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Fast transforms over finite fields
of characteristic two



Let IF be a finite field of characteristic two.

Let F[x], denote the space of polynomials in F[x] of degree less than /.

Here's what we're going to do:
1. To B € F" with linearly independent entries over [F,, we associate
four bases of F[x]an.
2. Describe fast algorithms for converting between the bases.

3. Show how to choose (3 in order to make the algorithms faster.



Subspace enumeration

Define maps [+ ]x : N — {0,1} for k € N by

i=Y 2Kk forieN.
keN

If the entries of 8 = (B0, ..., Bs—1) € F" are linearly independent over Fy,

we enumerate the subspace they generate as {wg,,...,wg2n_1}, Where
n—1
wg,i = Z[i]kﬂk fori€{0,...,2" -1}
k=0



Polynomials bases

The associated Lagrange basis {Lg,. .., Lgan_1} of F[x]2n is given by

2"—1

X = W 2 n
Lg;= —— = forie{0,...,2" —1}.
j];IO wg,i — Wg,j
JF#
The associated Newton basis {Ng g, ..., Ngon_1} of F[x]2n is given by
i1
Ngj=]] ——2L forie{o,...,2"—1}.

o Wai —Wpj

To make our life easier, we have normalised the Newton basis so that
NB’,'(w,g,,') =1forie {0, e, 2N — 1}



Polynomials bases

We also consider the basis {Xp g, ..., X3 2_1} of F[x]2n given by
n—125[i],—1

XB,_H [ =2 forie{o,...,2"~1}.

k=0 j=0 CA.Jﬁzk—CUﬁ

(Note that deg Xz, = S04 2K[i]x = i)

This basis was introduced by Lin, Chung and Han (2014). Consequently,
we refer to it as the "LCH basis”.

Finally, we also consider the monomial basis {1, x,...,x% "1} of F[x]an.



Conversion problems

For each pairs of bases associated with a vector 5 € F”, we consider the
following problem:

Problem

Given the first ¢ coefficients on one of the bases of some polynomial in
Flx]e, £ € {1,...,2"}, compute its first £ coefficients on the other basis.

We call ¢ the length of an instance.



Applications

4/\;

Lagrange Newton

LCH

Monomial

Multipoint evaluation and interpolation; pelyromial-multipheation.



Applications

Lagrange Newton

N

LCH

Monomial

Reed—Solomon code encoding and decoding; zk-STARK.



Applications

4/\;

Lagrange Newton

LCH

Monomial

Certain multivariate (Hermite) interpolation and evaluation problems;
encoding of Reed—Muller and multiplicity codes.



Previous work

Lagrange Newton

LCH

Monomial

Gao and Mateer 2010 (¢ = 2"): O(¢log ¢) multiplications and O(¢ log? /)
additions; only O(¢log ¢ loglog¢) additions if 3 is a “Cantor basis”.
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Lin, Chung and Han 2014 (¢ = 2"): O(¢log¢) multiplications/additions.



Previous work

Lagrange Newton

LCH

Monomial

Lin et al. 2016 (¢ = 2"): O(¢log ) multiplications and O(¢log® ¢)
additions; only O(?log ¢ loglog¢) additions if 3 is a Cantor basis.



Previous work

4/\;

Lagrange Newton

LCH

Monomial

Probably O(M(¢) log ¢) using product trees, transposition principle, etc.



This work

v LCH /

Monomial



Let us fix an arbitrary vector 8 = (B, ..., Bn—1) € F" that has linearly
independent entries over [F5.

If n=1, then

X X X
K lgg= i, fgs=—
Bo PO B, P B,

It is straightforward to perform the conversions in this case.

Ngo=Xgo=1, Ngi1=Xg1=

10



Subspace vanishing polynomials

Define
2k—1
Spk = H x —wg,; for ke {0,...,n}.
i=0
Properties
® 53 « vanishes on the subspace generated by [y, . .., Sk_1.

® Ss0=xand 55 = 5/%,;(71 — Sg.k—1(Bk=1)Sp k-1 for k > 1.
o Spp=x2 + 3K six® with seg, ..., skx_1 €F.

o S5g.k(x +w) = Sg.k(x) + Sgk(w) for w € F.

