurrence relation for compacted trees
Use exponential generating functions to count DAGs
Solve the (simplified) problem(s)

Michael Wallner LIPN 11.12.2017

Goals of this talk

Goals

Understand compacted trees

=

Find a recurrence relation for compacted trees
Use exponential generating functions to count DAGs
Solve the (simplified) problem(s)

Methods
Recurrence relations Differential equations
Bijections @ Singularity analysis
Generating functions Chebyshev polynomials
Symbolic method B Guess and prove

Michael Wallner LIPN ~ 11.12.2017

Compacted trees

m Size of a compacted tree: number of internal nodes

Michael Wallner LIPN = 11.12.2017

Compacted trees

m Size of a compacted tree: number of internal nodes
m Number of compacted trees of size n: ¢,

Michael Wallner LIPN = 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Compacted trees

m Size of a compacted tree: number of internal nodes
m Number of compacted trees of size n: ¢,

M. Li:

Figure: All compacted binary trees of size n =0,1, 2.

Michael Wallner LIPN = 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Compacted trees

m Size of a compacted tree: number of internal nodes
m Number of compacted trees of size n: ¢,

8 & A

Figure: All compacted binary trees of size n = 0,1, 2.

'Example (Compacted binary trees)

size || n=0|n=1|n=2|n=3|n=4|n=5| n==06
Cn 1 1 3 15 111 1119 | 14487

1 2n
n<c, < - n!
- n+1\n

Hence, ¢, = O(n!4"n=1/?).

Michael Wallner LIPN 11.12.2017

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

Michael Wallner LIPN ~ 11.12.2017

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

m Attention: Pointers are not allowed to violate uniqueness

Michael Wallner LIPN ~ 11.12.2017

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

m Attention: Pointers are not allowed to violate uniqueness
m Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Michael Wallner LIPN ~ 11.12.2017

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

m Attention: Pointers are not allowed to violate uniqueness
m Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Procedure

Take a binary tree of size n

Michael Wallner LIPN 11.12.2017 7/43

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

m Attention: Pointers are not allowed to violate uniqueness
m Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Procedure
Take a binary tree of size n

Add leaf as left child on first free spot in postorder traversal

Michael Wallner LIPN 11.12.2017

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

m Attention: Pointers are not allowed to violate uniqueness
m Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Procedure
Take a binary tree of size n
Add leaf as left child on first free spot in postorder traversal

Add pointers such that out-degree of all internal nodes is 2

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

m Attention: Pointers are not allowed to violate uniqueness
m Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Procedure
Take a binary tree of size n
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree Invalid compacted tree

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Creating a compacted tree

Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in postorder traversal
Add pointers such that out-degree of all internal nodes is 2
Connect pointers to leaf or internal nodes NOT violating uniqueness

Valid compacted tree Invalid compacted tree

This spine is associated to 3 valid compacted trees.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

> 6

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

Michael Wallner LIPN ~ 11.12.2017

A bigger example

We take a binary tree of size 8.

1 3,) 4 31
13
>

In total, this spine corresponds to 1-3-4-13-31 = 4836 compacted trees.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = A recurrence relation

A recurrence relation

Michael Wallner LIPN 11.12.2017

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Ynt+l,p = E Yi,pYn—ip+is for n>1,
i=0

Michael Wallner LIPN ~ 11.12.2017 11 /43

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Ynt+l,p = E Yi,pYn—ip+is for n>1,
i=0

Y0,p :P+1,

Michael Wallner LIPN ~ 11.12.2017 11 /43

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+1,p = E Yi,pYn—i,p+is forn>1,
i=0

70,p2p+1)
Mp=p+p+L

Michael Wallner LIPN ~ 11.12.2017 11 /43

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

Michael Wallner LIPN ~ 11.12.2017 11 /43

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

Michael Wallner LIPN 11.12.2017 11 /43

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

m Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Michael Wallner LIPN 11.12.2017

A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

m Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

m Summands possess 3 (!) dependencies on i

Michael Wallner LIPN ~ 11.12.2017

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. ¢, < rp.

Michael Wallner LIPN 11.12.2017

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. ¢, < rp.

Michael Wallner LIPN 11.12.2017

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. ¢, < rp.

4 4

In total, this spine corresponds to 1-3 -4 -42 .62 = 6912 relaxed trees.
(Recall, that the same spine corresponds to 4836 compacted trees.)

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = A recurrence relation

Relaxed compacted binary trees of size 3

€ Q /CJ
s of il
v <“<?JJ (1@ o7
v =2 e 054

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = A recurrence relation

Relaxed compacted binary trees of size 3

The relaxed tree of size 3 which is not a compacted tree

/Q By
5553 — AR L@

compacted tree binary tree relaxed tree

Reason: subtrees not unique

Michael Wallner

o)
o /4 X

LIPN 11.12.2017

A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Zéi,p5nfi,p+i7 for n >0,
i=0
507P:p+1a 51 =32 1

We are interested in r, = 6, 0.

