
Fast interpolation, evaluation and change of basis for

polynomials over finite fields of characteristic two

Nicholas Coxon

September 24, 2018

SpecFun Seminar

Table of contents

1. Fast transforms over finite fields of characteristic two

2. Fast Hermite interpolation and evaluation over finite fields of

characteristic two

1

Fast transforms over finite fields

of characteristic two

Outline

Let F be a finite field of characteristic two.

Let F[x]` denote the space of polynomials in F[x] of degree less than `.

Here’s what we’re going to do:

1. To β ∈ Fn with linearly independent entries over F2, we associate

four bases of F[x]2n .

2. Describe fast algorithms for converting between the bases.

3. Show how to choose β in order to make the algorithms faster.

2

Subspace enumeration

Define maps [·]k : N→ {0, 1} for k ∈ N by

i =
∑
k∈N

2k [i]k for i ∈ N.

If the entries of β = (β0, . . . , βn−1) ∈ Fn are linearly independent over F2,

we enumerate the subspace they generate as {ωβ,0, . . . , ωβ,2n−1}, where

ωβ,i =
n−1∑
k=0

[i]kβk for i ∈ {0, . . . , 2n − 1}.

3

Polynomials bases

The associated Lagrange basis {Lβ,0, . . . , Lβ,2n−1} of F[x]2n is given by

Lβ,i =
2n−1∏
j=0
j 6=i

x − ωβ,j
ωβ,i − ωβ,j

for i ∈ {0, . . . , 2n − 1}.

The associated Newton basis {Nβ,0, . . . ,Nβ,2n−1} of F[x]2n is given by

Nβ,i =
i−1∏
j=0

x − ωβ,j
ωβ,i − ωβ,j

for i ∈ {0, . . . , 2n − 1}.

To make our life easier, we have normalised the Newton basis so that

Nβ,i (ωβ,i) = 1 for i ∈ {0, . . . , 2n − 1}.

4

Polynomials bases

We also consider the basis {Xβ,0, . . . ,Xβ,2n−1} of F[x]2n given by

Xβ,i =
n−1∏
k=0

2k [i]k−1∏
j=0

x − ωβ,j
ωβ,2k − ωβ,j

for i ∈ {0, . . . , 2n − 1}.

(Note that deg Xβ,i =
∑n−1

k=0 2k [i]k = i)

This basis was introduced by Lin, Chung and Han (2014). Consequently,

we refer to it as the “LCH basis”.

Finally, we also consider the monomial basis {1, x , . . . , x2n−1} of F[x]2n .

5

Conversion problems

For each pairs of bases associated with a vector β ∈ Fn, we consider the

following problem:

Problem

Given the first ` coefficients on one of the bases of some polynomial in

F[x]`, ` ∈ {1, . . . , 2n}, compute its first ` coefficients on the other basis.

We call ` the length of an instance.

6

Applications

Lagrange Newton

LCH

Monomial

Multipoint evaluation and interpolation; polynomial multiplication.

7

Applications

Lagrange Newton

LCH

Monomial

Reed–Solomon code encoding and decoding; zk-STARK.

7

Applications

Lagrange Newton

LCH

Monomial

Certain multivariate (Hermite) interpolation and evaluation problems;

encoding of Reed–Muller and multiplicity codes.

7

Previous work

Lagrange Newton

LCH

Monomial

Gao and Mateer 2010 (` = 2n): O(` log `) multiplications and O(` log2 `)

additions; only O(` log ` log log `) additions if β is a “Cantor basis”.

8

Previous work

Lagrange Newton

LCH

Monomial

Lin, Chung and Han 2014 (` = 2n): O(` log `) multiplications/additions.

8

Previous work

Lagrange Newton

LCH

Monomial

Lin et al. 2016 (` = 2n): O(` log `) multiplications and O(` log2 `)

additions; only O(` log ` log log `) additions if β is a Cantor basis.

8

Previous work

Lagrange Newton

LCH

Monomial

Probably O(M(`) log `) using product trees, transposition principle, etc.