® Xs,i= Z;(l) (SﬁA,k(X)/Sﬁ,k(ﬂk))[i]k for i €{0,...,2" —1}.

11



Lemma
Suppose that n > 2. Forsome k € {1,...,n—1}, leta = (bo, - .., Bx-1),
v = (ﬁk, A ,ﬁn_l) and § = (Sﬂ,k(ﬁk)a ey SB,k(ﬁn—l))- Then the
entries of § are linearly independent over F,, and

Lgokirj = Ls,i (Sp(x)) Laj (x = wy.i)

Ng 2kivj = No,i (Sg,k(xX)) Naj (X — wa,i)

Xs 2xirj = X5,i (5p,k(x)) Xaj (x)

fori €{0,...,2"~%k —1} and j € {0,...,2Kk —1}.

Allows us to reduce conversion problems for the bases associated to 5 to
conversion problems for the bases associated to o and §.

But we need to introduce a shift parameter to allow recursion.

12



Conversion between the Newton and LCH bases

Corollary
Suppose that fy, ..., fi_1,\, ho, ..., hy_1 € F satisfy

£—1 -1
Z f,‘Ng’,' (X — )\) = Z h,‘Xﬁ_],’.
i=0 i=0

Then there exist unique elements gy, ...,g—1 € F such that
min(£—2%i,2K)—1 min(£—2%i,2K)—1
Z FokigjNaj (X = A —ws ;) = Z 8okitjXaj
=0 j=0

fori € {0,...,[¢/2¥] — 1}, and

[(e—j)/2"1-1 [(e—j)/2"1-1
Do &igNai(x=SsuN) = D i X
i=0 i=0

for j € {0,..., min(2%,¢) — 1}. "



Conversion between the Newton and LCH bases

How should we choose k7

e k~ n/2 for "cache-friendliness”,

e k= n—1 if computing the shifts on the fly.

By always taking k = n — 1, we obtain the following complexity bounds.

Multiplications: [£/2] [log, ¢] [£/2] [log, ¢]
Additions: (1£/2] — 1) [log, €1 4+¢—1 | [£/2] [log, ]
Precomputations: O (log? ) operations O(¢) operations
Auxiliary space: O(log? ¢) field elements O(¢) field elements

14



Conversion between the Lagrange and LCH bases

Corollary (¢ =2")
Suppose that fo, ..., fn_1,\ hg, ..., hon_1 € TF satisfy

=il =il
> filgi(x=A) =Y hiXs;.
i=0 i=0
Then there exist unique elements gy, ..., gn_1 € F such that
2k 1 2k—1

D fivilag (x= A= wy)) = Y gariiXa
j=0 j=0

for i € {0,...,2"~k —1}, and
on—k_q 2n—k_q

> oiilsi(x = Spu(N)) = D howiniXsi
i=0 i=0

for j € {0,...,2k — 1}.
15



Conversion between the Lagrange and LCH bases

By always taking k = n — 1, we obtain the following complexity bounds.

Multiplications: min ((¢ — 1) ([logy €] + 1) /2,2""1n)
Additions: min ((¢ — 1) ([log, £] +2),(2" = 1)(n+ 1))
Precomputations:  O(n?) operations

Auxiliary space: 2" — £ + O(n?) field elements

The case ¢ < 2" is handled by applying ideas from truncated FFTs.

16



Conversion between the monomial and LCH bases

Corollary

Suppose that fy, ..., fi_1, ho,..., hy_1 € F satisfy

[¢/21=1 [min(¢—2%i2K)—1

-1
Zf;’XﬁJ: Z Z hoki x| Shi-
i—0

i=0 j=0
Then there exist unique elements gy, ...,g—1 € IF such that
min(£—2%7,2K)—1 min(£—2%i,2K)—1
Z Fokj1jXaj = Z 8okijX’
Jj=0 Jj=0

fori € {0,...,[¢/2¥] — 1}, and

[(e—j)/241-1 [(e—j)/2"1-1 _
Z 8okt Xs,i = Z hoxiy X!
i=0 i=0

for j € {0,...,min(2% ¢) — 1}. .