Michael Wallner LIPN ~ 11.12.2017 14 / 43

A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Zéi,panfi,p+i7 for n >0,
i=0
507P:p+1a 51 =32 1

We are interested in r, = 6, 0.

Recursion still too complicated.

Michael Wallner LIPN ~ 11.12.2017 14 / 43

A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Z5i,p5n—;,p+;, for n >0,
i=0
507P:p+1a 51 =p2 1.

We are interested in r, = 6, 0.

Recursion still too complicated.

'Example (Relaxed binary trees)

size||n=0|n=1|n=2|n=3|n=4|n=5|n=6
Cn 1 1 3 15 111 1119 | 14487
rn 1 1 3 16 127 1363 | 18628

Michael Wallner LIPN ~ 11.12.2017 14 / 43

Compacted Binary Trees = Operations on trees

Operations on trees

Michael Wallner LIPN 11.12.2017

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Michael Wallner LIPN 11.12.2017

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height
The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Example

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height
The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Example

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.

Michael Wallner LIPN ~ 11.12.2017

Relaxed trees of right height < k

Figure: Right height < 0.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Operations on trees

Relaxed trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Operations on trees

Relaxed trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

=i e

Figure: Right height < 2.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Operations on trees

Relaxed trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

=i e

Figure: Right height < 2.

53T 538 538 oY

Figure: Right height < 3.

Michael Wallner LIPN 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)

Michael Wallner LIPN ~ 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)

m Upper bound guarantees positive radius of convergence

Michael Wallner LIPN ~ 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Michael Wallner LIPN ~ 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 t,Z; be an EGF of the class 7.

Michael Wallner LIPN ~ 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 tnZ; be an EGF of the class 7.

T(z) — 2zT(2)

Append a new node with a pointer to the class 7. I>_’

Michael Wallner LIPN =~ 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 tnZ; be an EGF of the class 7.

T(z) — zT(2)
Append a new node with a pointer to the class 7. I>_’

Proof:

]

KI[zKzT(z) = Kk - te_y

Michael Wallner LIPN ~ 11.12.2017

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 t,Z; be an EGF of the class 7.

T(z) — zT(2)
Append a new node with a pointer to the class 7. I>_’

Proof:

]

k[z¥]zT (2) = Koo b

k pt_)ssible k—1 internal
pointers nodes

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Construction of Ry(z)

Let Ro(z) =3 50 r07,,f,—: be the EGF of relaxed binary trees with bounded

left-height < 0.

Michael Wallner LIPN ~ 11.12.2017

Construction of Ry(z)

Let Ro(z) =D ,50 r07,,f,—: be the EGF of relaxed binary trees with bounded
left-height < 0.

Ro = D} @] {O} X Ro
~—~ —_———

Tree of size 0 append new root

and new pointer

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Construction of Ry(z)

Let Ro(z) =3 50 r07,,f,—: be the EGF of relaxed binary trees with bounded

left-height < 0.

Ro = D} @] {O} X Ro
~—~ —_———

Tree of size 0 append new root

and new pointer

Michael Wallner LIPN 11.12.2017

Construction of Ry(z)

Let Ro(z) =D ,50 r07,,f,—: be the EGF of relaxed binary trees with bounded
left-height < 0.

1 2 3 n-3 n2 n-l n

Ro = D} @] {O} X Ro
~—~ —_———

Tree of size 0 append new root

and new pointer

Ro(z) = L = Zn!z—

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Operations on trees

Further constructions

S:T(z)— iT(z)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.

Y d
D:T(z)— $T(2)
Delete top node but preserve its pointers. : 5

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.
Y d

D:T(z)— $T(2)

Delete top node but preserve its pointers. : 5

I:T(z)— [T(2)
Add top node without pointers. |>.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Operations on trees

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S :I> U I>—9 U I>_9_9 U ...
sequence at the root.

Y d
D:T(z)— $T(2)
Delete top node but preserve its pointers. : 5

I:T(z)— [T(2)
Add top node without pointers. |>_.

P:T(z)~ z% T(2)
Add a new pointer to the top node. : :g

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Relaxed binary trees

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ri(z)

Let Ri(z) =D /50 rl,ni_? be the EGF of relaxed binary trees with bounded
left-height < 1.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ri(z)

Let Ri(z) =D /50 rl,ni_? be the EGF of relaxed binary trees with bounded
left-height < 1.