8

This work

Lagrange Newton

LCH

Monomial

9

Let us fix an arbitrary vector β = (β0, . . . , βn−1) ∈ Fn that has linearly

independent entries over F2.

If n = 1, then

Nβ,0 = Xβ,0 = 1, Nβ,1 = Xβ,1 =
x

β0
, Lβ,0 =

x

β0
+ 1, Lβ,1 =

x

β0
.

It is straightforward to perform the conversions in this case.

10

Subspace vanishing polynomials

Define

Sβ,k =
2k−1∏
i=0

x − ωβ,i for k ∈ {0, . . . , n}.

Properties

• Sβ,k vanishes on the subspace generated by β0, . . . , βk−1.

• Sβ,0 = x and Sβ,k = S2
β,k−1 − Sβ,k−1(βk−1)Sβ,k−1 for k ≥ 1.

• Sβ,k = x2k +
∑k−1

i=0 sk,ix
2i with sk,0, . . . , sk,k−1 ∈ F.

• Sβ,k(x + ω) = Sβ,k(x) + Sβ,k(ω) for ω ∈ F.

• Xβ,i =
∏n−1

k=0 (Sβ,k(x)/Sβ,k(βk))[i]k for i ∈ {0, . . . , 2n − 1}.

11

Main lemma

Lemma

Suppose that n ≥ 2. For some k ∈ {1, . . . , n−1}, let α = (β0, . . . , βk−1),

γ = (βk , . . . , βn−1) and δ = (Sβ,k(βk), . . . ,Sβ,k(βn−1)). Then the

entries of δ are linearly independent over F2, and

Lβ,2k i+j = Lδ,i (Sβ,k(x)) Lα,j (x − ωγ,i) ,
Nβ,2k i+j = Nδ,i (Sβ,k(x)) Nα,j (x − ωγ,i) ,
Xβ,2k i+j = Xδ,i (Sβ,k(x)) Xα,j (x)

for i ∈ {0, . . . , 2n−k − 1} and j ∈ {0, . . . , 2k − 1}.

Allows us to reduce conversion problems for the bases associated to β to

conversion problems for the bases associated to α and δ.

But we need to introduce a shift parameter to allow recursion.

12

Conversion between the Newton and LCH bases

Corollary

Suppose that f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F satisfy

`−1∑
i=0

fiNβ,i (x − λ) =
`−1∑
i=0

hiXβ,i .

Then there exist unique elements g0, . . . , g`−1 ∈ F such that

min(`−2k i,2k)−1∑
j=0

f2k i+jNα,j (x − λ− ωγ,i) =

min(`−2k i,2k)−1∑
j=0

g2k i+jXα,j

for i ∈ {0, . . . , d`/2ke − 1}, and

d(`−j)/2ke−1∑
i=0

g2k i+jNδ,i (x − Sβ,k(λ)) =

d(`−j)/2ke−1∑
i=0

h2k i+jXδ,i

for j ∈ {0, . . . ,min(2k , `)− 1}.
13

Conversion between the Newton and LCH bases

How should we choose k?

• k ≈ n/2 for “cache-friendliness”,

• k = n − 1 if computing the shifts on the fly.

By always taking k = n − 1, we obtain the following complexity bounds.

Multiplications: b`/2c dlog2 `e b`/2c dlog2 `e

Additions: (b`/2c − 1) dlog2 `e+ `− 1 b`/2c dlog2 `e

Precomputations: O(log2 `) operations O(`) operations

Auxiliary space: O(log2 `) field elements O(`) field elements

14

Conversion between the Lagrange and LCH bases

Corollary (` = 2n)

Suppose that f0, . . . , f2n−1, λ, h0, . . . , h2n−1 ∈ F satisfy

2n−1∑
i=0

fiLβ,i (x − λ) =
2n−1∑
i=0

hiXβ,i .

Then there exist unique elements g0, . . . , g2n−1 ∈ F such that

2k−1∑
j=0

f2k i+jLα,j (x − λ− ωγ,i) =
2k−1∑
j=0

g2k i+jXα,j

for i ∈ {0, . . . , 2n−k − 1}, and

2n−k−1∑
i=0

g2k i+jLδ,i (x − Sβ,k(λ)) =
2n−k−1∑
i=0

h2k i+jXδ,i

for j ∈ {0, . . . , 2k − 1}.
15

Conversion between the Lagrange and LCH bases

By always taking k = n − 1, we obtain the following complexity bounds.