We want to perform O(¢log ¢) multiplications overall, so we need to
perform O(¢) multiplications in the Taylor expansion step.

But
k—1

K i .
Sﬁﬁk =x° + E Sk.’,'X2 with Sk,0y--->Skk—1 € F.
i=0

For arbitrarily chosen k, it is unclear how to obtain the desired
complexity for the Taylor expansion step.

18



Not a solution

If Bo,...,Bk_1 € Fox for some k € {1,...,n—1}, then

k
Sgk = H x—w=x> —x.

wEF,«

Using the algorithms of Gao and Mateer, the Taylor expansion step then
requires at most |¢/2] [log,[¢/2¥]] additions and zero multiplications.

But we cannot guarantee that such a value of k exists.

19



If Bo/Bo, -, Bk—1/Bo € Fox for some k € {1,...,n— 1}, then

2k
Sgk = sz = 2k_1x = A2 (X> o .
ok 0 0 < Bo Bo

We can always take kK = 1.
o_a . o k
O(¢) multiplications allow us to reduce to Taylor expansion at x* — x.

Using the algorithms of Gao and Mateer, the Taylor expansion step then
requires at most |£/2] [log,[¢/2]] additions and O(¢) multiplications.

20



A better solution

Lemma
Suppose thatn > 2. Let ke{l,...,n— 1} s.t. Bo/Bo, - - -, Br—1/ 50 € Fox,
a=(Bo,---,Bk-1) and

5 (ﬂk)zkﬂk <ﬂn_1>2k5n_1
Bo Bo’ T\ Bo Bo |

Then the entries of 6 are linearly independent over F,, and

k
X2 — X

Xg,oxivj (Box) = Xs.i (50 % ) Xa,j (aox)

fori € {0,...,2""% —1} and j € {0,..., 25 — 1},

21



Conversion between the monomial and LCH bases

Corollary

Suppose that fy, ..., fi_1, ho,..., hy_1 € F satisfy

-1 [£/2€1—1 [min(¢—2%i,2)—1 S i
ZHCOEND DI I DR ( 5 )

i=0 i=0 j=0
Then there exist unique elements gy, ...,g/—1 € IF such that
min(£—2%i,2)—1 min(£—2%i,2K)—1
Yo higXejlao)= D g
j=0 j=0

fori € {0,...,[¢/2¥] — 1}, and

[(¢—j)/2<1-1 [(¢—j)/2K1-1 _
Y e Xsi(fo) = D haX
i=0 i=0

for j € {0,...,min(2% ¢) — 1}. ”



Conversion between the monomial and LCH bases

We instead convert between the monomial basis and the “twisted” LCH
basis {X570(50X)7 0o ,XBQn,]_(ﬁOX)}.

Converting to and from the LCH basis then requires an additional O(¢)
multiplications for performing the substitution x — Sox or x — x/8y on
the monomial basis.

Taylor expansion at (x2* — x)/do requires at most |£/2] [log, [¢/2%]]
additions and O(¢) multiplications.

X5.0(Box) = 1 and X3 1(8ox) = x, so all multiplications in the base case
are eliminated.

23



Conversion between the monomial and LCH bases

By always taking k = 1, we obtain the following complexity bounds for
converting between the twisted LCH basis and the monomial basis.

1¢/2] (3 [log, ¢] —4) + 1
Additions: 1£/2] (“ogzz ﬂ)

Precomputations: O (log? ¢) operations

Multiplications:

Auxiliary space: O(log ¢) field elements

After equalising precomputations, our algorithms perform fewer
multiplications than those of Lin, Al-Naffouri, Han and Chung.

24



How should we choose 37

Suppose now that we are free to choose 3, but the field IF and the
dimension of the vector are fixed.

Then how should we chose 57

Wishlist

[ ] /80 = 1,
e Large values of k permitted,

e Multiplications by elements of small subfields (e.g., F2).

25



Very special case: F O F ;fiog, m

If Fonoe,m C I, then take 8 = (Bos -+, Bn—1) to be a “Cantor basis":

Bo=1 and 5/261'2+1_Bi+1 fori€{07...,n—2}.