Decomposition of R;(z)

Ri(z) = Riu(2)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees,
i.e. ¢ left-edges from level 0 to level 1.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ri(z)

Let Ri(z) =D /50 rl,ni_? be the EGF of relaxed binary trees with bounded
left-height < 1.

' Decomposition of R;(z)

Ri(z) = Riu(2)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees,
i.e. ¢ left-edges from level 0 to level 1.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Relaxed binary trees

Construction of Ry 1(

27237 77

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence D_97

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence
2 decompose

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence

2 decompose . D—S}— —S)—S):Q_S)_ _9_’

3 append and add pointer

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence

2 decompose O 9O 00

3 append and add pointer
4 add initial sequence

Rl,l(Z)

Rlﬁl(z):\S/o I o SoP (zRio(z))

init. Ivl 0 red pointer ., empt:
seq. node and seq. Y

Ru(e) = [7 (o) oz

1—~z

Michael Wallner LIPN =~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ry (z)

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ry (z)

AP SR T S S

Observation >0-0 +-0-0)
Same structure as for Ry 1(z) D000

1 1
Rue(2) = 17— / - zz(le,g,l(z))’ dz, >1,

R170(Z) = Ro(Z) =

Michael Wallner LIPN =~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Construction of Ry (z)

AP SR T S S

Observation w 0-0---0-0

Same structure as for Ry 1(z) D000
Rule) = 1 [52 (@R (21
1,@2—1_2 1_2221,6712 Z, =z 4

1
R :R =
10(2) = Ro(2) = 7—

Recall that Ri(z) = >~ ,~o R1,¢(z). Summing the previous equation (formally) for
£ > 1 gives B

1-2z7 1
T -

Ri(z) — ((1 — 2)Ri0(2))" = 0.

Michael Wallner LIPN =~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Closed form of Ry(z)

1-27 1
T Ri(2) = T Ri(2) = (1 - 2)Rio(2) = 0.
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Relaxed binary trees

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Therefore we get

= nl[z"|Ri(z) = ;(2:) = (2n — 1)L,

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Therefore we get
1 /2
= nl[z"|Ri(z) = ;i (n”) = (2n — 1)L,

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees

Bounded left-height < 2: Ry(z)

T U e

Symbolic construction

(1-3z+42°) RY(z) + (2z — 3) Ry(2) = 0,
R:(0) =1, R3(0) =1,
then we get the closed form

1

Ro(2) = 1= =%

and the coefficients

))

Michael Wallner LIPN 11.12.2017

Bounded left-height < 3: Rs(z)

e

.9,
@,

9

D0

Symbolic construction
(1 —4z + 322) Ry'(z) + (92 — 6) RY(z) + 2R}(z) = 0,

R3(0) =1, Ré(o) =1, Rél(O) =

N W

)

then we get the closed form

Rs(z) = <32—2+\/§\/1—4z+3z2>

Sk

b

V3-=2

and the asymptotics of the coefficients

ryn = nl[2"Rs(2) = YT "\!/g)l/\/g n;;"ﬁ (1 +0 (i)) .

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

2

d d
(2> -3z + 1)@:‘?2(2) + (2z — 3)ER2(Z) =0

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

(2 —3z-|-1):2R()+(22—3)%R2(z)20

3

d d? d
(322 —4z+1)d sRa(z)+(92_6)ER3(Z)+2$R3(2)_0

Michael Wallner LIPN ~ 11.12.2017

Properties of L,

Theorem
Let ¢ ; € C[z] be such that
Li = bk (2) DX + i k—1(2) DX H + .+ U o(2).

Michael Wallner LIPN =~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Properties of L,

Theorem
Let ¢ ; € C[z] be such that

L, = fkyk(Z)Dk + £k7k_1(Z)Dk_1 + ...+ fk,o(Z).
Then we have

lio(z) =0,
Ui 1(2) = lr—1,0(2) — 20k—2,0(2),
Ui(z) = lr—1,i-1(2) = (I + D)lk—2,i-1(2) — zli—2,i—2(2), 2<i<k-—1,
Ui k(2) = Li—1,k-1(2) — 2lk—2,k—2(2).
The initial polynomials are £y o(z) =1 — z, {10(z) = —1, and 41 1(z) =1 — 2z.

Michael Wallner LIPN =~ 11.12.2017

Properties of L,

Theorem
Let ¢ ; € C[z] be such that
L = by k(2) DX 4 Ly s 1(2)DF 2 4 4 lio(2).
Then we have
lro(z) =0,
Ui 1(2) = lr—1,0(2) — 20k—2,0(2),
Ui(z) = lr—1,i-1(2) = (I + D)lk—2,i-1(2) — zli—2,i—2(2), 2<i<k-—1,
Ui k(2) = Li—1,k-1(2) — 2lk—2,k—2(2).