Multiplications: min
(
(`− 1) (dlog2 `e+ 1) /2, 2n−1n

)
Additions: min ((`− 1) (dlog2 `e+ 2) , (2n − 1)(n + 1))

Precomputations: O(n2) operations

Auxiliary space: 2n − `+O(n2) field elements

The case ` < 2n is handled by applying ideas from truncated FFTs.

16

Conversion between the monomial and LCH bases

Corollary

Suppose that f0, . . . , f`−1, h0, . . . , h`−1 ∈ F satisfy

`−1∑
i=0

fiXβ,i =

d`/2ke−1∑
i=0

min(`−2k i,2k)−1∑
j=0

h2k i+jx
j

 S i
β,k .

Then there exist unique elements g0, . . . , g`−1 ∈ F such that

min(`−2k i,2k)−1∑
j=0

f2k i+jXα,j =

min(`−2k i,2k)−1∑
j=0

g2k i+jx
j

for i ∈ {0, . . . , d`/2ke − 1}, and

d(`−j)/2ke−1∑
i=0

g2k i+jXδ,i =

d(`−j)/2ke−1∑
i=0

h2k i+jx
i

for j ∈ {0, . . . ,min(2k , `)− 1}.
17

Problem

We want to perform O(` log `) multiplications overall, so we need to

perform O(`) multiplications in the Taylor expansion step.

But

Sβ,k = x2k +
k−1∑
i=0

sk,ix
2i with sk,0, . . . , sk,k−1 ∈ F.

For arbitrarily chosen k , it is unclear how to obtain the desired

complexity for the Taylor expansion step.

18

Not a solution

If β0, . . . , βk−1 ∈ F2k for some k ∈ {1, . . . , n − 1}, then

Sβ,k =
∏
ω∈F

2k

x − ω = x2k − x .

Using the algorithms of Gao and Mateer, the Taylor expansion step then

requires at most b`/2c dlog2d`/2kee additions and zero multiplications.

But we cannot guarantee that such a value of k exists.

19

A solution

If β0/β0, . . . , βk−1/β0 ∈ F2k for some k ∈ {1, . . . , n − 1}, then

Sβ,k = x2k − β2k−1
0 x = β2k

0

((
x

β0

)2k

− x

β0

)
.

We can always take k = 1.

O(`) multiplications allow us to reduce to Taylor expansion at x2k − x .

Using the algorithms of Gao and Mateer, the Taylor expansion step then

requires at most b`/2c dlog2d`/2kee additions and O(`) multiplications.

20

A better solution

Lemma

Suppose that n ≥ 2. Let k∈{1, . . . , n − 1} s.t. β0/β0, . . . , βk−1/β0∈F2k ,

α = (β0, . . . , βk−1) and

δ =

((
βk
β0

)2k

− βk
β0
, . . . ,

(
βn−1
β0

)2k

− βn−1
β0

)
.

Then the entries of δ are linearly independent over F2, and

Xβ,2k i+j (β0x) = Xδ,i

(
δ0

x2k − x

δ0

)
Xα,j (α0x)

for i ∈ {0, . . . , 2n−k − 1} and j ∈ {0, . . . , 2k − 1}.

21

Conversion between the monomial and LCH bases

Corollary

Suppose that f0, . . . , f`−1, h0, . . . , h`−1 ∈ F satisfy

`−1∑
i=0

fiXβ,i (β0x) =

d`/2ke−1∑
i=0

min(`−2k i,2k)−1∑
j=0

h2k i+jx
j

(x2k − x

δ0

)i

.