Then we can always take k = 2/log211-1,

= Perform at most |¢/2] [log, ¢] [log, log, ¢] additions.
Moreover, 6 = (B, ..., Bn—k—1) for this choice of k.
= Perform no multiplications since §p = 5y = 1.

Reduces to the algorithm of Lin, Al-Naffouri, Han and Chung for ¢ = 2".

26



Less special case: tower of subfields

Suppose there exists a tower of subfields
Fy» =Fp CFosy C -+ C Fou, =F.
Construct 5 = (Bo, . - ., n—1) as follows:

1. Choose a basis {¥;,...,74,,/q-1} for each extension Fyq., /Fy,.
2. Set

m—1 m—1
Bi=]] 9 suchthat > iidi=i,
j=0 j=0
for i € {0,...,n}.

Then we can always take k = max{d; | d; < n}.

27



Example: F = Fy2, n =12

Relative number of additions

(do, ..., dm)

(1,12)

— (1,6,12)

(1,4,12)

— (1,3,12)
08| (1,2,12)
— (1,3,6,12)
(1,2,6,12)
(

1,2,4,12)

0.6

04l

L L L
1 1024 2048 3072 4096

Polynomial length (¢)
28



Example: F = Fy2, n =12

Relative number of multiplications

(do, - - dm)
1 (1,12)

— (1,6,12)

(1,4,12)
09 T — (1,3,12)

(1,2,12)
0.8} — (1,3,6,12)

(1,2,6,12)

(1,2,4,12)
0.7

0.6 WW

L L L
1 1024 2048 3072 4096

Polynomial length (¢)
29



Fewer mutliplications

We have complete freedom in the choice of bases for the extensions.

We should use this freedom to either eliminate multiplications, or force
them to be by elements of small subfields.

Example
If Fpa,, /Fo is a quadratic extension, then choose its basis {¥;o,7; 1}

such that p
i1\
TI’[FZdI_+1 /F g (19’0> =1.

)

Then each time k = d;, the Taylor expansion step is multiplication-free.

30



Example: F = Fy2, n =12

Relative number of multiplications

do, ..., dm)
1,12)
1,6,12)
1,4,12)
)

(
(
— (1,
e
0.8 |- — (1,3,12
(1,2,12)
M\/\W — (1,3,6,12
06 = (1,2,6,12
(
(1,
—
—

)

)
1,2,4,12)
1,3,6,12)
1,2,6,12)
)

1,2,4,12)1

0.4

0.2

L L
1 1024 2048 3072 4096

Polynomial length (¢)
31



Conclusion

L : . Newt
agrange Fast, but not so interesting. ewton

LCH

Interesting, but not so fast.

Monomial

Future work: answer the (correct) question “How should we choose Sg ,7".

32



Fast Hermite interpolation and
evaluation over finite fields of
characteristic two




Hasse derivatives

Since we are working over small characteristic, derivative is taken to
mean Hasse derivative.

Definition
For i € N, the ith Hasse derivative D' : F[x] — F[x] sends F € F[x] to
the coefficient of y’ in the polynomial F(x + y) € F[x][y].

The Hasse derivatives of F € F[x] satisfy

Fx+y)=Y (D'F)(x)y'.

ieN

33



Hermite interpolation and evaluation

Problem
Let wo,...,wm—1 € IF be distinct, £o, ...,¢{n_1 be positive integers,

C=Vly+ -+ Lm_1, and F € F[x],.

Hermite interpolation: Given (D/F)(w;) for j € {0,...,¢; — 1} and
i€{0,...,m— 1}, compute F.

Hermite evaluation: Given F, compute (DY F)(w;) for
Jje{0,...,6,—1}and i €{0,...,m—1}.

Polynomials are assumed to be represented w.r.t. the monomial basis.

We call ¢ the length of an instance.

34



(A variant of) Chin’s algorithm

For F € F[x]¢, we have

li—1

F=Y (DIF)wi)(x—w) (mod (x —w;)")

j=0
forie{0,...,m—1}.
Taylor expansion to convert between derivatives and residues.
Remainder trees/fast CRT to convert between residues and polynomials.