The initial polynomials are £y o(z) =1 — z, {10(z) = —1, and 41 1(z) =1 — 2z.
Furthermore, we have

@) = 3 (- <k M ,27 - ”) 2",

n=0

Michael Wallner LIPN =~ 11.12.2017

Properties of L,

Theorem
Let ¢ ; € C[z] be such that
L = by k(2) DX 4 Ly s 1(2)DF 2 4 4 lio(2).
Then we have
lro(z) =0,
Ui 1(2) = lr—1,0(2) — 20k—2,0(2),
Ui(z) = lr—1,i-1(2) = (I + D)lk—2,i-1(2) — zli—2,i—2(2), 2<i<k-—1,
Ui k(2) = Li—1,k-1(2) — 2lk—2,k—2(2).

The initial polynomials are £y o(z) =1 — z, {10(z) = —1, and 41 1(z) =1 — 2z.
Furthermore, we have

L42]
k+2—n
/ = -1)" ",
)= Y ()
n=0
Proof. Guess and Prove! O

Michael Wallner LIPN =~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

A special class of ODEs

Consider an ordinary generating function of the kind
9"Y(2) +a1(2)0'Y(2) + -+ a(2)Y(2) = 0, (1)

where the a; = a;(z) are meromorphic in a simply connected domain Q. Let w¢(f)
be the order of the pole of f at (.

Michael Wallner LIPN 11.12.2017

A special class of ODEs

Consider an ordinary generating function of the kind
9"Y(2) +a1(2)0'Y(2) + -+ a(2)Y(2) = 0, (1)

where the a; = a;(z) are meromorphic in a simply connected domain Q. Let w¢(f)
be the order of the pole of f at (.

Definition (Regular singularity)
The differential equation (1) is said to have a singularity at ¢ if at least one of
the we(f) is positive. The point ¢ is said to be a regular singularity if
wc(al) <].7 U.}C(ag) < 2, ey wC(a,) < r,
and an irregular singularity otherwise.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

A special class of ODEs

Consider an ordinary generating function of the kind
9"Y(2) +a1(2)0'Y(2) + -+ a(2)Y(2) = 0, (1)

where the a; = a;(z) are meromorphic in a simply connected domain Q. Let w¢(f)
be the order of the pole of f at (.

Definition (Regular singularity)
The differential equation (1) is said to have a singularity at ¢ if at least one of
the we(f) is positive. The point ¢ is said to be a regular singularity if
wC(al) <].7 U.}C(ag) < 2, ey wc(a,) < r,
and an irregular singularity otherwise.

Relaxed trees

eka(Z)ﬁkRk(Z) + €k7k_1(2)6k71Rk(Z) + ...+ €k70(Z)Rk(Z) =0

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

A special class of ODEs

Consider an ordinary generating function of the kind
'Y (2) + a1(2)0" Y (2) + -+ a(2)Y(z) =0, (1)

where the a; = a;(z) are meromorphic in a simply connected domain . Let w¢(f)
be the order of the pole of f at (.

Definition (Regular singularity)

The differential equation (1) is said to have a singularity at (if at least one of
the we(f) is positive. The point ¢ is said to be a regular singularity if

wC(al) <].7 wc(ag) < 2, AN wC(a,) < r,
and an irregular singularity otherwise.
Relaxed trees
Ly k— 14
0*Ri(z) + Lkt grip oy ¢ Lhol)

Ek,k(z)

Michael Wallner LIPN 11.12.2017

The indicial polynomial

Structure of the ODE:
'Y (2) + a1(2)0 Y (2) +---+ a(2)Y(z) = 0.

Michael Wallner LIPN = 11.12.2017

Compacted Binary Trees | Relaxed binary trees

The indicial polynomial

Structure of the ODE:
'Y (2) + a1(2)0 Y (2) +---+ a(2)Y(z) = 0.

Definition (Indicial polynomial)
Given an equation of the form (1) and a regular singular point ¢, the indicial
polynomial I(«) at (is defined as
(@) = ol + 10"t 4 - + 4, obi=ala—1)- (a—L+1),
where &; := lim,_,¢(z — ¢)a;(z). The indicial equation at ¢ is the algebraic
equation /(a) = 0.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees | Relaxed binary trees

The indicial polynomial

Structure of the ODE:
'Y (2) + a1(2)0 Y (2) +---+ a(2)Y(z) = 0.