Then there exist unique elements g0, . . . , g`−1 ∈ F such that

min(`−2k i,2k)−1∑
j=0

f2k i+jXα,j (α0x) =

min(`−2k i,2k)−1∑
j=0

g2k i+jx
j

for i ∈ {0, . . . , d`/2ke − 1}, and

d(`−j)/2ke−1∑
i=0

g2k i+jXδ,i (δ0x) =

d(`−j)/2ke−1∑
i=0

h2k i+jx
i

for j ∈ {0, . . . ,min(2k , `)− 1}.
22

Conversion between the monomial and LCH bases

We instead convert between the monomial basis and the “twisted” LCH

basis {Xβ,0(β0x), . . . ,Xβ,2n−1(β0x)}.

Converting to and from the LCH basis then requires an additional O(`)

multiplications for performing the substitution x 7→ β0x or x 7→ x/β0 on

the monomial basis.

Taylor expansion at (x2k − x)/δ0 requires at most b`/2c
⌈
log2

⌈
`/2k

⌉⌉
additions and O(`) multiplications.

Xβ,0(β0x) = 1 and Xβ,1(β0x) = x , so all multiplications in the base case

are eliminated.

23

Conversion between the monomial and LCH bases

By always taking k = 1, we obtain the following complexity bounds for

converting between the twisted LCH basis and the monomial basis.

Multiplications: b`/2c (3 dlog2 `e − 4) + 1

Additions: b`/2c
(dlog2 `e

2

)
Precomputations: O(log2 `) operations

Auxiliary space: O(log `) field elements

After equalising precomputations, our algorithms perform fewer

multiplications than those of Lin, Al-Naffouri, Han and Chung.

24

How should we choose β?

Suppose now that we are free to choose β, but the field F and the

dimension of the vector are fixed.

Then how should we chose β?

Wishlist

• β0 = 1,

• Large values of k permitted,

• Multiplications by elements of small subfields (e.g., F2).

25

Very special case: F ⊇ F
22

dlog2 ne

If F
22
dlog2 ne ⊆ F, then take β = (β0, . . . , βn−1) to be a “Cantor basis”:

β0 = 1 and βi = β2
i+1 − βi+1 for i ∈ {0, . . . , n − 2}.

Then we can always take k = 2dlog2 ne−1.

⇒ Perform at most b`/2c dlog2 `e dlog2 log2 `e additions.

Moreover, δ = (β0, . . . , βn−k−1) for this choice of k .

⇒ Perform no multiplications since δ0 = β0 = 1.

Reduces to the algorithm of Lin, Al-Naffouri, Han and Chung for ` = 2n.

26

Less special case: tower of subfields

Suppose there exists a tower of subfields

F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm = F.

Construct β = (β0, . . . , βn−1) as follows:

1. Choose a basis {ϑi,0, . . . , ϑi,di+1/di−1} for each extension F2di+1 /F2di .

2. Set

βi =
m−1∏
j=0

ϑj,ij such that
m−1∑
j=0

ijdj = i ,

for i ∈ {0, . . . , n}.

Then we can always take k = max{di | di < n}.

27

Example: F = F212, n = 12

Relative number of additions

1 1024 2048 3072 4096

0.4

0.6

0.8

1
(d0, . . . , dm)

(1, 12)

(1, 6, 12)

(1, 4, 12)

(1, 3, 12)

(1, 2, 12)

(1, 3, 6, 12)

(1, 2, 6, 12)

(1, 2, 4, 12)

Polynomial length (`)
28

Example: F = F212, n = 12

Relative number of multiplications

1 1024 2048 3072 4096

0.5

0.6

0.7

0.8

0.9

1
(d0, . . . , dm)

(1, 12)

(1, 6, 12)

(1, 4, 12)

(1, 3, 12)

(1, 2, 12)

(1, 3, 6, 12)

(1, 2, 6, 12)

(1, 2, 4, 12)

Polynomial length (`)
29

Fewer mutliplications

We have complete freedom in the choice of bases for the extensions.

We should use this freedom to either eliminate multiplications, or force

them to be by elements of small subfields.

Example

If F2di+1/F2di is a quadratic extension, then choose its basis {ϑi,0, ϑi,1}
such that

TrF
2
di+1

/F
2
di

(
ϑi,1
ϑi,0

)
= 1.

Then each time k = di , the Taylor expansion step is multiplication-free.