Performs O(M(¢) log ¢) field operations.

35



Our problem

For now, we focus on the special case m = |F| and ¢y = -+- = £, = 2".

Let |F| = g and fix some enumeration F = {wy, ..., wg_1}.

For n € N, define H, : F[x]ang — F2'9 by
Fis ((DWqJ F) (Wi mod q))

i=0,....27g—1

In particular, Ho(F) = (F(wo), - - ., F(wg—1)) for F € F[x],.

The maps H, ! and H,, respectively capture the Hermite interpolation
and evaluation problems that we are considering.

36



Lemma

Let n € N be nonzero and F € F[x]anq. Write
F=FRKx—x)? +F
with Fo, Fi € F[x]sn-14. Then for w € F and i € {0,...,2" — 1},

(D'F) (@) = { (PF)) i< 2,
(Di—2”’1 Fl)(w) + (DiFO)(w) otherwise.
Proof. For w € TF,

Flx+w) =Y (D'F)w)x' = Flx+w)(x® 9 +x2") + Fo(x + w).
ieEN

37



Lemma

Let n € N be nonzero and F € F[x]anq. Write
F=FRKx—x)? +F
with Fo, Fi € F[x]sn-14. Then for w € F and i € {0,...,2" — 1},

(D' Fo) (w) if i <2m71,
(Di—2"’1F1)(w) + (DiFO)(w) otherwise.

(D'F) () = {

We have D' o DV = ("j.”')D"*f for i, j € N. It follows by Lucas’ lemma that

D2 oD =D forie {2l ... 2" 1}

37



Lemma

Let n € N be nonzero and F € F[x]anq. Write
F=FRKx—x)? +F
with Fo, Fi € F[x]sn-14. Then for w € F and i € {0,...,2" — 1},

(D' Fo) (w) if i <271
(D;_znfl(,_-l n DQHFO))(W) otherwise.

(D'F) () = {

We have D' o DV = ("j.”')D"*f for i, j € N. It follows by Lucas’ lemma that

D2 oD =D forie {2l ... 2" 1}
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Lemma

Let n € N be nonzero and F € F[x]anq. Write
F=FRKx—x)? +F

with Fo, Fi € F[x]zn-14. Then

Hn(F) = Hyp_1(Fo) ® Ho1(F1 + D* ' Fo).

Recall that Ho(F) = (F(wo), ..., F(wg—1)) for F € F[x],.

37



Cost of the reduction

We have
IF = Fl(Xq = X)2n_1 + Fo = X2n_1qF1 + X2n_1F1 + Fo.

Consequently, F < (Fo, F1) costs 2"~1q additions.

n—1__ . i .
If Fo = Z,?:o 9-1 fix', then Lucas’ lemma implies that
q/2—1 =11
2n—1 onj g
D= Fy= Z x=! Z Fan-1(2i41) 4% -
j=0

i=0

Thus, (Fo, F1) <> (Fo, F1 + D¥ ' Fy) costs 272 additions.

Therefore, F <> (Fo, F1 + Dzn_lFo) costs 3 - 2"2g additions. ¥**

38



Evaluation example: g =4, n=2

Let F = Y21, fix' and Hy(F) = (ho, . . ., his).
h h Hh R fa f5 f& f fg fo fio 1 fh2 A3 fu fis
D

Recursive call Recursive call

ho hi hy hs hy hs he hy hg hy hig hin hio hiz his his

39



Evaluation example: g =4, n=2

Let F = Y21, fix' and Hy(F) = (ho, . . ., his).
h h Hh R fa f5 f& f fg fo fio 1 fh2 A3 fu fis

/N
ERERW/EAN

Evaluate Evaluate Evaluate Evaluate

ho hi hy hs hy hs he hy hg hy hig hin hio hiz his his

Complexity: 2"(Ao(q) + 3ng/4) additions and 2"My(q) multiplications.
39



Evaluation complexity

For c € {1,...,q}, let Ao(c) and My(c) respectively denote the number
of additions and multiplications needed to compute the first ¢ entries of
Ho(F) when given a polynomial F € F[x],.