Definition (Indicial polynomial)
Given an equation of the form (1) and a regular singular point ¢, the indicial
polynomial I(«) at (is defined as
(@) = ol + 10"t 4 - + 4, obi=ala—1)- (a—L+1),
where &; := lim,_,¢(z — ¢)a;(z). The indicial equation at ¢ is the algebraic
equation /(a) = 0.

All the solutions of the differential equations behave for z — (like
(z =€) log(z — ¢)"
for some oo € C, 3 € N,

m « is a root of the indicial polynomial
m [is related to multiple roots of the indicial polynomial and roots at integer

distances

Michael Wallner LIPN ~ 11.12.2017

A basis for our class of ODEs

VTheorem

Consider a differential equation (1) and a regular singular point such that
we(a) < 1foralli=1,...,r, and 6; > 0.

Michael Wallner LIPN 11.12.2017

A basis for our class of ODEs

VTheorem

Consider a differential equation (1) and a regular singular point { such that
we(ai) < 1foralli=1,...,r, and 61 > 0. Then, the vector space of analytic
solutions defined in a slit neighborhood of (admits a basis of r — 1 analytic
solutions

(z = ¢)"Hm(z = (), m=0,1,...,r—2,
where Hy, is analytic at 0 (Hn,(0) #0).

Michael Wallner LIPN 11.12.2017

A basis for our class of ODEs

Theorem

Consider a differential equation (1) and a regular singular point { such that
we(ai) < 1foralli=1,...,r, and 61 > 0. Then, the vector space of analytic
solutions defined in a slit neighborhood of (admits a basis of r — 1 analytic
solutions

(z = ¢)"Hm(z = (), m=0,1,...,r—2,
where Hy, is analytic at 0 (Hn,(0) # 0). The r-th basis function depends on ¢;:

Michael Wallner LIPN 11.12.2017

A basis for our class of ODEs

Theorem

Consider a differential equation (1) and a regular singular point { such that
we(ai) < 1foralli=1,...,r, and 61 > 0. Then, the vector space of analytic
solutions defined in a slit neighborhood of (admits a basis of r — 1 analytic
solutions

(z=CQ)"Hm(z = (), m=0,1,...,r—2,
where Hy, is analytic at 0 (Hn,(0) # 0). The r-th basis function depends on ¢;:
For 6, € {0,1,...,r — 1} it is of the form
(z= Q)" H(z = () log(z - ¢);

where H is analytic at 0 with H(0) # 0.

Michael Wallner LIPN 11.12.2017

A basis for our class of ODEs

Theorem

Consider a differential equation (1) and a regular singular point { such that
we(ai) < 1foralli=1,...,r, and 61 > 0. Then, the vector space of analytic
solutions defined in a slit neighborhood of (admits a basis of r — 1 analytic
solutions

(z=CQ)"Hm(z = (), m=0,1,...,r—2,
where Hy, is analytic at 0 (Hn,(0) # 0). The r-th basis function depends on ¢;:
For 6, € {0,1,...,r — 1} it is of the form
(z= Q)" H(z =) log(z = O);
For 61 € {r,r+1,...} it is of the form
(2= Q) H(z = Q) + Ho(z =) (log(z =))" . with k€ {0,1};

where H is analytic at 0 with H(0) # 0.

Michael Wallner LIPN 11.12.2017

A basis for our class of ODEs

Theorem

Consider a differential equation (1) and a regular singular point { such that
we(ai) < 1foralli=1,...,r, and 61 > 0. Then, the vector space of analytic
solutions defined in a slit neighborhood of (admits a basis of r — 1 analytic
solutions

(z=CQ)"Hm(z = (), m=0,1,...,r—2,

where Hy, is analytic at 0 (Hn,(0) # 0). The r-th basis function depends on ¢;:

For 6, € {0,1,...,r — 1} it is of the form

(z= Q)" H(z =) log(z = O);
For 61 € {r,r+1,...} it is of the form
(2= Q) H(z = Q) + Ho(z =) (log(z =))" . with k€ {0,1};
For 61 € Z it is of the form
(z = Q)" H(z —Q);

where H is analytic at 0 with H(0) # 0.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees | Relaxed binary trees

Chebyshev polynomials

The Chebyshev polynomials of the first kind T,(z) are defined by the
recurrence relation

To(z) =1,
Ti(z) = z,
Toi2(2) = 22T, 1(2) — Ta(2).

The Chebyshev polynomials of the second kind U,(z) are defined by the
recurrence relation

U(2) =1,
Ui(z) = 2z,
Uni2(2) = 2zUp11(2) — Uy(2).

Michael Wallner LIPN 11.12.2017

Properties of 4 x(2)

Lemma (Transformed leading coefficient)
For the leading coefficient we get
L5

r(a) =27 Uz (2) = S e (T2

n=0
where Ui(z) are the Chebyshev polynomials of the second kind.