30

Example: F = F212, n = 12

Relative number of multiplications

1 1024 2048 3072 4096
0

0.2

0.4

0.6

0.8

1
(d0, . . . , dm)

(1, 12)

(1, 6, 12)

(1, 4, 12)

(1, 3, 12)

(1, 2, 12)

(1, 3, 6, 12)

(1, 2, 6, 12)

(1, 2, 4, 12)

(1, 3, 6, 12)†

(1, 2, 6, 12)†

(1, 2, 4, 12)†

Polynomial length (`)
31

Conclusion

Lagrange Newton

LCH

Monomial

Fast, but not so interesting.

Interesting, but not so fast.

Future work: answer the (correct) question “How should we choose Sβ,n?”.

32

Fast Hermite interpolation and

evaluation over finite fields of

characteristic two

Hasse derivatives

Since we are working over small characteristic, derivative is taken to

mean Hasse derivative.

Definition

For i ∈ N, the ith Hasse derivative D i : F[x]→ F[x] sends F ∈ F[x] to

the coefficient of y i in the polynomial F (x + y) ∈ F[x][y].

The Hasse derivatives of F ∈ F[x] satisfy

F (x + y) =
∑
i∈N

(D iF)(x)y i .

33

Hermite interpolation and evaluation

Problem

Let ω0, . . . , ωm−1 ∈ F be distinct, `0, . . . , `m−1 be positive integers,

` = `0 + · · ·+ `m−1, and F ∈ F[x]`.

Hermite interpolation: Given (D jF)(ωi) for j ∈ {0, . . . , `i − 1} and

i ∈ {0, . . . ,m − 1}, compute F .

Hermite evaluation: Given F , compute (D jF)(ωi) for

j ∈ {0, . . . , `i − 1} and i ∈ {0, . . . ,m − 1}.

Polynomials are assumed to be represented w.r.t. the monomial basis.

We call ` the length of an instance.

34

(A variant of) Chin’s algorithm

For F ∈ F[x]`, we have

F ≡
`i−1∑
j=0

(D jF)(ωi) (x − ωi)
j (mod (x − ωi)

`i)

for i ∈ {0, . . . ,m − 1}.

Taylor expansion to convert between derivatives and residues.

Remainder trees/fast CRT to convert between residues and polynomials.

Performs O(M(`) log `) field operations.

35

Our problem

For now, we focus on the special case m = |F| and `0 = · · · = `m−1 = 2n.

Let |F| = q and fix some enumeration F = {ω0, . . . , ωq−1}.

For n ∈ N, define Hn : F[x]2nq → F2nq by

F 7→
((

Dbi/qcF
)

(ωi mod q)
)
i=0,...,2nq−1

.

In particular, H0(F) = (F (ω0), . . . ,F (ωq−1)) for F ∈ F[x]q.

The maps H−1n and Hn respectively capture the Hermite interpolation

and evaluation problems that we are considering.

36

Main lemma

Lemma

Let n ∈ N be nonzero and F ∈ F[x]2nq. Write

F = F1(xq − x)2
n−1

+ F0

with F0,F1 ∈ F[x]2n−1q. Then for ω ∈ F and i ∈ {0, . . . , 2n − 1},

(
D iF

)
(ω) =

{(
D iF0

)
(ω) if i < 2n−1,(

D i−2n−1

F1

)
(ω) +

(
D iF0

)
(ω) otherwise.

Proof. For ω ∈ F,

F (x + ω) =
∑
i∈N

(D iF)(ω)x i = F1(x + ω)(x2n−1q + x2n−1

) + F0(x + ω).

37

Main lemma

Lemma

Let n ∈ N be nonzero and F ∈ F[x]2nq. Write

F = F1(xq − x)2
n−1

+ F0

with F0,F1 ∈ F[x]2n−1q. Then for ω ∈ F and i ∈ {0, . . . , 2n − 1},

(
D iF

)
(ω) =

{(
D iF0

)
(ω) if i < 2n−1,(

D i−2n−1

F1

)
(ω) +

(
D iF0

)
(ω) otherwise.