Theorem

Given F € F[x]anq and ¢ € {1,...,2"q}, the first c entries of H,(F)
can be computed with My(q) ([¢/q] — 1) + Mo(c mod* q)
multiplications, and at most

Ao(q) ([c/q] — 1) + Ao(c mod™ q)

+ (3 Moz fe/all - 3 ) (Tefal = Da+ (2" = 1)

additions.

40



Evaluation complexity

For c € {1,...,q}, let Ao(c) and My(c) respectively denote the number
of additions and multiplications needed to compute the first ¢ entries of
Ho(F) when given a polynomial F € F[x],.

Theorem

Given F € F[x]anq and ¢ € {1,...,2"q}, the first c entries of H,(F)
can be computed with My(q) ([¢/q] — 1) + Mo(c mod* q)
multiplications, and at most

Ao(q) (Te/q] = 1) + Ao(c mod™ q)
+ (3 Moz fe/all - 3 ) (Tefal = Da+ (2" = 1)
additions.
If in addition F € F[x]; C F[x]2nq, we just discard some more additions.
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Interpolation example: g =4, n =2

Let F = Y21, fix' and Hy(F) = (ho, . . ., his).
ho hi hy hs hy hs he h; hg hy hig hix hio hizs hig his

Recursive call Recursive call
—
\
° I>D 3
—
—
—
° & °
o h Hh 3 fo f5 f& f fg fo fio fu1 fo fiz fuu fis
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Interpolation example: g =4, n =2

Let F = Y21, fix' and Hy(F) = (ho, . . ., his).
ho hi hy hs hy hs he h; hg hy hig hix hio hizs hig his

Interpolate Interpolate

EI
i
]
==

fo h Hh K fB 5 fo fr fg fo fo fu A2 h3 fu fis

Complexity: 2"(Ao(q) + 3ng/4) additions and 2"My(q) multiplications.
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New problem

Problem

Given the first ¢ entries of H,(F) for some polynomial
F € F[x]¢ C F[x]2nq, compute F.

This is still a special case of the general Hermite interpolation problem,
but it is sufficient for applications in coding theory.

42



New problem

Problem
Given the first ¢ entries of H,(F) for some polynomial
F € F[x]¢ C F[x]2nq, compute F.

To address the problem, we follow the approach of truncated FFTs by
solving the following more general problem.

Problem
Let F = Zi%_l fix' € F[x]ang. Given the first c entries of H,(F) and
fe,..., fng—1, compute fo, ..., fc_q.

We can then solve the first problem by taking ¢ = £, since we then know
that fo = -+ = fong_1 = 0.

42



Interpolation complexity

Theorem

Suppose that we can solve the problem for n = 0 with Ay(c) additions
and My(c) multiplications. Then the problem for n > 1 can be solved
with Mo(q) ([¢/q] — 1) + Mo(c mod* q) multiplications, and at most

Ao(q) ([¢/q] = 1) + Ao(c mod™ q)
7 3 .
+ (3 Moz [e/all = 3 ) (Fefal = D a+ (2" = 1) 2q + 1)

additions.
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Interpolation example: g =4, n =2

Let F = X312, fxd and Ha(F) = (Fo, ., his),
ho hi hy hs hy hs hse h; hg hy hig hix hio hiz his his

Recursive call Recursive call

A\

fo h Hh K fB 5 fo fr fg fo fo fu fho h3 fu fis

44



Interpolation example: g =4, n =2

Let F = X312, fxd and Ha(F) = (Fo, ., his),
ho hi hy hs hy hs hse h; hg hy hig hix hio hiz his his

Recursive call Recursive call

A\

fo h Hh K fB 5 fo fr fg fo fo fu fho h3 fu fis

44



Interpolation example: g =4, n =2

Let F = X312, fxd and Ha(F) = (Fo, ., his),
ho hi hy hs hy hs hse h; hg hy hig hix hio hiz his his

Recursive call Recursive call

fo h Hh K fB 5 fo fr fg fo fo fu fho h3 fu fis

44



Thank youl!
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