Michael Wallner LIPN = 11.12.2017

Properties of 4 x(2)

Lemma (Transformed leading coefficient)
For the leading coefficient we get
4]
1 k+2—n
¢ =25 Upg (=== | = —1)" n
k7k(z) z k+2 2\/} ;) () n z,
where Ui(z) are the Chebyshev polynomials of the second kind.

Lemma

The roots of { «(z) are real, positive, and distinct. Let py be the smallest real
root of { «(z). Then, we have
1

k=l =\
4 cos (m)

Furthermore, py is not a root of £y j_1(z).

Michael Wallner LIPN ~ 11.12.2017

Analyzing the other polynomials

= Using the recurrence we get (4 x—1(z) = 50} (2);

Michael Wallner LIPN ~ 11.12.2017

Analyzing the other polynomials

m Using the recurrence we get ¢ x—1(z) = §€L7k(z);
mFork>2and 0< i< L%J it holds that ¢, ;(z) = 0;

Michael Wallner LIPN ~ 11.12.2017

Analyzing the other polynomials

m Using the recurrence we get ¢ x—1(z) = §€L7k(z);
mFork>2and 0< i< L%J it holds that ¢, ;(z) = 0;

= The polynomials ¢, ;(z) for [&] < i < k —1 have no root in the interval
[0, px]-

Michael Wallner LIPN ~ 11.12.2017

Analyzing the other polynomials

m Using the recurrence we get ¢ x—1(z) = §€L7k(z);
mFork>2and 0< i< L%J it holds that ¢, ;(z) = 0;

= The polynomials ¢, ;(z) for [&] < i < k —1 have no root in the interval
[0, px]-

Proposition
The indicial po/ynomial Ik(«) of the k-th differential equation is given by

(@) = a1 — (£ — 1)).

Michael Wallner LIPN ~ 11.12.2017

Asymptotics of relaxed trees with bounded right height

. 995 eeege— e A
750 S o ege S 9o S g oege Y

'Theorem

The number ry , of relaxed trees with right height at most k is for n — oo
asymptotically equivalent to

. n
~ 14 o —k/2
rk,n Yk (COS<k+3)> n s

where v, € R is independent of n.

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

e

E4k+1

Michael Wallner LIPN ~ 11.12.2017 38/ 43

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

My - C = 0.

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

M - G = 0.
1-29L)+ (-3 La(z) =0
dz2 t dz 1\

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

My - C, = 0.
d? d
(1- QZ)EQ(Z) +(z- 3)EC1(Z) =0,
(2? —3z+1)d—3C2(z) (22 — 62+ 6)—— d G(z) — (2z—3)iC2(z) =0
dz3 dz2 dz

Michael Wallner LIPN 11.12.2017

Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

M, - C, =0.
1-29L)+ (-3 La(z) =0
dz2 t dz 1\

3 @2 d
(22 f3z+1)d3C() (2° f6z+6)d2C()7(2273)56(2):0
(32% — 4z + 1)i4c3(z) — (422 — 18z + 10)i3c3(z) Foe
dz* dz3

d? d
(22122 + 14)EC3(Z) +(z— 3)$C3(z) =0.

Michael Wallner LIPN 11.12.2017

Properties of M,

[Theorem
The operator My (-) decomposes into
My = m;<7;((z)DkJr1 + mk,k_l(z)Dk + .o+ meo(2)D + my _1(2),
where the my ;(z) are polynomials.

Michael Wallner LIPN 11.12.2017

Properties of M,

Theorem
The operator My(-) decomposes into

My = m,<7;((z)DkJr1 + mk,k_l(z)Dk + .o+ meo(2)D + my _1(2),
where the my ;(z) are polynomials. For k > 2 they are given by

mk,,l(z) = 0,

—2z+3, for k even,
mio(z) =

z—3, for k odd,
myi(z) = mg_1,i—1(2) + (I + 1)my—2,i(2) + (z — i — 2)my_2,;_1(2)
—zmy_2,;i_2(2), 1<i<k-1,
mk,k(z) = mkfl,kfl(z) - kafz,k—2(2),
myi(z) =0, i> k.
The initial polynomials are my _1(z) = -1, mpg=1—2, m; _1 =0,

mgo=2z—3,and m (z) =1-2z.