We have D i ◦D j =
(
i+j
j

)
D i+j for i , j ∈ N. It follows by Lucas’ lemma that

D i−2n−1

◦ D2n−1

= D i for i ∈ {2n−1, . . . , 2n − 1}.

37

Main lemma

Lemma

Let n ∈ N be nonzero and F ∈ F[x]2nq. Write

F = F1(xq − x)2
n−1

+ F0

with F0,F1 ∈ F[x]2n−1q. Then for ω ∈ F and i ∈ {0, . . . , 2n − 1},

(
D iF

)
(ω) =

{(
D iF0

)
(ω) if i < 2n−1,(

D i−2n−1

(F1 + D2n−1

F0)
)
(ω) otherwise.

We have D i ◦D j =
(
i+j
j

)
D i+j for i , j ∈ N. It follows by Lucas’ lemma that

D i−2n−1

◦ D2n−1

= D i for i ∈ {2n−1, . . . , 2n − 1}.

37

Main lemma

Lemma

Let n ∈ N be nonzero and F ∈ F[x]2nq. Write

F = F1(xq − x)2
n−1

+ F0

with F0,F1 ∈ F[x]2n−1q. Then

Hn(F) = Hn−1
(
F0

)
⊕ Hn−1

(
F1 + D2n−1

F0

)
.

Recall that H0(F) = (F (ω0), . . . ,F (ωq−1)) for F ∈ F[x]q.

37

Cost of the reduction

We have

F = F1(xq − x)2
n−1

+ F0 = x2n−1qF1 + x2n−1

F1 + F0.

Consequently, F ↔ (F0,F1) costs 2n−1q additions.

If F0 =
∑2n−1q−1

i=0 fix
i , then Lucas’ lemma implies that

D2n−1

F0 =

q/2−1∑
i=0

x2n i
2n−1−1∑
j=0

f2n−1(2i+1)+jx
j .

Thus, (F0,F1)↔ (F0,F1 + D2n−1

F0) costs 2n−2q additions.

Therefore, F ↔ (F0,F1 + D2n−1

F0) costs 3 · 2n−2q additions.***

38

Evaluation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

f0

h0

f1

h1

f2

h2

f3

h3

f4

h4

f5

h5

f6

h6

f7

h7

f8

h8

f9

h9

f10

h10

f11

h11

f12

h12

f13

h13

f14

h14

f15

h15

Recursive call Recursive call

Complexity: 2n(A0(q) + 3nq/4) additions and 2nM0(q) multiplications.

39

Evaluation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

f0

h0

f1

h1

f2

h2

f3

h3

f4

h4

f5

h5

f6

h6

f7

h7

f8

h8

f9

h9

f10

h10

f11

h11

f12

h12

f13

h13

f14

h14

f15

h15

Evaluate Evaluate Evaluate Evaluate

Complexity: 2n(A0(q) + 3nq/4) additions and 2nM0(q) multiplications.

39

Evaluation complexity

For c ∈ {1, . . . , q}, let A0(c) and M0(c) respectively denote the number

of additions and multiplications needed to compute the first c entries of

H0(F) when given a polynomial F ∈ F[x]q.

Theorem

Given F ∈ F[x]2nq and c ∈ {1, . . . , 2nq}, the first c entries of Hn(F)

can be computed with M0(q) (dc/qe − 1) + M0(c mod∗ q)

multiplications, and at most

A0(q) (dc/qe − 1) + A0(c mod∗ q)

+

(
3

4
dlog2 dc/qee − 1

4

)
(dc/qe − 1) q + (2n − 1) q

additions.

If in addition F ∈ F[x]` ⊂ F[x]2nq, we just discard some more additions.

40

Evaluation complexity

For c ∈ {1, . . . , q}, let A0(c) and M0(c) respectively denote the number

of additions and multiplications needed to compute the first c entries of

H0(F) when given a polynomial F ∈ F[x]q.