Michael Wallner LIPN 11.12.2017

Properties of M,

Theorem
The operator My(-) decomposes into

My = my 1 (2) DK™+ my 1 (2)DF + .+ myo(2)D + my _1(2),
where the my ;(z) are polynomials. For k > 2 they are given by

mkﬁ,l(z) = 0,

—2z+3, for k even,
mio(z) =

z—3, for k odd,
myi(z) = mg_1,i—1(2) + (I + 1)my—2,i(2) + (z — i — 2)my_2,;_1(2)
—zmy_2,;i_2(2), 1<i<k-1,
mk,k(z) = mkfl,kfl(z) - kafz,k—2(2),
myi(z) =0, i> k.
The initial polynomials are my _1(z) = -1, mpg=1—2, m; _1 =0,

mio=2z—3, and my 1(z) =1 — 2z. Furthermore,

mkyk(z) = Ek,k(z)

Michael Wallner LIPN 11.12.2017

Analysis of the polynomials my ;(z)

m As my «(z) = 4k «(z) we have the same dominant singularity py;

Michael Wallner LIPN 11.12.2017

Analysis of the polynomials my ;(z)

B As my «(z) = €k k(2) we have the same dominant singularity p;

m Using the recurrence relation we can express my x—1(z) by the Chebyshev
polynomials of first and second kind.

Michael Wallner LIPN 11.12.2017

Analysis of the polynomials my ;(z)

m As my «(z) = 4k «(z) we have the same dominant singularity py;

m Using the recurrence relation we can express my x—1(z) by the Chebyshev
polynomials of first and second kind.

Proposition

Then, we have §; =0 fori > 1, and §; = "’r;’,:;i(llgf)k).

Michael Wallner LIPN 11.12.2017

Analysis of the polynomials my ;(z)

m As my «(z) = 4k «(z) we have the same dominant singularity py;

m Using the recurrence relation we can express my x—1(z) by the Chebyshev
polynomials of first and second kind.

Proposition

Then, we have §; =0 fori > 1, and §; = "’r;’,:;i(llgf)k).

Furthermore, we have

5—k+1—1—(1— 1))
T2 k+3 \4 k+3 Cosz(ﬂ)'

+3

Michael Wallner LIPN 11.12.2017

Analysis of the polynomials my ;(z)

m As my «(z) = 4k «(z) we have the same dominant singularity py;

m Using the recurrence relation we can express my x—1(z) by the Chebyshev
polynomials of first and second kind.

Proposition

Then, we have §; =0 fori > 1, and §; = "’r;’,:;i(llgf)k).

Furthermore, we have

5—k+1—1—<1— 1))
T2 k+3 \4 k+3 Cosz(ﬂ)'

+3
The indicial polynomial is given by
I(a) = a®(a — (k — 61)).

Michael Wallner LIPN 11.12.2017

Asymptotics of compacted trees with bounded right height

 Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

o\ N
™ k 1 1 1 x)\ ~2
Ck.n ~ K/kn! 4COS - n_i_k+3_(3_k+3)cos(k+3) ,
’ k+3

where K, € R is independent of n.

Michael Wallner LIPN 11.12.2017 41 /43

Asymptotics of compacted trees with bounded right height

 Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

o\ N
™ k 1 1 1 x)\ ~2
Ck.n ~ K/kn! 4COS - n_i_k+3_(3_k+3)cos(k+3) ,
’ k+3

where K, € R is independent of n.

Proof:

Michael Wallner LIPN 11.12.2017 41 /43

Asymptotics of compacted trees with bounded right height

Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

o\ N
™ k 1 1 1 x)\ ~2
Ck.n ~ K/kn! 4COS - n_i_k+3_(3_k+3)cos(k+3) ,
’ k+3

where K, € R is independent of n.

Proof:
m We derived a symbolic method on exponential generating functions,

Michael Wallner LIPN 11.12.2017

Asymptotics of compacted trees with bounded right height

Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

o\ N
™ k 1 1 1 x)\ ~2
Ck.n ~ K/kn! 4COS - n_i_k+3_(3_k+3)cos(k+3) ,
’ k+3

where K, € R is independent of n.

Proof:
m We derived a symbolic method on exponential generating functions,

m |leading to ordinary differential equations, and

Michael Wallner LIPN ~ 11.12.2017

Asymptotics of compacted trees with bounded right height

Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

o\ N
™ k 1 1 1 x)\ ~2
Ck.n ~ K/kn! 4COS - n_i_k+3_(3_k+3)cos(k+3) ,
’ k+3

where K, € R is independent of n.

Proof:
m We derived a symbolic method on exponential generating functions,
m |leading to ordinary differential equations, and

m analyzed them by singularity analysis (recurrence relations on polynomial
coefficients, indicial polynomial, transfer theorems). O

Michael Wallner LIPN ~ 11.12.2017

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ck,n ~ kinlp, "n® and kn ~ *ykn!p,?"nﬁ.

Michael Wallner LIPN 11.12.2017

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ck,n ~ kinlp, "n® and Fien ~ *ykn!p,?"nﬁ.
L&] Pk [e | o [a= [[8 | B= |
1 3 0.500 -3 —-0.750 || =3 | —0.5
2 3 _ § 0.382 24y ~1.276 || -1 | —1.0
3 3 0.333 -% -1.778 || -3 | -15

-2 15 3
4 || (2cos(3))72 | 0.308 || - ¥ — 3o | —2275 || -2 | —20
5 1-¥%2 | 0203 —5 ? 2772 || -3 | —25
—2 28
6 || (2 cos(f}) 0.283 || —F — W —3.268 -3 | -3.0
1 39 3v5 7
7 -v 0.276 -3 435 —3.766 || -2 | -35

Michael Wallner LIPN 11.12.2017

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ck,n ~ kinlp, "n® and kn ~ *ykn!p,?"nﬁ.
L&] Pk [e | o [a= [[8 | B= |

1 3 0.500 -3 —-0.750 || =3 | —0.5

2 3 _ § 0.382 24y ~1.276 || -1 | —1.0

3 0.333 -% -1.778 || -3 | -15
15 8

4 || (2cos (1)) 0308 || —%¥ — =3 | —2275 || -2 | —20

5 1-¥%2 | 0203 -5 4 ? 2772 || -3 | —25
28

6 || (2 cos(f}) 0.283 || —F — W —3.268 -3 | -3.0

1 39 3v5 7
7 -v 0.276 -3 435 -3.766 || -1 | -35

Corollary (Proportion of compacted among relaxed trees)

Ck,n 5
—_——~

k_q
KN 2
Ik,n

Michael Wallner LIPN ~ 11.12.2017

Compacted Binary Trees = Compacted binary trees

Comparing compacted and relaxed trees

Asymptotics of compacted and

relaxed trees

Ck,n ~ kinlp, "n® and kn ~ *ykn!p,?"nﬁ.
L&l Pk [o~ || e [o= [[B | B~ |

1 3 0.500 -3 —-0.750 || =3 | —0.5

2 g - § 0.382 24y -1.276 || -1 | -1.0

3 0.333 -% -1.778 || -2 | —-15
15 8

4 || (2cos (1)) 0308 || -2 — 2 | —2.275 || -2 | —2.0

5 1-2 | 020 -B 42 —2772 || -3 | 25
28

6 || (2 cos(i)) 0.283 || —F — cos(n /07 —3.268 -3 | -3.0

7 1_¥5 | o216 —38 435 —3.766 || -1 | —35

Corollary (Proportion of compacted among relaxed trees)

C k
k,n N I€n51_7_
Ik.n

Michael Wallner = LIPN

11.12.2017

Compacted Binary Trees = Compacted binary trees

Comparing compacted and relaxed trees

Asymptotics of compacted and

relaxed trees

Ck,n ~ kinlp, "n® and kn ~ *ykn!p,?"nﬁ.
L&l Pk [o~ || e [o= [[B | B~ |

1 3 0.500 -3 —-0.750 || =3 | —0.5

2 g - § 0.382 24y -1.276 || -1 | -1.0

3 0.333 -% -1.778 || -2 | —-15
15 8

4 || (2cos (1)) 0308 || -2 — 2 | —2.275 || -2 | —2.0

5 1-2 | 020 -B 42 —2772 || -3 | 25
28

6 || (2 cos(i)) 0.283 || —F — cos(n /07 —3.268 -3 | -3.0

7 1_¥5 | o216 —38 435 —3.766 || -1 | —35

Corollary (Proportion of compacted among relaxed trees)

,L,(l,i) 1
3 \4 7~ %+3)

cos (ﬁ) =0 (n—1/4) .

Ck,n
Ik.n

~ Kn

k
172

-1

= Kn

Michael Wallner = LIPN

11.12.2017

Compacted Binary Trees = Compacted binary trees

0—-O-O0—0-0-0-0-0-0-0O0-0O-—0-0-0-0O0-0-0-0-0-0-0O0-0-0O0-0O0-—0-0-0O0-0O0-0O-0O0-O00O-0-O0-0O0-0-O0-—0O0-O00O0-0-0O0-0-0
00000 O O 0000 00O O O 00 O O o000 O O
O O O O O O O O O O] 0—0 o0 O O O O
O 0000 0-0—00 O O O 0-0—0 0-0—0 O O O O
O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
O O O O O Q Q-0 O Q-0 O Q0-0—010 0-0—0—10

Michael Wallner = LIPN

	Creating a compacted tree
	A recurrence relation
	Operations on trees
	Relaxed binary trees
	Compacted binary trees