Theorem

Given F ∈ F[x]2nq and c ∈ {1, . . . , 2nq}, the first c entries of Hn(F)

can be computed with M0(q) (dc/qe − 1) + M0(c mod∗ q)

multiplications, and at most

A0(q) (dc/qe − 1) + A0(c mod∗ q)

+

(
3

4
dlog2 dc/qee − 1

4

)
(dc/qe − 1) q + (2n − 1) q

additions.

If in addition F ∈ F[x]` ⊂ F[x]2nq, we just discard some more additions.

40

Interpolation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

h0

f0

h1

f1

h2

f2

h3

f3

h4

f4

h5

f5

h6

f6

h7

f7

h8

f8

h9

f9

h10

f10

h11

f11

h12

f12

h13

f13

h14

f14

h15

f15

Recursive call Recursive call

Complexity: 2n(A0(q) + 3nq/4) additions and 2nM0(q) multiplications.

41

Interpolation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

h0

f0

h1

f1

h2

f2

h3

f3

h4

f4

h5

f5

h6

f6

h7

f7

h8

f8

h9

f9

h10

f10

h11

f11

h12

f12

h13

f13

h14

f14

h15

f15

Interpolate Interpolate Interpolate Interpolate

Complexity: 2n(A0(q) + 3nq/4) additions and 2nM0(q) multiplications.

41

New problem

Problem

Given the first ` entries of Hn(F) for some polynomial

F ∈ F[x]` ⊆ F[x]2nq, compute F .

This is still a special case of the general Hermite interpolation problem,

but it is sufficient for applications in coding theory.

Problem

Let F =
∑2nq−1

i=0 fix
i ∈ F[x]2nq. Given the first c entries of Hn(F) and

fc , . . . , f2nq−1, compute f0, . . . , fc−1.

We can then solve the first problem by taking c = `, since we then know

that fc = · · · = f2nq−1 = 0.

42

New problem

Problem

Given the first ` entries of Hn(F) for some polynomial

F ∈ F[x]` ⊆ F[x]2nq, compute F .

To address the problem, we follow the approach of truncated FFTs by

solving the following more general problem.

Problem

Let F =
∑2nq−1

i=0 fix
i ∈ F[x]2nq. Given the first c entries of Hn(F) and

fc , . . . , f2nq−1, compute f0, . . . , fc−1.

We can then solve the first problem by taking c = `, since we then know

that fc = · · · = f2nq−1 = 0.

42

Interpolation complexity

Theorem

Suppose that we can solve the problem for n = 0 with A0(c) additions

and M0(c) multiplications. Then the problem for n ≥ 1 can be solved

with M0(q) (dc/qe − 1) + M0(c mod∗ q) multiplications, and at most

A0(q) (dc/qe − 1) + A0(c mod∗ q)

+

(
7

4
dlog2 dc/qee − 3

4

)
(dc/qe − 1) q + (2n − 1) (2q + 1)

additions.

43

Interpolation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

h0

f0

h1

f1

h2

f2

h3

f3

h4

f4

h5

f5

h6

f6

h7

f7

h8

f8

h9

f9

h10

f10

h11

f11

h12

f12

h13

f13

h14

f14

h15

f15

Recursive call Recursive call

44

Interpolation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

h0

f0

h1

f1

h2

f2

h3

f3

h4

f4

h5

f5

h6

f6

h7

f7

h8

f8

h9

f9

h10

f10

h11

f11

h12

f12

h13

f13

h14

f14

h15

f15

Recursive call Recursive call

44

Interpolation example: q = 4, n = 2

Let F =
∑15

i=0 fix
i and H2(F) = (h0, . . . , h15).

h0

f0

h1

f1

h2

f2

h3

f3

h4

f4

h5

f5

h6

f6

h7

f7

h8

f8

h9

f9

h10

f10

h11

f11

h12

f12

h13

f13

h14

f14

h15

f15

Recursive call Recursive call

44

Thank you!

	Fast transforms over finite fields of characteristic two
	Polynomial bases
	Conversion problems
	Main lemma
	Newton–LCH
	Lagrange–LCH
	Monomial–LCH
	Choosing
	Towers
	Conclusion

	Fast Hermite interpolation and evaluation over finite fields of characteristic two
	Problem definition
	Chin's algorithm
	Our problem

